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Abstract. The snake Phalotris lemniscatus is a polymorphic species regarding color, which varies between light shades 
with a yellow predominance (pale yellow-brown) to darker shades with a red predominance (red-dark). Pale yellow-
brown individuals are more frequent in coastal populations while there is a tendency of increasing the frequency of 
red-dark morphs in inland areas. Considering the variation in substrate color along the species distribution (light/
sandy on the coast to reddish and dark/argillaceous in inland areas), we raise the hypothesis that the predation rate of 
each morph would be lower in sites were its crypsis potential is higher. If correct, this hypothesis would reinforce the 
idea that the predation risk is one of the factors influencing the spatial structuring in morph frequency distributions 
in populations of P. lemniscatus. To test this hypothesis, we performed a field experiment using plasticine P. lemnis-
catus artificial models that represent two morphs: red-dark and pale yellow-brown. The models were distributed in 
three localities where the following substrate types predominate: light (Coastal Site), intermediary (Lowland Site) and 
reddish dark (Highland Site). Our predictions were corroborated only at the coastal site, where the less cryptic morph 
was the most preyed one. We verified that there is a regional variation in the predation risk on different morphs. Thus, 
the possibility that the selective pressure by predators is a relevant element in the structuring of the frequencies of dif-
ferent morph populations of this species cannot be completely excluded.
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INTRODUCTION

Polymorphism is characterized by the presence of 
different phenotypes in a population (Mayr, 1963) and 
does not only include the morphological features, but 
also those related to the life history and behavior of the 

organisms (Huxley, 1955; Hedrick, 2006). There are many 
processes behind the maintenance of different morphs in 
a population, and these processes are not easily identified 
(Calsbeek and Cox, 2012; Deitloff et al., 2013; Karpestam 
et al., 2016, Barnett et al., 2018).

Questions such as “how do morphs vary their 
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appearance and abundance in a spatial scale” and “what 
are the habitat components that favor the existence 
and sympatry of two or more morphs” would be bet-
ter answered from experiments performed under natu-
ral conditions (Hoffman and Blouin, 2000; Roulin, 2004; 
Gray and McKinnon, 2006). 

In squamates, particularly in snakes, some of the 
most well-documented types of polymorphism are the 
multiple color forms (color polymorphism). From an 
ecological view, morphs can be considered cryptic (when 
they maximize the animal’s camouflage; Clarke, 1962; 
King and Lawson, 1995; Eizirik et al., 2003; Hoffman et 
al., 2006), aposematic (when they highlight a warning 
signal; Brodie and Brodie, 2004; Noonan and Comeault, 
2009) or a combination of both (Brodie and Brodie, 1980; 
Wang and Shaffer, 2008; Barnett et al., 2018). Variations 
in the color are recorded in other taxa and are associated 
with an improvement in the performance of intraspecific 
communication, thermoregulation or as anti-predation 
mechanisms (Endler, 1978; Pérez et al., 2017). Snakes 
have many different and complex patterns of intraspe-
cific color polymorphism, from systems with bright and 
contrasting colors to those with cryptic color sets or dis-
ruptive patterns (Cox and Rabosky, 2013; Holmes et al., 
2017; Martínez-Freiría et al., 2017; Santos et al., 2017). 

Undoubtedly, crypsis is an important factor that 
might bring higher survival chances to the morphotype, 
since the animal’s color matches the color of the sub-
strate, making it difficult to be detected by vision-orient-
ed predators (Johannesson and Ekendahl, 2002; Venesky 
and Anthony, 2007). These predators are expected to find 
and attack more easily the more conspicuous morphs in 
the population, according to their crypsis (Stimson and 
Berman, 1990).

In southern Brazil, there are consistent records 
of polymorphic variations spatially structured for the 
Dumeril’s Diadem Snake (Phalotris lemniscatus) (Dumé-
ril, Bibron and Duméril, 1854) (Fig. 1A and 1C). This 
species has different morphs with shades going from 
red-dark to pale yellow-brown (Ferrarezzi, 1993; Este-
ves, 2011; Noronha, 2012). The variations seem to be 
restricted to these shades, with only one record of albi-
nism (Abegg, 2015) and no records of a melanistic form. 
The distribution of P. lemniscatus morphs is spatially 
structured in the following way: individuals of predomi-
nantly pale yellow-brown color occur more frequently in 
populations from regions of sandy substrate of the south-
ern Brazil and Uruguay coasts, while the predominantly 
red-dark individuals occur more frequently in more con-
tinental regions of Brazil and Argentina (Noronha, 2012). 
In these more continental localities, the substrates are 
darker due to the predominance of organic matter and 

clay in the soil (Lema, 2002; Esteves, 2011), allowing dif-
ferential crypsis between the morphs.

Many snake predators in the extreme South of Brazil 
are visually oriented (e.g., birds: Dell’ Aglio et al., 2012; 
Santos et al., 2013), and probably respond to variations in 
the level of contrast between their prey and the substrate. 
With this premise, we expect that predation is an impor-
tant selective factor for the definition of the rare (more 
predated) and more frequent (less predated) morphs in 
each population. Thus, the predation rate of the morphs of 
P. lemniscatus should vary between regions with different 
substrate colors, being higher on artificial models of the 
red-dark type than on those of the yellow-brown type in 
the coastal region, and the opposite in continental regions.

Because predation events are generally difficult to 
observe in the wild, they have been largely studied using 
experimental approaches as a manner to observe the 
interactions between predator and prey (Brodie, 1993; 
Guimarães and Sawaya, 2011; Purger et al., 2017). The 
use of artificial plasticine models has been employed 
successfully in predation experiments with invertebrates 
(Koh and Menge, 2006), amphibians (Kuchta, 2006) and 
reptiles (Stuart-Fox et al., 2002; Valkonen et al., 2011; 
Dell´Aglio et al., 2012), with highlight on snakes (Brodie, 
1993; Dell’Aglio et al., 2012; Farallo and Forstner, 2012; 
Santos et al., 2013; Akcali et al., 2019). 

In the present study, we used models of P. lemnisca-
tus to test the hypothesis that the predation rate of each 
morph would be lower in sites were its crypsis potential 
is higher. If correct, this hypothesis would reinforce the 
idea that predation risk is one of the factors for the spa-
tial structuring in the distribution of morph frequencies 
in populations of P. lemniscatus.

MATERIAL AND METHODS

We distributed, in the wild, two types of artificial models of 
the snake: red-dark and yellow-brown (Fig. 1B and 1D). Their 
color was based on live specimens captured in the study area in 
order to accurately represent the color of the morphs that have 
the extremes of variation between the lighter and darker shades 
(Noronha, 2012; Fig. 1A and 1C). These models were manufac-
tured with non-toxic plasticine that allowed the record and quan-
tification of marks left by predator attacks (Brodie, 1993). The 
models measured 30 cm in length and 1 cm in diameter, which 
represents the mean size of adult animals (Carreira et al., 2012). 

The samplings were performed in localities with different 
natural proportions in the abundance of the morphs of P. lemnis-
catus, these being: 1 – Coastal Site (32°43’2.49”S; 52°28’29.87”W) 
in the municipality of Rio Grande (annual mean temperature of 
17.5 °C, Rossato, 2014), where the pale yellow-brown morph is 
more abundant; 2 – Highland Site (29°39’23.04”S; 51°23’7.40”W) 
in the municipality of São Francisco de Paula, where the red-
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dark morph is more abundant (annual mean temperature of 
14.5 °C; Rossato, 2014; minimum temperatures frequently close 
to 0 °C in winter; Maluf, 2000); 3 – Lowland Site (29°27’0.20”S; 
50°34’59.83”W) in the municipality of Capela de Santana (annual 
mean temperature of 17.0 °C; Rossato, 2014), where both morphs 
are observed in similar proportions (Noronha, 2012). The sam-
pled localities extend in extreme points of an area of approxi-
mately 12660 km² located at least at 404 km from each other 
(Fig. 2). The prevailing substrates in each locality are light and 
sandy (Coastal Site) and dark and argillaceous (Highland and 
Lowland Sites), allowing the evaluation of different contrast levels 
between model and background.

We distributed 200 models in each locality (100 red-dark 
and 100 pale yellow-brown), along five transects, each 400 m 
long. The transects were at least 1000 m from each other and 
each received 40 snakes (one every 10 meters). In each transect, 
the two morphs were interspersed so that they had 20 red-dark 
and 20 pale yellow-brown models, a protocol similar to that of 
Dell’Aglio et al. (2012) and Farallo and Forstner (2012).  We 
used this 1:1 ratio to avoid a possible frequency-dependent pre-
dation effect. Each model received an identification code and 
its position was marked with a GPS device to facilitate their 
monitoring. We also took the care to arrange all the transects 
in an area of similar vegetation cover (low and scarce vegetation 
with the prevalence of exposed soil) that would not provide any 
visual barrier to the predators. Thus, the contrast between the 
models and the background happened due to the color of the 
artificial snake and the soil.

The artificial models remained exposed in the field for 48 
hours. During this time, they were inspected twice, after 24 
and 48 hours since the installation. During the inspections, we 
recorded the presence of attack marks on the models. Each arti-
ficial model that clearly showed marks of bird attack (e.g., peck-

ings) was considered a predation event (Brodie, 1993; Dell’Aglio 
et al., 2012). The models showing attack marks during the first 
inspection were replaced by new models. It is worth highlight-
ing that the three localities have a similar fauna of predatory 
birds (Fontana et al., 2008; Petry and Scherer, 2008; Accordi 
and  Hartz, 2006), mainly of birds of prey (e.g., Caracara plan-
cus, Milvago chimango), egrets (e.g., Ardea alba, Syrigma sibila-
trix) and even some other generalist foragers (e.g., Guira guira). 

Data analysis

Just clearly identifiable pecking marks were considered as 
an attack (or predation event). We quantified only the presence 
and not the number of marks. Thus, a model with one or more 
marks corresponded to one predation event. To evaluate the 
predation intensity of each morph, we calculated the predation 
rate. To do so, we divided the number of models of each morph 
with predation evidence (number of events) by the number of 
exposure hours of these models. The number of exposure hours 
corresponds to the total number of hours between the installa-
tion of the model and its final inspection. This calculation was 
done for each transect. To test the differences in predation rates 
of the morphs between the localities we performed an Analysis 
of Variance with randomization test (Pillar and Orlóci, 1996). 
In these analyses, we used Euclidian distance matrices between 
the morphs, restricting the permutations within the transects 
(blocks) to control possible discrepancies in factors related to 
the predation that were not directly verified (e.g. number and 
species of predators). The Analyses of Variance were performed 
by means of the software MULTIV v.3.34b (Pillar, 1997).

RESULTS

We recorded altogether 162 predation events, which 
corresponds to an overall predation rate of 1.06 events per 
hour. At the Lowland Site, 90 models were attacked (23%). 
This locality had a larger number of attacks directed to the 

Fig. 1. General aspect of the specimens of Phalotris lemniscatus 
used as a reference to the pale yellow-brown (A) and red-dark (C) 
patterns and their models manufactured in plasticine (B and D, 
respectively). The image E show some marks considered as attacks 
from predators.

Fig. 2. Geographic location of the sampling sites.
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red-dark morph (57 models; 0.22 events per hour) than to 
the pale yellow-brown morph (33 models; 0.13 events per 
hour), this difference being marginally significant (SQE 
= 0.02; R2 = 41%; P = 0.057; n = 10). At the Coastal Site, 
we recorded 22 predation events (11%). As for the Low-
land Site, the Coastal Site also showed more attacks on the 
red-dark models (16 models; 0.07 events per hour) than 
on the pale yellow-brown models (6 models; 0.03 events 
per hour) (SQE = 0.005; R2 = 25%; P = 0.049; n = 10). At 
the Highland Site, there was no significant variation in the 
number of attacks between the different morphs (SQE = 
0.0004; R2 < 1%; P = 0.735; n = 10) (Fig. 3).

DISCUSSION

Our results suggest that the morphs of Phalotris lem-
niscatus have different levels of predation and the preda-

tion rate varies between areas. Our predictions regarding 
the importance of crypsis were corroborated only at the 
Coastal Site, where the predation rate was higher on the 
red-dark models that have higher contrast (less cryptic) 
in relation to the substrate of the region. Similar results 
were also observed for the morphs of the Mottled Rock 
Rattlesnake (Crotalus lepidus lepidus; Farallo and Forst-
ner, 2012) and the sand hills mice (Linnen et al., 2013), 
both in the United States. Experiments with artificial 
models showed that differential crypsis and predation are 
the main forces of the spatial structuring of the western 
rattlesnake’s morphs (Farallo and Forstner, 2012). Simi-
larly, Linnen et al. (2013) pointed out that the color of 
the soil offers differential camouflage opportunity to san-
dhill mice against owls and other raptors and is determi-
nant to the spatial structuring of their colored morphs. 

However, our data show that predation does not 
seem to be the main factor acting on the spatial struc-
turing of the morphs of P. lemniscatus since the naturally 
more uncommon morph in the Lowland Site was the one 
that suffered less predation (pale-yellow). In other words, 
the low frequency of the pale-yellow morph in the Low-
land Site population does not seem to be the result of 
predation.

It is worth highlighting that all the sampled locali-
ties have a similar predator composition. However, there 
is a possibility of existing regional variations in the abil-
ity of these predators in detecting prey, which would have 
influenced the local number of attacks on each model 
type. Experiments showed that the capacity of preda-
tors to detect the different morphs based on motionless 
prey is variable and depends on their ability to generate a 
specific searching image according to the form, size and 
color of the prey (e.g., Brodie, 1993; Olsson, 1993; Got-
mark, 1994).

It is reasonable to imagine that the search image 
established by a predator is compatible with a certain type 
of prey that has a higher probability of being found. Thus, 
the naturally rare morphs in each locality may not be part 
of the searching image of local predators (Dukas, 1998). 
In this case, they might not be easily detectable, even if 
their color shows more contrast with the background. 
Therefore, their predation rate would remain relatively 
low, even if their population was experimentally increased 
with the introduction of artificial models (Wennersten 
and Forsman, 2009; Karpestam et al., 2014). In addition, 
animals that attack potentially dangerous organisms (e.g., 
snakes) commonly reduce their exploratory behavior 
toward new and different prey morphs (Greenberg and 
Mettke-Hofmann, 2001), thus exhibiting a neophobic 
behavior (avoiding a new environmental aspect) (Greggor 
et al., 2016). Although possible, this hypothesis would be 

Fig. 3. Mean predation rate (events per hour) on the different 
morphs (red-dark and pale yellow-brown) in the three areas (High-
land, Lowland and Coastal).
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applicable to the lowland and highland sites, but not to 
the coastal site, where the less common and less cryptical 
models were the most preyed ones.

Our results point toward the possibility that other 
factors besides crypsis interfere on the predation rate. 
Among those, we can mention the mimetic aposemat-
ic potential of the red morph since their bright colors 
are associated with poisonous or nonpalatable animals 
(Cuthill et al., 2005; Tarvin et al., 2017). The establish-
ment of a parallel between our data and such studies 
seems convenient due to the slightly reddish pattern of 
one of the morphs of P. lemniscatus. Yet, the effective-
ness of the aposematism based on coral-like coloration 
is questionable regarding canids (Tozetti et al., 2004) and 
birds (Smith, 1969). Besides the passive strategies such 
as crypsis and immobility (Venesky and Anthony, 2007), 
snakes show active defense strategies or behavioral dis-
plays such as escape (Forsman and Appelqvist, 1998; 
Creer, 2005; Allen et al, 2013). Additionally, P. lemnisca-
tus has the antipredatory behavior called “erratic move-
ments” (Tozetti et al., 2009), which would reduce the 
predation effectiveness after being detected by a predator 
(Forsman and Appelqvist, 1998). These behaviors may act 
in combination with the crypsis for the maintenance of 
each morph in each population.

Our study failed to obtain answers to the proposed 
questions. One of the reasons might be that the frequen-
cy of different morphs in each population may be related 
to other environmental factors such as thermoregulation 
(Trullas et al., 2007). In general, ectotherms from cold 
environments tend to have darker colors, which favor 
the absorption of solar radiation (Gibson and Falls, 1979; 
Clusella‐Trullas et al., 2008; Allen et al., 2013). Consider-
ing that the Highland Site has the lowest temperatures in 
the distribution area of P. lemniscatus, there would be a 
positive selective pressure favorable to red-dark individu-
als in the Highland Site and to pale yellow-brown indi-
viduals in the Coastal Site (see Bittner et al., 2002). 

Despite the weakness of our hypothesis based on our 
results, we verify a regional variation on the predation 
risk of the different morphs of this species, which does 
not completely exclude the possibility that the selective 
pressure by predators is a relevant element in the struc-
turing of the frequencies of different morphs in popula-
tions of this species.
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