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Abstract. For Halys pit viper (Gloydius halys) species-specific microsatellite primers 
are not available. We tested a set of twenty primer pairs, originally developed for vari-
ous Crotalinae species, for cross-amplification with Gloydius halys. The level of allelic 
polymorphism was assessed for eight successfully amplified loci via genotyping of a 
population sample. Between three to 24 alleles per locus were recorded. We examined 
a female and seven of its embryos for multiple paternity using seven microsatellite 
loci. More than two paternal alleles were detected in two loci indicating that two or 
more fathers were involved. This is the first report of multiple paternity in the wild 
population of Crotalinae. The life history characteristics of Halys pit-viper that can be 
associated with multiple paternity are discussed.
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During the last two decades the introduction of molecular techniques has greatly 
facilitated kinship analysis in wild populations of animals. Multiple paternity has been 
documented for various taxonomic groups of vertebrates (Laurila and Seppa, 1998; Wink 
and Dyrcz, 1999; Avise et al., 2002; Westneat and Stewart, 2003; Gottelli et al. 2007; Ull-
er and Olsson, 2008). In scaled reptiles (Squamata) multiple paternity seems to be a very 
common phenomenon and reaches the highest levels known in vertebrates (Uller and Ols-
son, 2008). However, cases of multiple fecundation have only been reported for 36 out of 
more than 8900 squamate species and they are limited to nine out of 52 squamate fami-
lies (Uetz et al., 2007; Uller and Olsson, 2008; Voris et al., 2008). Recently, several authors 
have recognized the need to consider this phenomenon in scaled reptiles in the broader 
phylogenetic context (Voris et al., 2008; Wusterbarth et al., 2010) because our knowledge 
on the occurrence of multiple paternity in diverse squamate taxa is still insufficient.

Microsatellites are very useful for paternity studies due to their co-dominance, biparen-
tal inheritance and high variability (Webster and Reichart, 2005). The development of these 
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markers is still relatively expensive and a time consuming task, while recent achievements 
in application of 454 pyrosequencing for microsatellite development have greatly facilitated 
this process (e.g. Castoe et al., 2010; Malausa et al., 2011). Given that the flanking regions 
of microsatellite loci may be quite conserved in related taxa (Moore et al., 1991; Primmer 
et al., 1996), cross-species amplification is a widely used way to avoid the process of the 
microsatellite development for each newly studied species (Bushar et al., 2001; Anderson, 
2006). Because specific microsatellite primers were not available for Halys pit viper (Gloy-
dius halys) a set of microsatellite primers from other snakes were tested for cross-species 
amplification. The primer set found was subsequently utilized in a paternity analysis of a 
female with seven embryos that had been found dead on a roadside.

We performed cross-species microsatellite amplification on 156 individuals of adult G. 
halys that were sampled during 2008 - 2010 in the Novosibirsk region (West Siberia, Rus-
sia). Buccal swabs and scale clippings were used to obtain the tissue samples which were 
stored in 95% ethanol at 4 °C. After sampling and examination all snakes were released 
at the site of capture. In attempt to detect multiple paternity in G. halys we used a road-
killed gravid female, collected in August 2009 at the same study area. The dissection of the 
female revealed seven well-developed embryos that were measured and sexed. Intercostal 
muscle tissue of the female and tail tips of the embryos were used for DNA extraction.

Total genomic DNA was isolated using standard proteinase K and phenol-chloroform 
protocols (Sambrook et al., 1989). A panel of 20 microsatellite loci which had been devel-
oped for Crotalinae species (genera Crotalus and Sistrurus) was tested for cross-species 
amplification with G. halys (Table 1). Initially we performed PCR with each primer pair 
in a set of six samples using the following conditions – initial denaturation at 94 °C for 
5 min followed by 45 cycles of 60 s at 94 °C, annealing at 53 °C for 60 s, 60 s exten-
sion at 72 °C, and a final extension of 5 min at 72 °C. At a second step all primer pairs 
which showed positive results were employed in gradient PCR with Tgradient TermoCy-
cler (Biometra). For this step we used three samples out of previous set and the same PCR 
conditions, but the annealing temperature ranged from 50 to 65 °C. After that we rejected 
all primers which had yielded ambiguous patterns (i.e. a lot of non-specific amplifications) 
at all thermal regimes. Finally, we selected the optimal annealing temperature for each 
locus (Table 1) and performed PCR with the six samples. The loci which exhibited more 
than two alleles were applied for further genotyping of the whole data set. The female and 
its embryos were genotyped twice to be sure that an observed pattern is not a result of an 
amplification/electrophoresis error.

All PCRs were performed in 25 µl reaction mix containing 15-60 ng DNA, 0.1 mM 
each of dGTP, dCTP and dTTP, 0.045 mM dATP, 0.1 µl 33P-α-dATP (Amersham Bio-
sciences), 1.5 U of Top-Taq DNA polymerase (BIORON), 2.5 µL of 10 × amplification 
buffer (10 mM Tris-HCl pH 8.5, 50 mM KCl and 2.5 mM MgCl2), and 10 pmol of for-
ward and reverse primers. Amplification products of all PCRs were separated by high-res-
olution electrophoresis in 6% denaturing polyacrylamide gels at 65 W for 1.5 h using a 
Base Acer Sequencer (Stratagene). After the gels were vacuum dried they were exposed for 
24-96 h to X-ray film (BioMax MR Film, Kodak). PCR products were sized with reference 
to a known sequencing reaction of the pBlueScript SK+ plasmid. We checked for possible 
scoring errors due to the production of stutter bands, allele dropout and the presence of 
null alleles using Micro-Checker v. 2.2.3 software (Oosterhout et al., 2004). Test for link-
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age disequilibrium was performed in Genepop web version 4.0.10 (Rousset, 2008) using 
exact probability test with a Markov Chain approximation. The critical P-values were cor-
rected for multiple tests by the Benjamini and Yekutieli (B–Y) method (Benjamini and 
Yekutieli, 2001).

Table 1. Microsatellite loci and results of their amplification with Gloydius halys.
Reference and used species: aMunguia-Vega et al. (2009), Crotalus tigris; bGoldberg et al. (2003), C. tigris; 
cVillarreal et al. (1996), C. horridus; dHolycross et al. (2002), C. willardi; eOyler-McCance et al. (2005), C. 
viridis; fGibbs et al. (1998), Sistrurus catenatus. NA, number of observed alleles; Ta, annealing temperature. 
*Allele sizes are based on the size of the clone sequenced for each locus (Gibbs et al. 1998).

Locus Repeat motif Allelic size, 
bp NA (n)

Amplification with G. halys 

Yes/No/ 
Ambiguous

Allelic size, 
bp NA (n) Ta (°C)

Crti14a (GT)19 274-314 14 (25) No - - -
Crti19a (CA)18 212-235 6 (25) Ambiguous - - -
Crti12Aa (CA)22 219-240 6 (25) Yes 206-220 7 (164) 60
Crti37a (GT)12(GA)26 274-312 14 (25) Yes 264-292 7 (164) 55
Crti95a (CA)22 174-211 10 (25) Yes 172-202 16 (164) 56
Crti10b (GAA)48 219-300 22 (149) Yes 240-312 23 (164) 55
Crti12b (CA)14 217-225 5 (149) Yes 216-232 3 (164) 57
Ch5Ac (CA)17 164-142 8 (29) Yes 144-150 2 (6) 56
Ch7-150c (CA)13 146-144 2 (32) Yes 122-130 2 (6) 56
Ch 5-183c (CA)11 136-124 7 (26) No - - -
Ch 7-144c (CA)16(GA)12 116-100 5 (18) No - - -
Ch 7-87c (CA)12 159-145 3 (16) Yes 138-180 12 (164) 55
Ch 3-155c (CA)13 146-122 4 (22) No - - -
CwA14d (AC)24 147-175 7 (54) Yes 144-174 8 (164) 57
CwA29d (AC)13 160-190 5 (54) No - - -
CwB6d (GA)19 122-130 5 (54) Ambiguous - - -
MFRD5e (TG)23 172-194 9 (192) Yes 160-186 10 (157) 56
Scu01f (AG)24 149* 12 (73) Ambiguous - - -
Scu16f (AC)17 167* 4 (74) No - - -
Scu26f (AC)24 173* 5 (74) Ambiguous - - -

Results of cross-amplification testing are summarized in Table 1. Unambiguous results 
were obtained for ten out of twenty tested microsatellite loci initially amplified with six 
samples of G. halys. Most of them (50%) were originally developed for Crotalus tigris, 30% 
for C. horridus and 10% for C. willardi and C. viridis. No STR locus of Sistrurus catenatus 
could be successfully amplified with G. halys. Eight of cross-amplified loci were used to 
screen with the whole data set (n = 164). Polymorphism varied between three (Crti12) to 
24 (Crti10) alleles per locus. Number of alleles per locus and range of allelic sizes in Halys 
pit viper was generally similar to that of the original species (Table 1). There was no evi-
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dence for scoring errors resulting from stuttering or large allele dropout. However, Micro-
Checker detected the signs of presence of a null allele for locus Crti12A with an estimated 
frequency of 0.08. No linkage disequilibrium tests were significant after B-Y correction.

We examined the female and its embryos for multiple paternity using seven microsat-
ellite loci. More than two paternal alleles were detected for the locus Crti95 (three pater-
nal alleles) and Crti10 (four paternal alleles). This is good evidence for multiple fertiliza-
tion of the litter by two or more males (Table 2).

Table 2. Microsatellite DNA genotypes of Gloydius halys female and its embryos. 

Locus Maternal
genotype

Offspring genotypes Inferred 
paternal 
alleles1 (f) 2 (f) 3 (f) 4 (f) 5 (m) 6 (m) 7 (m)

Crti12A 212/206 212/206 212/212 212/212 212/208 212/212 212/206 212/206 212, 208

Crti37 288/264 292/288 292/288 292/288 288/264 292/288 292/264 292/264 292, 288 
or 264

Crti95 172/196 194/196 198/196 172/196 198/196 172/196 172/196 172/196 194,198, 
196

Crti10 279/258 309/258 306/258 258/258 279/279 258/258 309/258 309/258 258, 279, 
306, 309

Crti12 230/216 230/216 232/216 216/216 232/216 232/230 216/216 232/216 216, 232
Ch 7-87 156/156 156/156 156/156 156/156 156/156 156/152 156/152 156/156 152, 156
CwA14 174/172 172/144 174/174 172/144 174/172 172/144 172/144 172/144 144, 174

Successful cross-species amplification of microsatellites in snakes is known for 
a number of loci and was used both in population genetics and paternity testing stud-
ies (e.g., Clark et al., 2008; Wusterbarth et al., 2010). The three loci tested in the present 
work (Scu01, Scu16 and Scu26) have been previously cross-amplified with other pit vipers, 
as well as with representatives of Colubridae (Gibbs et al., 1998; Anderson, 2006). Sur-
prisingly, we could not achieve satisfactory results with them in our analysis. However, 
PCR products belonging to microsatellites were produced for loci Scu01 and Scu26, but 
their interpretation was severely complicated by the numerous non-specific bands. Fur-
ther improvements of PCR conditions via selection of various PCR buffers may solve 
this problem, as it was shown in Anderson (2006). In general, the 50% rate of successful 
amplifications reached in our study confirms that cross-species utilization of microsatel-
lites may be considered as preferred convenient way to avoid the development of the spe-
cific loci for each newly studied species.

To our best knowledge, only two documented cases of multiple paternity in vipers 
(Viperidae) have been reported. Occurrence of multiple paternity in the common adder 
(Vipera berus) is a well established fact (e.g., Stille et al., 1986; Ursenbacher et al., 2009). 
In the pit viper (Crotalinae) subfamily there is one report of multiple paternity in cap-
tive Copperhead (Agkistrodon contortrix) caused by sperm storage and revealed by the 
phenotypes of the offspring (Schuett and Gillingham, 1986). It is notable that attempts to 
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detect multiple paternity in other pit vipers had failed. Villarreal et al. (1996) had test-
ed two litters of timber rattlesnake (Crotalus horridus) using six loci, whereas Gibbs et 
al. (1998) analysed two litters of massasauga (Sistrurus catenatus). Hence, we document-
ed here the first case of multiple paternity in a free-living Crotalinae, and G. halys is the 
second Viperidae species for which this phenomenon has been documented in the wild. 
We encourage more intense sampling and paternity testing both for Old World and New 
World pit vipers, considering that the prevalence of genetic monandry (instead of multiple 
paternity) may be a likely phenomenon in some snake lineages, as has been recently been 
shown by Lukoschek and Avice (2011) for true sea snakes of genus Hydrophis.

Several life history traits of the Halys pit viper suggest that multiple paternity may 
occur in this species. First, although there are no known recordings of multiple mating 
in this species, G. halys occurs at high population densities, at least at our study site (267 
individual/hectare; Simonov, 2007), with apparent breeding aggregations. Importantly, it 
has been hypothesised that population density and male-biased operational sex ratio are 
linked to the occurrence (and frequency) of multiple paternity in snakes and other squa-
mates (Uller and Olsson, 2008; Voris et al., 2008). However, some recent studies fail to 
find evidence of such a link (Blouin-Demers et al., 2005; Ursenbacher et al., 2009). Next, 
mating has been observed in the middle and end of the activity season in G. halys (Par-
askiv, 1956; Yakovleva, 1964; Yakovlev, 1985), a behaviour known to be associated with 
sperm storage in snakes (e.g., Halpert et al., 1982). Thus, under the assumption that 
females multiple mate and store sperm, two common features in snake species (Olsson 
and Madsen, 1998), it is likely that multiple paternity is promoted in this species. In this 
study, we show that multiple paternity does occur, and now we recommend further stud-
ies to be undertaken in order to understand the extent and evolutionary consequences of 
multiple paternity in this species. 
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