Ecological associations and genetic divergence in Black-bellied Salamanders (Desmognathus quadramaculatus) of the Southern Appalachian Mountains

Jessica A. Wooten ${ }^{1}$, Leslie J. Rissler ${ }^{2}$
${ }^{1}$ Department of Biology, The University of Findlay, Findlay, OH 45840, USA.
${ }^{2}$ Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA. Corresponding author. E-mail: Rissler@as.ua.edu

Submitted on: 2011, $7^{\text {th }}$ March; revised on: 2011, $31^{\text {th }}$ July; accepted on: 2011, 09 ${ }^{\text {th }}$ October.

Abstract

The discovery and subsequent description of cryptic biodiversity is often challenging, especially for groups that have undergone rapid lineage accumulation in the relatively recent past. Even without formal descriptions, understanding genetic diversity patterns as they relate to underlying ecological or historical processes can be important for conservation. The dusky salamanders of the genus Desmognathus, with 20 described species, comprise the second largest genus of plethodontid salamanders in the eastern United States. However, due to the presence of high genetic diversity and relatively few morphological synapomorphies, the number of species is likely to increase. For the three nominal species within the D. quadramaculatus species complex, including D. quadramaculatus, D. folkertsi, and D. marmoratus, we used a portion of the mitochondrial genome and nuclear markers in the form of amplified fragment length polymorphisms (AFLP) to uncover spatial patterns of genetic diversity. Within D. quadramaculatus and D. marmoratus, we uncovered four well-supported lineages with the mitochondrial sequences; phylogeographic patterns were not congruent with the AFLP data. Both sets of markers identified a clear isolation by stream distance. Using multiple regressions, we found that historical river drainages and terrestrial ecoregions explained the phylogeographic patterning we observed for D. quadramaculatus.

Keywords. Salamanders, Desmognathus quadramaculatus, Desmognathus marmoratus, AFLP, streams, Desmognathus folkertsi, mtDNA, ecoregions.

INTRODUCTION

In light of the constant threat of anthropogenic habitat alteration (Davis et al., 2008) and the ubiquity of cryptic biodiversity (Bickford et al., 2006), the discovery and subsequent descriptions of unique evolutionary lineages are central to understanding the full
extent of biodiversity on Earth. However, the discovery and subsequent description of cryptic species is challenging, especially for organismal groups that have experienced rapid lineage accumulation in the recent past (Kozak et al., 2006; Wiens et al., 2006) and that lack obvious morphological differentiation. This is certainly true in lungless salamanders (Plethodontidae) where many species boundaries and evolutionary relationships have been concealed by the absence of obvious morphological synapomorphies (Wake, 1966; Larson et al., 1981; Wake et al., 1983; Carr, 1996; Adams and Rohlf, 2000; Highton and Peabody, 2000; Chippindale et al., 2004; Mueller et al., 2004; Wiens et al., 2006; Tilley et al., 2008).

Salamanders are a challenging group for which to delimit species boundaries and uncover cryptic biodiversity. Many salamander taxa exhibit extensive intraspecific variation in traits, such as color and pattern. At the same time, they exhibit extreme interspecific morphological similarity, which is usually coupled with high levels of genetic diversity (Wake, 1966, 1991; Wake et al., 1983; Highton and Peabody, 2000; Wake and Jockusch, 2000; Gao and Shubin, 2003; Mueller et al., 2004; Kozak et al., 2006; Wiens et al., 2006; Beamer and Lamb, 2008; Tilley et al., 2008). The Plethodontidae is the most species-rich family of salamanders containing approximately 68% of all known species (amphibiaweb.org), with new species being described regularly because of extreme morphological similarities and widespread homoplasy (e.g., Tilley and Mahoney, 1996; García-París and Wake, 2000; Jockusch et al., 2001; Camp et al., 2002; McCranie et al., 2005; Hanken et al., 2007).

The dusky salamanders (Desmognathus) comprise one of the most species-rich genera within Plethodontidae (Vieites et al., 2007), with the hotspot of biodiversity in the Appalachian Mountains (Kozak et al., 2006; Wiens et al., 2006; Vieites et al., 2007). Most desmognathan species are restricted to, or are associated with, swift-flowing mountain streams in the Appalachian Mountains of eastern North America. Many recent studies agree that the 20 currently recognized species may be a significant underestimation of the full extent of the biodiversity within the genus (Kozak et al., 2005; Beamer and Lamb, 2008), and the number of recognized species will likely increase due to the presence of extensive morphological stasis, rampant homoplasy, and high levels of genetic diversity among and within groups. To complicate modern-day taxonomy, studies have revealed a more complex and intertwined evolutionary history for many species within the genus Desmognathus (Titus and Larson, 1996; Rissler and Taylor, 2003; Kozak et al., 2005; Jones et al., 2006; Beamer and Lamb, 2008; Tilley et al., 2008), especially for D. marmoratus and D. quadramaculatus (Titus and Larson, 1996; Rissler and Taylor, 2003; Jackson, 2005; Jones et al., 2006). Interestingly, these studies have suggested that some populations of D. quadramaculatus are more closely related to populations of D. marmoratus, a wholly aquatic and relatively rare salamander species (Titus and Larson, 1996; Rissler and Taylor, 2003; Jackson, 2005; Jones et al., 2006) with a limited geographic distribution. However, to date, there have been no published studies focusing exclusively on the phylogeography of D. quadramaculatus across its range.

The use of nuclear markers in plethodontid salamander species, with the exception of allozymes, is uncommon for studies of fine-scaled population structure, although sequencing nuclear genes is becoming more common. That said, amplified fragment length polymorphism (AFLP; Vos et al., 1995) is a PCR-based, anonymous dominant nuclear-marker technique that has been extensively used to investigate intraspecific phylogeographic patterns, uncover new species, and delimit species boundaries in many groups (Shaw, 2002; Seman et al., 2003; Wang et al., 2003; Creer et al., 2004; Finn et al., 2006; Mendelson and Simons, 2006; Garoia et al., 2007; Kinkead et al., 2007; Nicolè et al., 2007), especially in
plants, (e.g., Hoarau et al., 2001; Garcia et al., 2004; Albach et al., 2006; Agrimonti et al., 2007; Andrade et al., 2007; Assefa et al., 2007; Nicolè et al., 2007), microbes and fungi (e.g., Vos et al., 1995; Blears et al., 1998; Bensch and Åkesson, 2005), and invertebrates (Wilding et al., 2001; Shaw, 2002; Carisio et al., 2004; Mock et al., 2004; Pizzo et al., 2006). Studies that use AFLP in vertebrate taxa are limited (Bensch and Åkesson, 2005), but this number has increased over the past few years (Ogden and Thorpe, 2002; Wang et al., 2003; Makowsky et al., 2008). At present, there are only a few known studies that involve the use of AFLP in salamander taxa (Voss and Shaffer, 1997; Curtis and Taylor, 2003; Riberon et al., 2004; Lowe et al., 2006; Whitlock et al., 2006; Jehle et al., 2007; Kinkead et al., 2007; Milá et al., 2010), even though AFLP is a useful marker that can be used to investigate population structure and genetic variability at the species level (Mueller and Wolfenbarger, 1999).

The goals of our study were to use both mitochondrial and AFLP data to: 1) address the phylogeographic and genetic patterns across populations of D. quadramaculatus, and 2) assess the spatial patterns of divergence, specifically testing the role of drainages (i.e., current versus historical river drainages) as barriers of gene exchange.

MATERIALS AND METHODS

The study taxon

Desmognathus quadramaculatus is a species complex comprised of at least three nominal species, including, D. quadramaculatus (Black-bellied Salamander), D. folkertsi (Dwarf Black-bellied Salamander), and D. marmoratus (Shovel-nosed Salamander). Desmognathus quadramaculatus exhibits the largest geographic range of the three and is a semi-aquatic species that can be found in swift-flowing, montane streams extending from southern West Virginia southward through the Great Smoky and Unicoi Mountains, and into the Blue Ridge escarpment of western North Carolina. This species reaches its southern-most geographic limit in the upper Piedmont of northern Georgia (Jensen et al., 2008).

Desmognathus folkertsi and D. marmoratus both exhibit relatively small geographic ranges and are often syntopic with that of D. quadramaculatus. Desmognathus folkertsi is a recently described, semi-aquatic species (Camp et al. 2002) known from northern Georgia and abutting areas of the Carolinas; whereas, D. marmoratus is an aquatic species that has a larger geographic distribution extending from southern Virginia, south along the Blue Ridge Mountains to northern Georgia. Desmognathus folkertsi appears to represent a cohesive, monophyletic taxon (Jackson, 2005; Wooten 2007; Wooten et al., 2010). However, D. marmoratus, as it is currently recognized, consists of several lineages and may be a paraphyletic taxon (Jackson, 2005; Jones et al., 2006; Kozak et al., 2006). Jones et al. (2006) suggested the recognition of southernmost populations of D. marmoratus as a separate species (D. aureatus).

Sampling locations

We examined 281 individuals from 56 populations D. quadramaculatus from the southern Appalachian Mountains in the eastern United States, as well as closely related species, including D. monticola $(\mathrm{n}=15)$, D. folkertsi $(\mathrm{n}=23)$, and D. marmoratus ($\mathrm{n}=8$; Fig. 1). Detailed information on locality, museum voucher number, Genbank accession number, and river drainage are presented in Appendix 1. Voucher specimens were euthanized in using ethyl 3-aminobenzoate methanesulfonate
(MS 222; Sigma-Aldrich) at a concentration of $2 \mathrm{~g} / \mathrm{L}$. An approximately 1 cm piece of tail tissue was removed for genetic analysis and frozen $\left(-80^{\circ} \mathrm{C}\right)$ in the permanent tissue archive at The University of Alabama Herpetology Collection (UAHC). Specimens were then fixed in 10% formalin and preserved in 70% ethanol. All specimens were deposited in the UAHC stored at The University of Alabama, Tuscaloosa or in the Appalachian State Herpetology Collection (APPSU), Boone, North Carolina.

Mitochondrial DNA extraction and sequencing

Whole genomic DNA was extracted from approximately 5 mm of tail tissue using the DNeasy tissue-kit protocol for animal tissues (Qiagen, Valencia, CA). Amplification of the 12 S rRNA and a portion of the valine transfer tRNA regions of the mitochondrial genome was completed on all individuals by using primers B and G from Titus and Larson (1996) and following a modified methodology of Rissler and Taylor (2003). This portion of the mitochondrial genome has been shown to be a highly informative marker for discriminating intra- and interspecific relationships in Desmognathus (Titus and Larson, 1996; Crespi et al., 2003; Rissler and Taylor, 2003; Rissler et al., 2004). ExoSapIT (U.S. Biochemicals Corp., Cleveland, OH) at $37^{\circ} \mathrm{C}$ for 45 min and $80^{\circ} \mathrm{C}$ for 15 min was used to purify the PCR products.

Cycle-sequencing was completed in forward and reverse directions on the purified PCR products using BigDye Terminator (Applied Biosystems, Foster City, CA), followed by purification with Sephadex G-50 (Sigma Aldrich Corp., St. Louis, MO), and visualized on an ABI 3100 automated DNA sequencer. Additional mtDNA sequences were retrieved from Genbank for D. wrighti (outgroup), D. quadramaculatus, D. marmoratus, D. aeneus, and D. monticola, and these accession numbers are listed in Appendix 2. Collapse 1.2 (http://darwin.uvigo.es/software/collapse.html) was used to remove any identical haplotypes before phylogenetic analyses.

Amplified fragment length polymorphism

Our AFLP procedures were modified from the protocol by Voss et al. (1995) and Blears et al. (1998). Digestion reactions in $20 \mu \mathrm{l}$ volumes were performed on whole genomic DNA with a concentration of $25 \mathrm{ng} / \mu \mathrm{l}$ using the following cocktail per reaction: $2 \mu \mathrm{l}$ EcoRI 10X restriction buffer, $1.0 \mu \mathrm{l}$ EcoRI, $0.2 \mu \mathrm{l}$ MSE, and $12 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$. Following a 5 h incubation period at $37^{\circ} \mathrm{C}, 20 \mu \mathrm{l}$ of ligation mixture consisting of $12 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}, 4 \mu \mathrm{l}$ 10X T4 DNA ligase buffer, $1.5 \mu \mathrm{l}$ of each double-stranded adapter pair (75 pmol), and $1.0 \mu \mathrm{l}$ of T 4 ligase was added to the digestion solution. The double-stranded adaptor pairs were constructed from the following complementary single-stranded oligonucleotides: EcoRI adaptor: 5’-CTC GTA GAC TGC GTA CC-3’ AND 5’-AAT TGG TAC GCA TAC-3’. Ligation was performed for 10 h at $16^{\circ} \mathrm{C}$. Following ligation, each solution was diluted with $160 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.

Two increasingly selective PCR amplifications of the ligated DNA were performed. For preselective amplification, $10 \mu \mathrm{l}$ of the diluted restriction-ligation product was used as a template and added to $40 \mu \mathrm{l}$ preselective amplification solution consisting of: $5 \mu \mathrm{l} 10 \mathrm{X}$ PCR buffer, $1.3 \mu \mathrm{l}$ of each preselective primer (15 pmol), $4.0 \mu \mathrm{ldNTP}(10 \mathrm{mM}), 1.0 \mu \mathrm{l}$ formamide, $2.5 \mu \mathrm{l} \mathrm{MgCl}{ }_{2}(25 \mathrm{mM})$, $24.75 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$, and $0.5 \mu \mathrm{l}$ Taq DNA polymerase. Four preselective primer combinations were used including: $E c o$ RI + AC / MSE + CA; EcoRI + CA / MSE + CA; EcoRI + CA / MSE + CG; and EcoRI + CA / MSE + GC. The PCR cycling conditions were a preliminary $72{ }^{\circ} \mathrm{C}$ extension for 60 sec followed by 20 cycles of $94^{\circ} \mathrm{C}$ for $50 \mathrm{sec}, 56^{\circ} \mathrm{C}$ for 60 sec , and $72^{\circ} \mathrm{C}$ for 120 sec . Preselective solutions were diluted with $125 \mu \mathrm{l}$ of $\mathrm{H}_{2} \mathrm{O}$ following PCR cycling.

For selective PCR, $5 \mu \mathrm{l}$ of diluted preselective solution was added to $20 \mu \mathrm{l}$ of selective PCR solution which consisted of $0.5 \mu \mathrm{l}$ formamide, $10 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}, 2.5 \mu \mathrm{l} 10 \mathrm{X}$ PCR buffer, $3 \mu \mathrm{l} \mathrm{MgCl}_{2}$ (25 $\mathrm{mM}), 3 \mu \mathrm{ldNTP}(10 \mathrm{mM}), 1.5 \mu \mathrm{l}(0.5 \mathrm{pmol})$ of the flourophore (6-FAM)-labeled EcoRI primer, $1.5 \mu \mathrm{l}(25 \mathrm{pmol})$ of the unlabeled $M S E$ selective primer, and $0.5 \mu \mathrm{laq}$ DNA polymerase. The PCR
cycling conditions were: a touchdown cycle of $94^{\circ} \mathrm{C}$ for $50 \mathrm{sec}, 57^{\circ} \mathrm{C}$ for 60 sec , and $72^{\circ} \mathrm{C}$ for 120 sec, followed by 20 cycles of $94^{\circ} \mathrm{C}$ for $50 \mathrm{sec}, 56^{\circ} \mathrm{C}$ for 60 sec , and $72^{\circ} \mathrm{C}$ for 120 sec . The 20 cycles were followed by a final extension at $72^{\circ} \mathrm{C}$ for 10 min .

Three combinations of selective primer combinations were chosen including: EcoRI + CAA $/ M S E+\mathrm{CA} ; E c o \mathrm{RI}+\mathrm{CAA} / M S E+\mathrm{CG}$; and $E c o \mathrm{RI}+\mathrm{CAA} / M S E+$ GC from a primer screening procedure in another study (Wooten and Tolley-Jordan, 2009). When combined, these combinations produced between 450 and 555 well-defined bands per sample, distributed widely across the 60-350 scoring window. The selective amplification products were purified using fine Sephadex G-50 (Sig-ma-Aldrich Corp., St. Louis, MO). We loaded $1.5 \mu \mathrm{l}$ of purified product per sample along with $0.5 \mu \mathrm{l}$ GeneScan-500 ROX ladder (Perkin-Elmer) into 96 -well plates and samples were analyzed using an automated ABI 3100 with GeneScan software. Electropherograms were imported into GeneMarker v1.6 for further analyses.

Phylogenetic reconstruction - mtDNA and AFLP

Approximately 600 bp of the 12 S rRNA and valine transfer tRNA regions were sequenced. Forward and reverse sequences were assembled, and any ambiguous sites were verified using Sequencher 4.6 (Gene Codes, Ann Arbor, MI). Clustal W procedure in BioEdit v7.0.9 (http://www. mbio.ncsu.edu/BioEdit/bioedit.html) was used to align all sequences. The alignment was manually corrected. The sequences were sufficiently similar to allow manual correction following alignment without restrictions based upon the gap positions in the hypothesized loop regions of the 12S rRNA sequences. We used D. wrighti as the outgroup in all phylogenetic reconstructions; D. wrighti is currently accepted as the basal member of the genus Desmognathus (Titus and Larson, 1996; Rissler and Taylor, 2003; Jones et al., 2006; Tilley et al., 2008).

Phylogenetic relationships among haplotypes using mtDNA sequences were estimated using maximum likelihood and Bayesian procedures. For the Bayesian procedure, the model of sequence evolution that best fit the mtDNA sequence data was determined using mrmodeltest v2.2 (http:// www.abc.se/~nylander). mrbayes v3.1 was then used to conduct a Bayesian phylogenetic analysis (Huelsenbeck and Ronquist, 2001) using the $\mathrm{Tr} \mathrm{N}+\Gamma$ model of evolution. Six heated Markov chains were run for 10×10^{6} generations, sampling every 1000 generations for a total of 10,000 samples. Three replicate searches were conducted to verify that the analyses were optimal by producing similar topologies and \ln-likelihood scores (Huelsenbeck and Bollback, 2001). The burn-in procedure was used to eliminate topologies generated before the ln-likelihood was stabilized. Posterior probabilities were estimated as the proportion of trees sampled after the burn-in procedure containing each of the observed bipartitions (Larget and Simon, 1999).

For the maximum-likelihood procedure, modeltest v3.7 (Posada and Crandall, 1998) was used to estimate the model of sequence evolution. Garli v0.951 (Zwickl, 2006) was used to reconstruct phylogenetic relationships among haplotypes using the maximum-likelihood procedure with the $\mathrm{Tr} \mathrm{N}+\Gamma$ model of evolution. Statistical support for each branch was assessed using bootstrap analysis with 1000 replications in Garli v0.951 (Zwickl, 2006).

For AFLP analyses, each primer combination was used to create a unique template to normalize the data across the different runs, and this step standardized the calling of peaks across the four different primer combinations using GeneMarker v1.6 (SoftGenetics, State College, Pennsylvania). Peaks were called between $60-350 \mathrm{bps}$, and these data were entered into a binary matrix as discrete variables (1 for presence and 0 for absence). The binary matrix from each primer combination was combined into one data set and analyzed as phenotypes. A Jaccard dissimilarity matrix was generated in R Package v4.0 (Casgrain and Legendre, 2001) from the combined binary matrix. A phylogram was generated in PAUP ${ }^{*}$ (Swofford, 2002) using the minimum evolutionary procedure. Statistical support for each branch was assessed using both neighbor-joining and parsimony analyses with 1000 replications in PAUP* (Swofford, 2002). For analyses, Hardy-Weinberg equilibrium was assumed for the D. quad-
ramaculatus, D. folkertsi, and D. marmoratus populations, and we assumed that each peak (i.e., fragment) represented a unique sequence (Zhivotovsky, 1999; Kinkead et al., 2007; Measey et al., 2007).

Genetic diversity indices

Patterns of genetic diversity within and across lineages and river drainage basins were investigated using DnaSP v4.0 (Rozas and Rozas, 1999; Rozas et al., 2003) for populations of D. quadramaculatus. For the three nominal species in the D. quadramaculatus complex, haplotype diversity (Nei, 1987), sequence diversity (k; Tajima, 1983), nucleotide diversity (p ; Nei, 1987), the number of mutations per site (θ; Nei, 1987) , and the total number of mutations (h; Nei, 1987) were calculated to measure sequence diversity. In order to test predictions made by the neutral theory of molecular evolution (Kimura, 1983) and for evidence of population-expansion events, we calculated Tajima's D (Tajima, 1989), Fu and Li's D^{*} test statistic (Fu and Li, 1993), Fu and Li's F^{*} test statistic (Fu and Li, 1993) and Fu's Fs statistic (Fu, 1997).

For AFLP data, we used Structure v2.2 (Pritchard et al., 2000; Falush et al., 2003; Falush et al., 2007), which is a clustering method that assigns individuals to populations using multilocus genotype data (Pritchard et al., 2000; Falush et al., 2003), to discern between lineages of the D. quadramaculatus species complex. We assigned individuals to five groups based upon the Bayesian phylogram to test for congruence between the phylogeny and the group placement using the AFLP fragments, a multiloci, dominant, nuclear markers, using Structure v2.2 (Pritchard et al., 2000; Falush et al., 2003; Falush et al., 2007). In Structure v2.2 (Pritchard et al., 2000; Falush et al., 2003; Falush et al., 2007), we ran 10,000 burn-in with 100,000 iterations for two $-10(\mathrm{k})$ groups with the admixture ancestry model and the option of correlated allele frequencies between populations (Falush et al., 2003). We allowed Structure v2.2 to infer the degree of admixture alpha from the AFLP data. When alpha is close to zero, most individuals are from one population; whereas, when alpha is greater than one, individuals are admixed (Evanno et al., 2005). We set lambda, which was a parameter of the distribution of allelic frequencies, to one (Pritchard et al., 2000; Evanno et al., 2005). We completed a pilot run using the AFLP data, and we found that a burn-in of 1000 and MCMC of 10,000 , with 10 replications for each value of k , was not sufficient. Because of this, we increased the burn-in to 10,000 and the MCMC to 100,000 , with 10 replications for each value of k ; we found that the likelihood values and the amount of variation for the likelihood of each k stabilized across replications. Finally, we chose the option of ancestdist, which calculates the 90% probability interval that a particular individual would be assigned to a distinct group.

For AFLP data, we used AFLP-SURV v1.0 (Vekemans, 2002; Vekemans et al., 2002) to estimate genetic diversity with dominant alleles using the Lynch and Milligan (1994) method. Statistical analysis of AFLP fragments was based on the assumption that the fragments act as diploid, dominant markers either being present (scored as 1) or absent (scored as 0). Nei's genetic distance, which is the average, expected heterozygosity of the marker loci was used to estimate genetic diversity from the AFLP fragments. We assumed Hardy-Weinberg equilibrium to examine total gene diversity $(H j)$, mean gene diversity within populations $(H w)$, average gene diversity among populations $(H b)$, and Fst across the landscape (Vekemans, 2002; Vekemans et al., 2002). Because discrete genotypes are not generated from AFLP fragments, each fragment was treated as a single locus with two alleles (Blears et al., 1998). In AFLP-SURV, we chose the Bayesian non-uniform distribution with 1000 permutations for estimates of gene diversity. In addition, we constructed a multidimensional scaling (MDS) plot based on Jaccard's dissimilarity measure (1-similarity; Gower 1971) using Statistica v. 6 (StatSoft) and R Package v.4.0 (Casgrain and Legendre, 2001) to see if distinct clusters formed based on dissimilarity among populations or between D. folkertsi and D. quadramaculatus. In Arlequin v.3.11 (Excoffier et al., 2005), we calculated an AMOVA using the AFLP binary matrix for unique haplotypes and used the same scheme for assigning individuals to populations and groups as in the mtDNA analysis. Finally, we calculated Nei's (1978) unbiased genetic distance (D) between lineages
of D. folkertsi and again between D. folkertsi and D. quadramaculatus using the AFLP binary matrix in GeneAlEx 6.1 (Peakall and Smouse, 2006).

Spatial partitioning of genetic variation

Desmognathus quadramaculatus, like D. folkertsi, is a semi-aquatic salamander, and gene flow can occur via aquatic or terrestrial routes (Wooten et al., 2010). Therefore, we evaluated isolation by distance (Wright, 1943; Slatkin, 1993) using both land and aquatic routes of dispersal. We calculated distances among streams using Network Analyst in ArcGIS v9.0. An arbitrary value of 5,000,000 km was assigned to represent streams that were in different river drainages. Straight-line distances (km) via land were calculated for each individual using latitude and longitude between each geographic locality using the R package v4.0. We used Mantel tests in the R package v4.0 (Casgrain and Legendre, 2001) to test these associations.

Analysis of molecular variance (AMOVA; Excoffier et al., 1992) was used to test the partitioning of genetic variation within and across streams and river drainage basins using Arlequin v3.1 (Excoffier et al., 2005). The AMOVA Φ statistics are equivalent to F statistics (Wright, 1931; Wright, 1965) and are determined to be significant based on at least 1000 nonparametric permutations of individuals, populations, or groups of populations. In our analyses, individuals were assigned to a stream and then grouped based on river drainage basin.

We used multiple regression to examine whether patterns of genetic diversity were explained by the following phylogeographic breaks: 1) current taxonomic classification (i.e., D. folkertsi, D. quadramaculatus, and D. marmoratus), 2) current drainage patterns, 3) historical drainage patterns from the Pliocene (Kozak et al., 2006), 4) freshwater ecoregions (categorized according to sampling location and information available in Abell et al., 1999), and 5) terrestrial ecoregions (categorized according to sampling location and the classification of temperate broad leaf and mixed forests ecoregions in Ricketts et al., 1999). To test these hypotheses, we generated uncorrected genetic distances for each mitochondrial haplotype calculated from PaUP* (Swofford, 2002). These values were considered the dependent variable. For each of the five independent variables, characters were assigned based on geographic locality or taxonomic group, depending on the phylogeographic break, and a matrix of distances between all pairs of haplotypes was generated using R package v4.0 (Casgrain and Legendre, 2001). These matrices were imported into Permute! v3.4 (Casgrain, 2001); multiple-regressions were computed and 1000 permutations were completed (Legendre et al., 1994) to assess the probability that each break explains the patterns of genetic diversity observed. Backwards regression was used to determine the importance of the independent variables.

RESULTS

Overall genetic variation

For the nominal species within the D. quadramaculatus complex, 327 sequences representing 800 aligned bases were reported. For D. quadramaculatus, 201 unique haplotypes were identified from a total of 281 individuals and 56 sampling localities (Appendix 1). The $\operatorname{Tr} \mathrm{N}+\Gamma$ model of evolution was chosen from mrmodeltest v 2.2 with nucleotide frequencies of $A=0.2828, C=0.2201, G=0.2025$, and $T=0.2946$; substitution model rate matrix: $\mathrm{R}(\mathrm{a})[\mathrm{A}-\mathrm{C}]=1.0000, \mathrm{R}(\mathrm{b})[\mathrm{A}-\mathrm{G}]=2.5812, \mathrm{R}(\mathrm{c})[\mathrm{A}-\mathrm{T}]=1.0000, \mathrm{R}(\mathrm{d})[\mathrm{C}-\mathrm{G}]$ $=1.0000, \mathrm{R}(\mathrm{e})[\mathrm{C}-\mathrm{T}]=2.1188$, and $\mathrm{R}(\mathrm{f})[\mathrm{G}-\mathrm{T}]=1.0000 ; \Gamma$ distribution shape parameter equaled 0.4069. We reported bootstrap values of $\geq 70 \%$ (Hillis and Bull, 1993) and pos-
terior probabilities $\geq 95 \%$ (Wilcox et al., 2002) to represent well-supported nodes for the phylogenetic hypothesis.

For D. quadramaculatus, the mean number of AFLP fragments generated by each AFLP primer combination was 187.67, and this varied from 167 fragments for primer combination EcoRI + CAA / MseI + GC to 212 fragments for primer combination EcoRI + CAA / MseI + CG. When all AFLP fragments were considered, a total of 563 fragments were generated from three primer combinations. Of these, 536 were polymorphic for D. quadramaculatus from 38 populations. We tested for AFLP fragment-size homoplasy and found that there was no significant correlation between polymorphic AFLP fragment size and frequency of fragment occurrence $(\mathrm{r}=-0.089, \mathrm{P}=0.348$; Vekemans et al., 2002).

Phylogenetic analysis - mtDNA

The Bayesian analysis and the maximum-likelihood phylograms yielded similar topologies for D. quadramaculatus species complex and the outgroup. Because of this, we represented the phylogenetic hypothesis of the D. quadramaculatus species complex with the Bayesian phylogram with the posterior probabilities and maximum-likelihood bootstrap values for common branches. We generated a 50% majority-rule consensus phylogram from the Bayesian analysis with a mean \ln-likelihood $=-15898.7$ following a burn-in procedure to remove 2600 topologies that were generated before stability of the ln-likelihood was established.

Haplotypes within the D. quadramaculatus complex formed a well-supported monophyletic group when all three nominal species were included in the analysis (Figs. 2A and 2B). There were two major lineages recovered (Lineage 1 and 2) with strong statistical support; Lineage 1 was comprised of D. folkertsi, which formed a monophyletic group, and Lineage 2 was composed of D. quadramaculatus and D. marmoratus (Fig. 2A). Within Lineage 2, several well-supported lineages were formed; two lineages were found south of the French Broad River (Fig. 2A; Lineage 2A and 2B) and two lineages were found north of the French Broad River (Fig. 2B; Lineages 2C and 2D). Lineage 2A was comprised of both nominal species D. quadramaculatus and D. marmoratus; whereas; Lineage 2 B consisted only of D. quadramaculatus. Both Lineages 2A and 2B consisted of individuals from Georgia, South Carolina, and southwestern North Carolina. The northern lineage (Lineage 2C and 2D) consisted of D. quadramaculatus and D. marmoratus individuals from West Virginia, Virginia, and northern Tennessee. The population from northern Tennessee (Fig. 1, Map Locality 5) formed a monophyletic, well-supported clade; this population is undergoing further research. Lineage 2D consisted of a single population in North Carolina (Fig. 1, Map Locality 13); this population formed a well-supported and basal lineage to Lineage 2C. However, because Lineage 2D consisted of a single population in an isolated geographic area, surveys for D. quadramaculatus populations are underway in surrounding streams.

Phylogenetic analysis - AFLP

Desmognathus folkertsi and D. quadramaculatus formed well-supported, distinct lineages when the AFLP data were used, but within the species, no clear geographic patterns were found (data not shown). Desmognathus marmoratus individuals were nested within

Fig. 1. Study localities in the southern Appalachian Mountians. Sampling localities spanned parts of West Virginia, Virginia, North Carolina, Tennessee, South Carolina, and Georgia.
D. quadramaculatus for the AFLP, but these nodes were not well-supported. Furthermore, the MDS plot did not reveal any distinct groups for D. quadramaculatus, D. folkertsi, or D. marmoratus.

Fig. 2. (part 2a) Bayesian phylogram using the 12 S rRNA portion of the mitochondrial genome with the maximum-likelihood model of evolution $\operatorname{TrN}+G$ for unique haplotypes of D. quadramaculatus, D. folkertsi, and D. marmoratus. Lineage 1 is D. folkertsi. Lineage 2A is basically D. quadramaculatus and D. marmoratus that occur in southern areas including northern Georgia, North Carolina, and southern Tennessee. Lineage 2B contains D. quadramaculatus from populations of Georgia, South Carolina, and North Carolina. (part 2b) Northern populations of D. quadramaculatus. Lineage 2C contains populations from Virginia, West Virginia, North Carolina, and Tennessee. Lineage 2C-3 is a clade in Tennessee (see text). Only support values on major nodes are given (bootstrap values from 1000 replicates). See Appendix 1 and 2 for more detail on specific localities and samples.

Statistical analyses of genetic data

Haplotypes within the D. quadramaculatus species complex exhibited typical to high levels of genetic diversity. Desmognathus folkertsi exhibited the lowest level of genetic diversity among the three nominal species with a $k=1.16 \%$; whereas, D. quadramaculatus and D. marmoratus exhibited high levels of diversity with a $k=12.02 \%$ and $k=20.08 \%$, respectively (Table 1). Both D. quadramaculatus and D. marmoratus exhibited Tajima' D, Fu and Li's $\mathrm{D}^{*}, \mathrm{Fu}$ and Li's F^{*}, and Fu's F statistics were not significant; however, these same measures for D. folkertsi were significantly negative (Table 1). This suggests that populations of D. quadramaculatus and D. marmoratus have been established for a long period of time and have not experienced recent range expansions. However, for D. folkertsi, the phylogeny had shallower branches than expected under the neutral model of evolution, which is consistent with a recent range expansion.

When the data were partitioned by river drainage for D. quadramaculatus, the Catawba River drainage exhibited the highest levels of diversity $k=184.164$; whereas, the

Table 1. Comparative summary statistics of the mitochondrial sequence variation in Desmognathus quadramaculatus, D. folkertsi, and D. marmoratus. π : nucleotide diversity per site with Jukes and Cantor correction; k : mean number of nucleotide differences; $\boldsymbol{\eta}$: total number of mutations; $\boldsymbol{\theta}$: the amount of variation expected at each nucleotide site if there is neutral evolution.

	D. quadramaculatus	D. folkertsi	D. marmoratus
Haplotype diversity \pm SD	0.950 ± 0.008	0.822 ± 0.083	0.978 ± 0.054
$\pi \pm$ SD	0.230 ± 0.0154	0.012 ± 0.004	0.333 ± 0.039
K	96.184	6.866	160.667
η	439	61	335
θ per site	0.177	0.028	0.245
Tajima's D	$0.967(\mathrm{P}>0.10)$	$-2.305(\mathrm{P}<0.01)$	$1.785(0.10>\mathrm{P}>0.05)$
Fu and Li's D^{*}	$-1.551(\mathrm{P}>0.10)$	$-2.956(\mathrm{P}<0.05)$	$1.166(\mathrm{P}>0.10)$
Fu and Li's F^{*}	$-0.342(\mathrm{P}>0.10)$	$-3.227(\mathrm{P}<0.02)$	$1.494(0.05<\mathrm{P}<0.10)$
Fu's Fs statistic	18.63	-2.401	3.569

Table 2. Comparative summary statistics of the 12 S rRNA mitochondrial sequence variation in Desmognathus quadramaculatus partitioned by river drainage. Symbols as in Table 1.

	Tennessee $(\mathrm{n}=64)$	Coosa/ Tallapoosa $(\mathrm{n}=21)$	Chattahoochee $(\mathrm{n}=14)$	Savannah $(\mathrm{n}=10)$	New River $(\mathrm{n}=10)$	Catawba $(\mathrm{n}=11)$
Haplotype	0.977 ± 0.010	0.948 ± 0.031	1.000 ± 0.027	1.000 ± 0.045	0.878 ± 0.025	1.000 ± 0.039
diversity \pm SD	0.227 ± 0.022	0.284 ± 0.035	0.128 ± 0.006	0.283 ± 0.069	0.2013 ± 0.031	0.307 ± 0.056
$\pi \pm$ SD	140.599	156.990	74.099	163.422	112.131	184.164
k	538	369	407	388	375	401
η	0.224	0.186	0.220	0.238	0.141	0.228
θ per site						

Tennessee, Savannah, New, Chattahoochee, and Coosa/Tallapoosa River drainages exhibited moderate levels of genetic diversity, $k=140.599, k=163.422, k=112.131, k=70.099$, and $k=156.990$, respectively, for mtDNA (Table 2). Only 4.47% of the genetic diversity occurred among drainages but 90.37% of the genetic diversity was partitioned within drainages (Table 3). This pattern is indicative of gene flow across the landscape, either by natural or human-mediated means.

The expected heterozygosity values ($H j$) calculated using the AFLP data for the two main mitochondrial lineages within the D. quadramaculatus species complex, Lineage 1 (D. folkertsi) and Lineage 2 (D. quadramaculatus plus D. marmoratus) were equal to 0.241 and 0.229 , respectively (Table 4). To calculate the expected heterozygosity values (Hj) in only D. quadramaculatus, individuals were divided into two groups using lineages derived from the mitochondrial topology (i.e., Lineages 2A and 2B and Lineages 2C and 2D). Group 1 included D. quadramaculatus individuals from Lineages 2A and 2B, and Group 2 included D. quadramaculatus individuals from Lineages 2C and 2D. Group 1 and Group 2

Table 3. Partition of genetic variation for mitochondrial sequences in Desmognathus quadramaculatus determined by AMOVA.

	d.f.	Sum of squares	Variance component	Percentage of variation
Among groups (lineages ${ }^{*}$)	1	640.945	3.893	5.160
Among population $\left(\right.$ drainages $^{* *}$)	3	440.933	3.376	4.470
Within groups	188	12821.412	68.199	90.370
Within populations	192	13903.290	75.468	100.000
Total				

[^0]Table 4. Genetic diversity derived from AFLP data partitioned by lineage inferred from the mitochondrial genome for Desmognathus quadramaculatus, D. folkertsi, and D. marmoratus.

	n	Number of loci	$\%$ Polymorphic loci	$H j^{*} \pm \mathrm{SE}$
Lineage 1 (D. folkertsi) Lineage 2A + 2B (D. quadramaculatus and D. marmoratus)	27	563	71.4	0.241 ± 0.008
Lineage 2C + 2D (D. quadramaculatus and D. marmoratus)	31	563	68.4	0.222 ± 0.007

${ }^{*} H j$: Nei's gene diversity; expected heterozygosity under Hardy-Weinberg genotypic proportions. ** southern populations. ${ }^{* * *}$ northern populations

Table 5. Genetic diversity derived from AFLP data computed over all populations for Desmognathus quadramaculatus. Hw: mean Nei's gene diversity; mean within-population expected heterozygosity under Har-dy-Weinberg genotypic proportions; $H t$: total gene diversity; $H b$: Nei's Dst; average gene diversity among populations in excess of that observed within populations; Fst: Wright's fixation index; proportion of total gene diversity that occurs among as opposed to within populations.

n	$H w \pm \mathrm{SE}$	$H t \pm \mathrm{SE}$	$H b \pm \mathrm{SE}$	$F s t \pm \mathrm{SE}$
58	0.2293 ± 0.0074	0.2358 ± 0.0013	0.0066 ± 0.0001	0.0279 ± 0.0312

exhibited expected heterozygosity $(H j)$ values equal to 0.222 and 0.237 , respectively. There was little genetic differentiation among study sites of D. quadramaculatus with a total gene diversity $(H t)$ equal to 0.236 and an Fst equal to 0.028 (Table 5).

Analysis of molecular variance (AMOVA) for the AFLP data using three populations (Lineage 1, Group 1, and Group 2; see description above) and two groups derived from the maximum-likelihood topology (Fig. 2; Lineage 1 and Lineage 2) supported the mtDNA conclusions that most of the variation (88.44%) is found within the populations $\left(\Phi_{\mathrm{CT}}\right)$.

Table 6. Partition of genetic variation in Desmognathus quadramaculatus determined by AMOVA using AFLP fragment data.

	d.f.	Sum of squares	Variance component	Percentage of variation
Among groups (species ${ }^{*}$)	1	231.951	5.264	5.940
Among populations (lineages				
within groups	1	222.043	4.978	5.620
Within populations	65	5094.329	78.374	88.440
Total	67	5548.323	88.616	100.000

* D. folkertsi and D. quadramaculatus only

Table 7. Multiple regression tests of genetic distance, historical and modern river drainage connections, freshwater and terrestrial ecoregions assignment based on geographic locality, and species group based upon uncorrected genetic distance and current taxonomic assignment.

Matrix	b	P
Species-level group *	0.101	0.003
Current drainage basin	-0.049	0.085
Historical drainage basin	-0.108	0.037
Freshwater ecoregions	0.002	0.474
Terrestrial ecoregions	0.116	0.043

* D. quadramaculatus, D. folkertsi, or D. marmoratus

The proportion of the variation explained by among groups (Φ_{SC}) and among populations within groups ($\Phi_{\text {ST }}$) was small, comprising only 5.94% and 5.62%, respectively (Table 6). Nei's D value between the Lineage 1 and Lineage 2 (Fig. 2) in the D. quadramaculatus species complex was 0.028 , and that between D. quadramaculatus and D. folkersi was 0.0542 .

The optimal number of populations (k) computed in Structure v2.2 (Pritchard et al., 2000; Falush et al., 2003; Falush et al., 2007) using the AFLP fragment data was three; however, those three groups were not congruent with the three studied taxa. The estimated probability of three populations ($\ln \mathrm{P}(\mathrm{D})$) was equal to -16557.7 , with a variance of $\ln \mathrm{P}(\mathrm{D})$ equal to 1048.5, $\alpha=0.2552$, and $\mathrm{Fst}=0.3317$. Desmognathus folkertsi was placed into the first inferred cluster 43.3% of the time, more often than in either the second or third inferred cluster. Desmognathus quadramaculatus and D. marmoratus were grouped into the first inferred cluster 64.0% of the time, and 10.9% and 25.0% for the second and third inferred clusters, respectively.

Testing phylogeographic breaks

We examined the impact of river drainages and ecoregions on phylogeographic patterns in D. quadramaculatus. We found individuals of D. quadramaculatus to be isolated
by stream ($r=0.335, \mathrm{P}<0.0001$) and straight-line ($\mathrm{r}=259.526, \mathrm{P}=0.001$) distance using the mitochondrial sequences. However, when using the AFLP fragment data, D. quadramaculatus populations were only isolated by stream distance ($r=0.135, \mathrm{P}=0.024$). We found that current taxonomic species, Pliocene river drainage basin, and terrestrial ecoregions explained the observed phylogeographic pattern in D. quadramaculatus $\left(R^{2}=0.017\right.$; $\mathrm{P}=0.013$; Table 7). Neither current river drainage basin nor freshwater ecoregions helped to explain the phylogenetic patterns in D. quadramaculatus (Table 7).

DISCUSSION

Lineages and population structure - mitochondrial sequences

The phylogenetic analysis within the D. quadramaculatus species complex generated from the mitochondrial sequences revealed two major lineages, Lineage 1 and Lineage 2 (Fig. 2). Lineage 1 consisted of only D. folkertsi; Lineage 2 consisted of both northern and southern populations of D. quadramaculatus and D. marmoratus. The lineages of D. marmoratus formed well-supported branches within D. quadramaculatus.

Within Lineage 2, which contained both D. quadramaculatus and D. marmoratus, four well-supported lineages were uncovered (Fig. 2). Overall, Lineage 2 was separated geographically, with distinct northern (Lineage 2C and 2D) and southern (Lineage 2A and 2 B) lineages. One lineage of particular interest is a single population of D. quadramaculatus found in North Carolina (Lineage 2D) which formed a well-supported and basal relationship to D. quadramaculatus in Lineage 2C (Fig. 2). Because this basal relationship was formed using individuals only from an isolated, single population located north of the French Broad River (Fig. 1, Map Locality 13), future research is underway to investigate surrounding geographic areas to reveal the phylogenetic patterning in this area. Overall, Lineage 2C appears to be a polytomy with few well-supported branches, which may be indicative of a recent population expansion. Within Lineage 2C, a single population from Tennessee (Fig. 1, Map Locality 5) appears to be a unique evolutionary lineage that is well nested within Lineage 2C and is of future research interest (Fig. 2).

Although our sample size was limited for D. marmoratus due to drought conditions during sampling years, the inclusion of these samples in our analyses allowed us to make some comparisons with D. quadramaculatus. Our mitochondrial sequence data suggests that southern D. marmoratus populations are nested within southern D. quadramaculatus lineages (See Lineage 2A) with strong statistical support (Fig. 2). However, due to a small sample size for southern D. marmoratus and the fact that we only used one portion of the mitochondrial genome to discern these fine-scale genetic patterns, our results for the relationship between southern D. quadramaculatus and southern D. marmoratus do not corroborate the published phylogenetic relationships that suggest a sister relationship between southern populations of D. marmoratus with D. folkertsi (Jackson, 2005; Jones et al., 2006).

For northern populations of D. marmoratus (Lineage 2C), we uncovered a complex, intertwined relationship between D. marmoratus and D. quadramaculatus, where popu-
lations of D. marmoratus are more closely related to populations of D. quadramaculatus, rather than to populations of itself. These results corroborate the findings of other authors, and indicate that D. marmoratus, especially northern populations, may not be an exclusive species in relation to D. quadramaculatus (Titus and Larson, 1996; Rissler and Taylor, 2003; Jackson, 2005; Jones et al., 2006).

Past research using mitochondrial sequence evidence revealed that D. marmoratus and D. quadramaculatus are not monophyletic (Titus and Larson, 1996; Rissler and Taylor, 2003; Jones et al., 2006); our data revealed similar phylogenetic patterns. Voss et al. (1995) found that of 16 allozyme loci, eight were fixed between populations of D. marmoratus north and south of the Eastern Continental Divide. In an unpublished master's thesis, Jackson (2005) revealed that D. quadramaculatus and D. marmoratus from populations in the northern part of the geographic range were nested together when phylogenetic analysis was completed using three portions of the mitochondrial genome (cytochrome b, ND4, and 12 S) and a nuclear gene (GAPDH). More research that includes additional and strategic population sampling is needed to tease apart these complex evolutionary relationships among D. folkertsi, D. quadramaculatus, and D. marmoratus.

Lineages and population structure - AFLP fragments

Our study is one of only a few that used AFLPs to investigate population genetics in plethodontid salamanders (Lowe et al., 2006; Wooten, 2007; Wooten et al., 2010). Our AFLP fragment data were sufficient to differentiate between D. folkertsi and D. quadramaculatus, but were not able to distinguish between D. marmoratus and D. quadramaculatus. The results from the AFLP data and the mitochondrial data were not congruent, indicating that these markers may not be suitable for fine-scale phylogenetic analysis in desmognathan taxa. Regardless, future taxonomic revisions will likely be necessary, because nether D. marmoratus or D. quadramaculatus do not appear to be monophyletic lineages.

Genetic diversity among populations

Patterns of genetic diversity can often be explained by historical drainage connections for many freshwater species, including fishes and amphibians (Mayden, 1988; Burridge et al., 2006; Jones et al., 2006; Kozak et al., 2006). For D. quadramaculatus populations, we found that there was as much genetic variance explained within a single stream as there was between streams or drainages. Semi-aquatic salamander species, including D. folkertsi, D. quadramaculatus, and D. monticola, are typically used as fish bait, particularly for fishing for black bass (genus Micropterus), and, therefore, bait-bucket release has been used to explain phylogenetic and disjunct geographic range patterns in some taxa (Martof, 1953; Jensen and Waters, 1999; Bonett et al., 2007). Bait-bucket release may explain some of the genetic partitioning among populations of these and other salamander species (Wooten et al., 2010); however, fine-scale population studies and phylogenetic analysis may reveal that some of these populations are disjunct, relict populations that are isolated and not associated with bait-bucket release (Camp and Wooten, ms under review).

Phylogeographic breaks and phylogeography

Current river drainages do not significantly explain the phylogenetic patterns that are observed in the D. quadramaculatus species complex. In fact, our data suggest that historical drainages have played a more important role in shaping these patterns. This is not surprising considering that modern drainages are composites of historical drainages and there is a strong association between historic drainage patterns and phylogenetic relationships (Kozak et al., 2006; Jones et al., 2006). In our analyses, individuals from the upper Savannah River drainage form sister relationships with individuals from the lower Tennessee River drainage (Fig. 2; quadramaculatus 78-81). In addition, individuals from the Catawba River drainage form relationships with individuals from the New River drainage; it has been hypothesized that the Catawba River was once part of the New River drainage system (Map Localities 8 -10; Jones et al., 2006) and this would explain the observed phylogenetic patterning. It is also possible that the observed phylogeographic patterns are a result of movement among and between populations, across both aquatic and terrestrial routes. However, it is unknown how far individuals of the D. quadramaculatus species complex move across either route; it is difficult to estimate dispersal rates and distances (Milá et al., 2010) and these data are absent for most species (Grant et al., 2010). That said, we do know, however, it is not unlikely that during times of flooding that these salamanders can use terrestrial routes for dispersal, augmenting gene flow among populations (Camp and Wooten, ms under review). We also found that the phylogenetic patterns can be explained by breaks in terrestrial, but not freshwater ecoregions. This may help support the idea that salamanders in the D. quadramaculatus complex exhibit phylogenetic patterns due to limited dispersal abilities across terrestrial terrain without the aid of flooding, but not freshwater ecoregions, where the salamanders can move along the waterways for dispersal, which may help to stabilize their populations (Grant et al., 2010).

In D. quadramaculatus, the patterns of genetic diversity across the landscape have been shaped by historical drainage patterns that have occurred throughout the history of the Appalachian Mountains. Because of the complex topology, including the presence of large rivers and valleys and steep topological relief, many barriers to gene flow exist; phylogeographic patterns of D. quadramaculatus reflect this isolation. We found that paleodrainage patterns influence the genetic diversity of D. quadramaculatus more than current drainage patterns. These patterns are similar to those reported in Eurycea bislineata (Kozak et al. 2006), and support the idea that paleodrainages directly influence phylogenetic patterns in many fish and salamander that are restricted or may rely on water as a means of dispersal. Results presented here further corroborate and extend previous mitochondrial studies that suggest that historical river drainage patterns influence the phylogenetic patterns of desmognathan species (Voss et al., 1995; Rissler and Taylor, 2003; Jackson, 2005; Jones et al., 2006).

CONCLUSIONS

Undescribed species, parallel evolution, and morphological conservatism are factors that contribute to the complexity of desmognathan taxonomy (Jackson, 2005). Desmog-
nathus quadramaculatus and D. marmoratus exhibited high levels of genetic diversity for desmognathan salamanders; however, this may be due to small sample size for D. marmoratus and the presence of undescribed species in D. quadramaculatus. The genetic diversity of D. quadramaculatus was not partitioned by current river drainage, but the phylogeographic patterns may be explained, at least in part, by historical river drainage connections. In addition, terrestrial ecoregions, rather than freshwater ecoregions, explained the genetic distances between individuals. This provides additional evidence that D. quadramaculatus likely disperses via both terrestrial and aquatic pathways, with gene flow being enhanced through terrestrial routes, but constrained within drainages. Thus, future conservation programs that may be developed to protect these salamanders should consider the terrestrial environment in addition to stream quality. In summary, more research is needed to tease out the complexly interwoven nature of the evolutionary history shared by these three salamander species.

ACKNOWLEDGEMENTS

This manuscript is a result of a chapter from the Ph.D. dissertation of Jessica Wooten under the direction of L. Rissler. H. Smith-Somerville, P. Harris, J. Lopez-Bautista, and C. Camp provided comments on earlier versions of the manuscript. Many people helped in the field or obtained tissue for us, including S. Eagle, W. Van Devender, A. Van Devender, C. Camp, D. Beamer, M. Chadwick, C. Cox, S. Parker, J. Hodgson, D. Merritt, J. Humphries, J. Waldron, Z. Felix, B. Sutton, R. Makowsky, C. Makowsky, S. Fields, and W. Smith. W. Holznagel, L. Tolley-Jordan, and E. Toorens provided assistance with the laboratory work and AFLP fragment analysis. P. Bradford extracted the stream distances for each locality. All salamander research was approved by the Institutional Animal Care and Use Committee (IACUC) protocol number 05-242-3 to Leslie Rissler at The University of Alabama. This research was funded by: a NSF DEB 0414033 awarded to Leslie Rissler, American Museum of Natural History grant awarded to Jessica Wooten, and The University of Alabama.

REFERENCES

Abell, R., Olson, D., Dinerstein, E., Hurley, P., Diggs, J., Eichbaum, W., Walters, S., Wettengel, W., Allnutt, T., Loucks, C., Hedao, P. (1999): Freshwater Ecoregions of North America: A Conservation Assessment. Island Press, Washington D.C.
Adams, D.C., Rohlf, F.J. (2000): Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc. Nat. Acad. Sci. USA 97: 4106-4111.
Agrimonti, C., Bianchi, R., Bianchi, A., Ballero, M., Poli, F., Marmiroli, N. (2007): Understanding biological conservation strategies: a molecular-genetic approach to the case of myrtle (Myrtus communis L.) in two Italian regions: Sardinia and Calabria. Conserv. Gen. 8: 385-396.
Albach, D.C., Schonswetter, P., Tribsch, A. (2006): Comparative phylogeography of the Veronica alpine complex in Europe and North America. Mol. Ecol. 15: 3269-3286.

Andrade, I.M., Mayo, S.J., Van Den Berg, C., Fay, M.F., Chester, M., Lexer, C., Kirkup, D. (2007): A preliminary study of genetic variation in populations of Monstera adansonii var. klotzschiana (Araceae) from north-east Brazil, estimated with AFLP molecular markers. Ann. Bot. 100: 1143-1154.
Assefa, A., Labuschagne, M.T., Viljoen, C.D. (2007): AFLP analysis of genetic relationships between barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Conserv. Gen. 8: 273-280.
Beamer, D.A., Lamb, T. (2008): Dusky salamanders (Desmognathus, Plethodontidae) from the coastal plain: multiple independent lineages and their bearing on the molecular phylogeny of the genus. Mol. Phyl. Evol. 47: 143-153.
Bensch, S., Åkesson, M. (2005): Ten years of AFLP in ecology and evolution: why so few animals? Mol. Ecol. 14: 2899-2914.
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K., Das, I. (2006): Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148-155.
Blears, M.J., De Grandis, S.A., Lee, H., Trevors, J.T. (1998): Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Micr. Biotech. 21: 99-114.
Bonett, R.M., Kozak, K.H., Vieites, D.R., Bare, A., Wooten, J.A., Trauth, S.E. (2007): The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola. BMC Ecol. 7: 7.
Burridge, C.P., Craw, D., Waters, J.M. (2006): River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evolution 60: 1038-1049.
Camp, C.D., Lee, T.P. (1996): Intraspecific spacing and interaction within a population of Desmognathus quadramaculatus. Copeia 1996: 78-84.
Camp, C.D., Tilley, S.G., Austin, Jr., R.M., Marshall, J.L. (2002): A new species of blackbellied salamander (Genus Desmognathus) from the Appalachian Mountains of northern Georgia. Herpetologica 58: 471-484.
Carisio, L., Cervella, P., Palestrini, C., DelPero, M., Rolando, A. (2004): Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses. J. Biogeogr. 31: 1149-1162.
Carr, D.E. (1996): Morphological variation among species and populations of salamanders in the Plethodon glutinosus complex. Herpetologica 52: 56-65.
Casgrain, P. (2001): Permute! Version 3.4 alpha 9: multiple regression over distance, ultrametric and additive matrices with permutation test. Département de sciences biologiques, Université de Montréal. Available from http://www.faz.unmontreal.ca/ biol.casgrain/ed/labo/permute.
Casgrain, P., Legendre, P. (2001): The R Package for Multivariate and Spatial Analysis, version 4.0 d6 - User's Manual. Département de sciences biologiques, Université de Montréal. Available on the WWWeb site http://www.fas.umontreal.ca/BIOL/legendrel.
Chippindale, P.T., Bonett, R.M., Baldwin, A.S., Wiens, J.J. (2004): Phylogenetic evidence for a major reversal of life history evolution in plethodontid salamanders. Evolution 58: 2809-2822.

Creer, S., Thorpe, R.S., Malhotra, A., Chou, W.H., Stenson, A.G. (2004): The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Trimeresurus stejnegeri. J. Evol. Biol. 17: 100-107.
Crespi, E.J., Rissler, L.J., Browne, R.A. (2003): Testing Pleistocene refugia theory: phylogeographical analysis of Desmognathus wrighti, a high-elevation salamander in the southern Appalachians. Mol. Ecol. 12: 969-984.
Curtis, J.M.R., Taylor, E.B. (2003): The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol. Conserv. 115: 45-54.
Davis, E.B., Koo, M.S., Conroy, C., Patton, J.L., Moritz, C. (2008): The California hotspots project: identifying regions of rapid diversification of mammals. Mol. Ecol. 17: 120-138.
Evanno, G., Regnaut, S., Goudet, J. (2005): Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14: 2611-2620.
Excoffier, L., Laval, G., Schneider, S. (2005): Arlequin ver 3.0: an integrated software package for population genetic analysis. Evol. Bioinf. Online 1: 47-50.
Excoffier, L., Smouse, P.E., Quattro, J.M. (1992): Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.
Falush, D., Stephens, M., Pritchard, J.K. (2003): Inference of population structure using multilocus genotype data: liked loci and correlated allele frequencies. Genetics 164: 1567-1587.
Falush, D., Stephens, M., Pritchard, J.K. (2007): Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7: 574-578.
Finn, D.S., Theobald, D.M., Black, W.C., Poff, N.L. (2006): Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol. Ecol. 15: 3553-3566.
Fu, Y.X. (1997): Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147: 915-925.
Fu, Y.X., Li, W.H. (1993): Statistical tests of neutrality of mutations. Genetics 133: 693-709.
Gao, K.Q., Shubin, N.H. (2003): Earliest known crown-group salamanders. Nature 422: 424-428.
García-París, M., Wake, D.B. (2000): Molecular phylogenetic analysis of relationships of the tropical salamander genera Oedipina and Nototriton, with descriptions of a new genus and three new species. Copeia 2000: 42-70.
Garcia, A.F., Benchimol, L.L., Barbosa, A.M.M., Geraldi, I.O., Souza, C.L., deSouza, A.P. (2004): Comparison of RAPD, RFLP, AFLP, and SSR markers for diversity studies in tropical maize inbred lines. Gen. Mol. Biol. 27: 579-588.
Garoia, F., Guarniero, I., Grifoni, D., Marzola, S., Tinti, F. (2007): Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol. Ecol. 16: 1377-1387.
Gower, J.C. (1971): A general coefficient of similarity and some of its properties. Biometrics 27: 857-871.
Grant, E.H.C., Nichols, N.D., Lowe, W.H., Fagan, W.F. (2010): Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc. Nat. Acad. Sci. USA 107: 6936-6940.

Hanken, J., Wake, D.B., Savage, J.M. (2007): Montane salamanders from the Costa RicaPanama border region, with descriptions of two new species of Bolitoglossa. Copeia 2007: 556-565.
Highton, R., Peabody, R.B. (2000): Geographic protein variation and speciation in salamanders of the Plethodon jordani and Plethodon glutinosus complexes in the southern Appalachian mountains with the description of four new species. In: The Biology of Plethodontid Salamanders, p. 31-75. Bruce, R.C., Jaeger, R.C., Houck, L.D., Eds, Kluwer Academic/Plenum Publishers, New York.
Hijmans, R.J., Guarino, L., Cruz, M., Rojas, E. (2001): Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Gen. Res. Newsletter 127: 15-19.
Hillis, D.M., Bull, J.J. (1993): An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Sys. Biol. 42: 182-192.
Hoarau, J.Y., Offmann, B., D'Hont, A., Risterucci, A.M., Roques, D., Glaszmann, J.C., Grivet, L. (2001): Genetic dissection of modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor. Appl. Gen. 103: 84-97.

Huelsenbeck, J.P., Bollback, J.P. (2001): Empirical and hierarchical Bayesian estimation of ancestral states. Sys. Biol. 50: 351-366.
Huelsenbeck, J.P., Ronquist, F. (2001): MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Jackson, N.D. (2005): Phylogenetic history, morphological parallelism, and speciation in a complex of Appalachian salamanders (Genus Desmognathus). Unpublished Master's thesis. Brigham Young University, Provo, Utah.
Jehle, R., Sztatecsny, M., Wolf, J.B.W., Whitlock, A., Hödl, W., Burke, T. (2007): Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol. Let. 3: 526-528.
Jensen, J.B., Camp, C.D., Gibbons, W., Elliott, M.J., Eds (2008): Amphibians and Reptiles of Georgia. University of Georgia Press, Athens, Georgia.
Jensen, J.B., Waters, C. (1999): The "spring lizard" bait industry in the state of Georgia, USA. Herpetol. Rev. 30: 20-21.
Jockusch, E.L., Yanev, E.P., Wake, D.B. (2001): Molecular phylogenetic analysis of slender salamanders, genus Batrachoseps (Amphibia: Plethodontidae), from central coastal California with descriptions of four new species. Herpetol. Monogr. 15: 54-99.
Jones, M.T., Voss, S.R., Ptacek, M.B., Weisrock, D.W., Tonkyn, D.W. (2006): River drainages and phylogeography: an evolutionary significant lineage of shovel-nosed salamander (Desmognathus marmoratus) in the southern Appalachians. Mol. Phyl. Evol. 38: 280-287.
Kimura, M. (1983): The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, Massachusetts.
Kinkead, K.E., Abbot, A.G., Otis, D.L. (2007): Genetic variation among Ambystoma breeding populations on the Savannah River Site. Conserv. Gen. 8: 281-292.
Kozak, K.H., Larson, A., Bonett, R.M., Harmon, L.J. (2005): Phylogenetic analysis of ecomorphological diversification rates in dusky salamanders (Plethodontidae: Desmognathus). Evolution 59: 2000-2016.
Kozak, K.H., Weisrock, D.W., Larson, A. (2006): Rapid lineage accumulation in a nonadaptive radiation: phylogenetic analysis of diversifica
tion rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc. R. Soc. Edinburgh B Biol. 273: 539-546.
Larget, B., Simon, D. (1999): Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16: 750-759.
Larson, A., Wake, D.B., Maxson, L.R., Highton, R. (1981): A molecular phylogenetic perspective on the origins of morphological novelties in the salamanders of the tribe Plethodontini (Amphibia, Plethodontidae). Evolution 35: 405-422.
Legendre, P., Lapointe, F.J., Casgrain, P. (1994): Modeling brain evolution from behavior: a permutational regression approach. Evolution 48: 1487-1499.
Lowe, W.H., Likens, G.E., McPeek, M.A., Buso, D.C. (2006): Linking direct and indirect data on dispersal: isolation by slope in a headwater stream salamander. Ecology 87: 334-339.
Lynch, M., Milligan, B.G. (1994): Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99.
Makowsky, R., Chesser, J., Rissler, L.J. (2009): A striking lack of genetic diversity across the wide-ranging amphibian Grastrophryne carolinensis (Anura: Microhylidae). Genetica 135: 169-183.
Martof, B.S. (1953): The "spring lizard" industry, a factor in salamander distribution and genetics. Ecology 34: 436-437.
Martof, B.S. (1962): Some aspects of the life history and ecology of the salamander Leurognathus. Am. Midl. Nat. 67: 1-35.
Mayden, R.L. (1988): Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Sys. Zool. 37: 329-355.
McCranie, J.R., Espinal, M.R., Wilson, L.D. (2005): New species of montane salamander of the Bolitoglossa dunni group from northern Comayagua, Honduras (Urodela: Plethodontidae). J. Herpetol. 39: 108-112.
Measey, G.J., Galbusera, P., Breyne, P., Matthysen, E. (2007): Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya. Conserv. Gen. 8: 1177-1188.
Mendelson, T.C., Simons, J.N. (2006): AFLPs resolve cytonuclear discordance and increase resolution among barcheek darters (Percidae: Etheostoma: Catonotus). Mol. Phyl. Evol. 41: 445-453.
Milá, B., Carranza, S., Gullaume, O., Clobert, J. (2010): Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Mol. Ecol. 19: 108-120.
Mills, G. (1996): A study of the life history and seasonal foraging habits of the salamander Desmognathus quadramaculatus in West Virginia. Master's thesis. Marshall University, Huntington, West Virginia.
Mock, K.E., Brim-Box, J.C., Miller, M.P., Downing, M.E., Hoeh, W.R. (2004): Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah. Mol. Ecol. 13: 1085-1098.
Mueller, R.L., Macey, J.R., Jaekel, M., Wake, D.B., Boore, J.L. (2004): Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc. Nat. Acad. Sci. USA 101: 13820-13825.

Mueller, U.G., Wolfenbarger, L.L. (1999): AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389-394.
Nei, M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
Nei, M. (1987): Molecular Evolutionary Genetics. Columbia University Press, New York.
Nicolè, F., Tellier, F., Vivat, A., Till-Bottraud, I. (2007): Conservation unit status inferred for plants by combining interspecific crosses and AFLP. Conserv. Gen. 8: 1273-1285.
Ogden, R., Thorpe, R.S. (2002): The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Mol. Ecol. 11: 437-445.
Peakall, R., Smouse, P.E. (2006): GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295.
Pizzo, A., Roggero, A., Palestrini, C., Cervella, P., DelPero, M., Rolando, A. (2006): Genetic and morphological differentiation patterns between sister species: the case of Onthophagus taurus and Onthophagus illyricus (Coleoptera, Scarabaeidae). Biol. J. Linn. Soc. 89: 197-211.
Posada, D., Crandall, K.A. (1998): MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Pritchard, J.K., Stephens, M., Donnelly, P. (2000): Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
Riberon, A., Miaud, C., Guyetant, R., Taberlet, P. (2004): Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism. Mol. Phyl. Evol. 31: 910-914.
Ricketts, T., Dinerstein, E., Olson, D., Loucks, C., Eichbaum, W., DellaSalla, D., Kavanagh, K., Hedao, P., Hurley, P., Carney, K., Abell, R., Walters, S. (1999): Terrestrial Ecoregions of North America: A Conservation Assessment. Island Press, Washington D.C.
Rissler, L.J., Taylor, D.R. (2003): The phylogenetics of Desmognathine salamander populations across the southern Appalachians. Mol. Phyl. Evol. 27: 197-211.
Rissler, L.J., Wilbur, H.M., Taylor, D.R. (2004): The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am. Nat. 164: 201-213.
Rozas, J., Rozas, R. (1999): DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175.
Rozas, J., Sánchez-DelBarrio, J.C., Messegyer, X., Rozas, R. (2003): DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
Seman, K., Bjornstad, A., Stedje, B. (2003): Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analysis. Gen. Res. Crop Evol. 50: 649-661.
Shaw, K.L. (2002): Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc. Nat. Acad. Sci. USA 99: 16122-16127.
Slatkin, M. (1993): Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264-279.
Swofford, D. (2002): PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.

Tajima, F. (1983): Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437-460.
Tajima, F. (1989): Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 597-601.
Tilley, S.G., Eriksen, R.L., Katz, L.A. (2008): Systematics of dusky salamanders, Desmognathus (Caudata: Plethodontidae), in the mountain and Piedmont regions of Virginia and North Carolina, USA. Zool. J. Linn. Soc. 152: 115-130.
Tilley, S.G., Mahoney, M.J. (1996): Patterns of genetic differentiation in salamanders of the Desmognathus ochrophaeus complex (Amphibia: Plethodontidae). Herpetol. Monogr. 10: 1-42.
Titus, T.A., Larson, A. (1996): Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology. Sys. Biol. 45: 451-472.
Vekemans, X. (2002): AFLP-SURV version 1.0. Distributed by the author. Laboratorie de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium.
Vekemans, X., Beauwens, T., Lemaire, M., Roldan-Ruiz, I. (2002): Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol. Ecol. 11: 139-151.
Vieites, D.R., Min, M.S., Wake, D.B. (2007): Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc. Nat. Acad. Sci. USA 104: 19903-19907.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. (1995): AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res. 23: 4407-4414.
Voss, S.R., Schaffer, H.B. (1997): Adaptive evolution via a major gene effect: paedomorphosis in the Mexican Axolotl. Proc. Nat. Acad. Sci. USA 94: 14185-14189.
Voss, S.R., Smith, D.G., Beachy, C.K., Heckel, D.G. (1995): Allozyme variation in neighboring isolated populations of the Plethodontid salamander Leurognathus marmoratus. J. Herpetol. 29: 493-497.
Wake, D.B. (1966): Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. South. Cal. Acad. Sci. 4: 1-111.
Wake, D.B. (1991): Homoplasy - the result of natural selection, or evidence of design limitations. Am. Nat. 138: 543-567.
Wake, D.B., Jockusch, E.L. (2000): Detecting species borders using diverse data sets. In: The Biology of Plethodontid Salamanders, p. 95-119. Bruce, R.C., Jaeger, R.C., Houck, L.D., Eds, Kluwer Academic/Plenum Publishers, New York.
Wake, D.B., Roth, G., Wake, M.H. (1983): On the problem of stasis in organismal evolution. J. Theor. Biol. 101: 211-224.
Wang, Z., Baker, A.J., Hill, G.E., Edwards, S.V. (2003): Reconciling actual and inferred population histories in the House Finch (Carpodacus mexicanus) by the AFLP analysis. Evolution 57: 2852-2862.
Whitlock, A., Sztatecsny, M., Jehle, R. (2006): AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris). Amphibia-Reptilia 27: 126-129.
Wiens, J.J., Engstrom, T.N., Chippindale, P.T. (2006): Rapid diversification, incomplete isolation, and the "speciation clock" in North American salamanders (Genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60: 2585-2603.

Wilcox, T.P., Zwickl, D.J., Heath, T.A., Hillis, D.M. (2002): Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol. Phyl. Evol. 25: 361-371.
Wilding, C.S., Butlin, R.K., Grahame, J. (2001): Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J. Evol. Biol. 14: 611-619.
Wooten, J.A. (2007): Comparative phylogeography of Dusky Salamanders, Genus Desmognathus, in the Southern Appalachian Mountains. Unpublished Ph. D. thesis. The University of Alabama, Tuscaloosa, Alabama, USA.
Wooten, J.A., Tolley-Jordan, L.R. (2009): Validation of phylogenetic signals in amplified fragment length data: testing the utility and reliability in closely related taxa. BMC Res. Notes 2: 26.
Wooten, J.A., Camp, C.D., Rissler, L.J. (2010): Genetic diversity in a narrowly endemic, recently described dusky salamander, Desmognathus folkertsi, from the southern Appalachian Mountains. Conserv. Gen. 11: 835-854.
Wright, S. (1931): Evolution of Mendelian populations. Genetics 16: 97-159.
Wright, S. (1943): Isolation by distance. Genetics 28: 114-156.
Wright, S. (1965): The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.
Zhivotovsky, L.A. (1999): Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 8: 907-913.
Zwickl, D.J. (2006): Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Unpublished Ph. D. thesis. The University of Texas at Austin, Austin, Texas, USA.
Appendix 1. Samples used in the genetic analyses.

Lineage	Species	Map Locality	River Drainage	County	State	Locality	Latitude	Longitude	Accession Number
1	Folkertsi	51	Tennessee	Towns	GA	Hiawassee River	34.824	83.733	EU144133
1	Folkertsi	51	Tennessee	Towns	GA	Hiawassee River	34.824	83.733	EU144134
1	Folkertsi	44	Tennessee	Union	GA	West Fork Wolf Creek	34.768	83.946	EU144163
1	Folkertsi	51	Tennessee	Towns	GA	Hiawassee River	34.824	83.733	EU144136
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144148
1	Folkertsi	51	Tennessee	Towns	GA	Hiawassee River	34.824	83.733	EU144135
1	Folkertsi	35	Coosa/Tallapoosa	Gilmer	GA	Holly Creek	34.795	84.603	EU144146
1	Folkertsi	44	Tennessee	Union	GA	West Fork Wolf Creek	34.768	83.946	EU144203
1	Folkertsi	44	Tennessee	Union	GA	West Fork Wolf Creek	34.768	83.946	EU144204
1	Folkertsi	43	Tennessee	Union	GA	Cooper's Creek	34.790	84.031	EU144139
1	Folkertsi	43	Tennessee	Union	GA	Cooper's Creek	34.790	84.031	EU144141
1	Folkertsi	32	Tennessee	Clay	NC	Muskrat Branch	35.047	83.609	EU144210
1	Folkertsi	49	Tennessee	Union	GA	Cooper's Creek	34.749	83.926	EU144140
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144150
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144152
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144157
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144151
1	Folkertsi	43	Tennessee	Union	GA	Cooper's Creek	34.790	84.031	EU144138
1	Folkertsi	51	Tennessee	Towns	GA	Hiawassee River	34.824	83.733	EU144186
1	Folkertsi	56	Savannah	Clay	NC	Tributary of Hiawassee River	34.760	84.004	EU144145
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144153
1	Folkertsi	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU144154
1	Folkertsi	20	Savannah	Pickens	SC	Eastatoe Creek	35.051	82.819	EU144221
2 -A1	marmoratus	50	Savannah	Rabun	GA	Moccasin Creek	34.844	83.587	EU552279
2 -A1	marmoratus	50	Savannah	Rabun	GA	Moccasin Creek	34.844	83.587	EU599125
2 -A1	marmoratus	53	Chattahoochee	White	GA	Smithgall Woods	34.690	83.770	EU599126

Lineage	Species	Map Locality	River Drainage	County	State	Locality	Latitude	Longitude	Accession Number
$2-\mathrm{A} 2$	marmoratus	10	Catawba	Caldwell	NC	Dixon Creek	36.107	81.782	EU552322
$2-\mathrm{A} 2$	marmoratus	10	Catawba	Caldwell	NC	Dixon Creek	36.107	81.782	EU552321
2 -C1	marmoratus	10	Catawba	Caldwell	NC	Dixon Creek	36.107	81.782	EU552320
	marmoratus	7	New River	Watauga	NC	Howard Creek	36.281	81.721	EU144212
	monticola	39	Coosa/Tallapoosa	Gilmer	GA	Holly Creek	34.663	84.441	EU552229
	monticola	39	Coosa/Tallapoosa	Gilmer	GA	Owltown Creek	34.663	84.441	EU552244
	monticola	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552272
	monticola	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552342
	monticola	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552273
	monticola	39	Coosa/Tallapoosa	Gilmer	GA	Owltown Creek	34.663	84.441	EU552245
	monticola	40	Coosa/Tallapoosa	Lumpkin	GA	Nimbelwill Creek	34.582	84.184	EU552247
	monticola	54	Tennessee	Habersham	GA	Demerest	34.560	83.539	EU552251
	monticola	49	Tennessee	Union	GA	Helton Creek	34.749	83.926	EU552250
	monticola	40	Coosa/Tallapoosa	Lumpkin	GA	Nimbelwill Creek	34.582	84.184	EU552248
	monticola	51	Tennessee	Towns	GA	Hiawassee River	34.824	83.733	EU552274
	monticola	32	Tennessee	Clay	NC	Muskrat Branch	35.047	83.609	EU144207
	monticola	32	Tennessee	Clay	NC	Muskrat Branch	35.047	83.609	EU144208
	monticola	53	Chattahoochee	White	GA	Smithgall Woods	34.690	83.770	EU552280
	monticola	39	Coosa/Tallapoosa	Gilmer	GA	Holly Creek	34.663	84.441	EU144175
$2-\mathrm{Al}$	quadramaculatus	35	Coosa/Tallapoosa	Murray	GA	Laurel Creek	34.795	84.603	EU552230
$2-\mathrm{Al}$	quadramaculatus	39	Coosa/Tallapoosa	Murray	GA	Owltown Creek	34.663	84.441	EU552232
2 -A1	quadramaculatus	35	Coosa/Tallapoosa	Murray	GA	Laurel Creek	34.795	84.603	EU552231
$2-\mathrm{Al}$	quadramaculatus	40	Coosa/Tallapoosa	Lumpkin	GA	Nimbelwill Creek	34.582	84.184	EU552234
$2-\mathrm{Al}$	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552233
2 -A1	quadramaculatus	10	Catawba	Caldwell	NC	Dixon Creek	36.107	81.782	EU552316
$2-\mathrm{A} 2$	quadramaculatus	56	Savannah	Clay	NC	Tributary of Hiawassee River	34.760	84.004	EU144147
$2-\mathrm{A} 2$	quadramaculatus	7	New River	Watauga	NC	Howard Creek	36.281	81.721	EU144215
2-A2	quadramaculatus	7	New River	Watauga	NC	Howard Creek	36.281	81.721	EU552313

| Lineage | Species | Map
 Locality | River Drainage | County | State | Locality | Latitude | Longitude |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Accession | | | | | | | | |
| Number | | | | | | | | |

$\left.\begin{array}{lllllllll}\hline \text { Lineage } & \text { Species } & \begin{array}{c}\text { Map } \\ \text { Locality }\end{array} & \text { River Drainage } & \text { County } & \text { State } & \text { Locality } & \text { Latitude } & \text { Longitude } \\ \text { Accession } \\ \text { Number }\end{array}\right]$

Lineage	Species	Map Locality	River Drainage	County	State	Locality	Latitude	Longitude	Accession
Number									

Lineage	Species	Map Locality	River Drainage	County	State	Locality	Latitude	Longitude	Accession Number
2-B3	quadramaculatus	34	Coosa/Tallapoosa	Fannin	GA	Star Creek	34.871	84.203	EU552269
2-B3	quadramaculatus	34	Coosa/Tallapoosa	Fannin	GA	Star Creek	34.871	84.203	EU552271
2-B3	quadramaculatus	44	Tennessee	Union	GA	West Fork of Wolf Creek	34.768	83.946	EU144167
2-B3	quadramaculatus	44	Tennessee	Union	GA	West Fork of Wolf Creek	34.768	83.946	EU144168
2-B3	quadramaculatus	44	Tennessee	Union	GA	West Fork of Wolf Creek	34.768	83.946	EU144170
2-B3	quadramaculatus	47	Tennessee	Union	GA	Helton Creek	34.748	83.909	EU144194
2-B3	quadramaculatus	42	Tennessee	Union	GA	Flat Creek	34.748	84.026	EU144196
2-B3	quadramaculatus	44	Tennessee	Union	GA	West Fork of Wolf Creek	34.768	83.946	EU144169
2-B3	quadramaculatus	43	Tennessee	Union	GA	Cooper's Creek	34.790	84.031	EU144198
2-B3	quadramaculatus	36	Coosa/Tallapoosa	Gilmer	GA	Rock Creek	34.781	84.328	EU552259
2-B3	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552348
2-B3	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552344
	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552349
	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552343
	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552345
	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552347
	quadramaculatus	38	Coosa/Tallapoosa	Gilmer	GA	Big Turniptown Creek	34.717	84.390	EU552346
2-B3	quadramaculatus	37	Chattahoochee	Gilmer	GA	Stanley Creek	34.783	84.303	EU552265
2-B3	quadramaculatus	37	Chattahoochee	Gilmer	GA	Stanley Creek	34.783	84.303	EU552266
2-B3	quadramaculatus	37	Chattahoochee	Gilmer	GA	Stanley Creek	34.783	84.303	EU552267
	quadramaculatus	2	New River	Nicholas	WV	Collison Creek	38.113	81.144	EU144142
	quadramaculatus	1	New River	Fayette	WV	Glade Creek	38.191	80.897	EU552396
2-C1	quadramaculatus	46	Tennessee	Union	GA	Unnamed tributary of Nottely River	34.750	83.850	EU552268
2-C1	quadramaculatus	6	New River	Henderson	NC	West Fork of French Broad River	36.227	81.435	EU552307
2-C1	quadramaculatus	9	Catawba	Watauga	NC	Green Mountain Creek	36.114	81.778	EU552318
2-C1	quadramaculatus	9	Catawba	Watauga	NC	Middle Fork at Payne's Branch	36.114	81.778	EU552324

$\left.\begin{array}{lllllllll}\hline \text { Lineage } & \text { Species } & \begin{array}{c}\text { Map } \\ \text { Locality }\end{array} & \text { River Drainage } & \text { County } & \text { State } & \text { Locality } & \text { Latitude } & \text { Longitude } \\ \text { Accession } \\ \text { Number }\end{array}\right]$
$\left.\begin{array}{lllllllll}\hline \text { Lineage } & \text { Species } & \begin{array}{c}\text { Map } \\ \text { Locality }\end{array} & \text { River Drainage } & \text { County } & \text { State } & \text { Locality } & \text { Latitude } & \text { Longitude } \\ \text { Accession } \\ \text { Number }\end{array}\right]$

Lineage	Species	Map Locality	River Drainage	County	State	Locality	Latitude	Longitude	Accession Number
	quadramaculatus	6	New River	Henderson	NC	West Fork of French Broad River	36.227	81.435	EU552339
	quadramaculatus	3	New River	Mercer	WV	Unnamed tributary of Bluestone River	37.377	81.224	EU552406
	quadramaculatus	1	New River	Fayette	WV	Glade Creek	38.191	80.897	EU552395
	quadramaculatus	2	New River	Nicholas	WV	Collison Creek	38.113	81.144	EU552243
	quadramaculatus	4	New River	Giles	VA	Laurel Branch	37.392	80.642	EU552376
	quadramaculatus	1	New River	Fayette	WV	Glade Creek	38.191	80.897	EU552397
	quadramaculatus	2	New River	Nicholas	WV	Collison Creek	38.113	81.144	EU552239
	quadramaculatus	3	New River	Mercer	WV	Unnamed tributary of Bluestone River	37.377	81.224	EU552414
	quadramaculatus	3	New River	Mercer	WV	Unnamed tributary of Bluestone River	37.377	81.224	EU552414
	quadramaculatus	9	Catawba	Watauga	NC	Green Mountain Creek	36.114	81.778	EU552319
	quadramaculatus	7	New River	Watauga	NC	Howard Creek	36.281	81.721	EU144214
	quadramaculatus	2	New River	Nicholas	WV	Collison Creek	38.113	81.144	EU552242
	quadramaculatus	7	New River	Watauga	NC	Howard Creek	36.281	81.721	EU144213
	quadramaculatus	9	Catawba	Watauga	NC	Green Mountain Creek	36.114	81.778	EU552317
	quadramaculatus	8	Catawba	Watauga	NC	Middle Fork at Payne's Branch	36.185	81.654	EU552325
	quadramaculatus	8	Catawba	Watauga	NC	Middle Fork at Payne's Branch	36.185	81.654	EU552326
	quadramaculatus	12	New River	Burke	NC	Steele's Creek	35.906	81.829	EU552330
2-D	quadramaculatus	13	Tennessee	Madison	NC	Tributary of Big Laural Creek	35.983	82.662	EU552291
2-D	quadramaculatus	13	Tennessee	Madison	NC	Tributary of Big Laural Creek	35.983	82.662	EU55292
2-D	quadramaculatus	13	Tennessee	Madison	NC	Tributary of Big Laural Creek	35.983	82.662	EU55293

*Individuals from localities $17,30,31$, and 48 were deleted when identical haplotypes were removed.
Voucher numbers: ${ }^{1}$ UAHC 15824, ${ }^{2}$ UAHC $15825,{ }^{3}$ UAHC 15827, ${ }^{4}$ UAHC $15826,{ }^{5}$ UAHC 15829,6 UAHC $15830,{ }^{7}$ UAHC $15832,{ }^{8}$ UAHC $15831,{ }^{9}$ UAHC $15819,{ }^{10}$ UAHC 15821, ${ }^{11}$ UAHC 15834, ${ }^{12}$ UAHC $15845,{ }^{13}$ APPSU 25402, ${ }^{14}$ APPSU 25403, ${ }^{15}$ UAHC $15838,{ }^{16}$ UAHC $15833,{ }^{17}$ UAHC $15842,{ }^{18}$ UAHC ${ }^{15844,}$ ${ }^{19}$ APPSU 24504, ${ }^{20}$ UAHC 15843, ${ }^{21}$ UAHC 15652, ${ }^{22}$ UAHC $15653,{ }^{23}$ APPSU 24509, ${ }^{24}$ APPSU 24507, ${ }^{25}$ APPSU $24510,{ }^{26}$ APPSU $24505,{ }^{27}$ APPSU 24506

Appendix 2. Individuals from Genbank used in the genetic analyses.

Lineage	Species	Accession Number	County	State	Citation
	monticola	AF437369	Giles	VA	Rissler and Taylor 2003
	monticola	AF437362	Craig	VA	Rissler and Taylor 2003
	monticola	AF437353	Giles	VA	Rissler and Taylor 2003
	monticola	AY549660	Giles	VA	Rissler et. al. 2004
	monticola	AY549650	Craig	VA	Rissler et. al. 2004
	monticola	AF437351	Giles	VA	Rissler and Taylor 2003
	monticola	AY549666	Giles	VA	Rissler et. al. 2004
	monticola	AY549644	Craig	VA	Rissler et. al. 2004
	monticola	AY549657	Giles	VA	Rissler et. al. 2004
	monticola	AY549679	Unknown	NC	Rissler et. al. 2004
	monticola	AY549673	Montgomery	VA	Rissler et. al. 2004
	monticola	AF437369	Giles	VA	Rissler and Taylor 2003
2-C1	marmoratus	AF437329	Caldwell	NC	Rissler and Taylor 2003
2-C3	marmoratus	AF437336	Smyth	VA	Rissler and Taylor 2003
2-B1	quadramaculatus	AF437409	Henderson	NC	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437331	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437332	Smyth	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437320	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437325	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437321	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437322	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437326	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437324	Giles	VA	Rissler and Taylor 2003
2-C1	quadramaculatus	AF437333	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437323	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437319	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437330	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437335	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437328	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437327	Giles	VA	Rissler and Taylor 2003
	quadramaculatus	AF437334	Giles	VA	Rissler and Taylor 2003
2-D	quadramaculatus	AF437337	Giles	VA	Rissler and Taylor 2003
	aeneus	AF437410	Graham	NC	Rissler and Taylor 2003
	fuscus	AF437405	Giles	VA	Rissler and Taylor 2003
	fuscus	AF437406	Giles	VA	Rissler and Taylor 2003
	imitator	AF437408	Unknown	TN	Rissler and Taylor 2003
	wrighti	AF437317	Macon	NC	Rissler and Taylor 2003
	wrighti	AY135559	Sevier	TN	Crespi et al. 2003

[^0]: ${ }^{*}$ Lineages (Fig. 2). ${ }^{* *}$ Five major river drainage basins including New River, Catawba, Tennessee, Chattahoochee, Coosa/Tallapoosa, Savannah were used.

