

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 4, No. 2, 2003 pp. 255-261

Closure properties of function spaces

Ljubiša D.R. Kočinac*

Dedicated to Professor S. Naimpally on the occasion of his 70th birthday.

ABSTRACT. In this paper we investigate some closure properties of the space $C_k(X)$ of continuous real-valued functions on a Tychonoff space X endowed with the compact-open topology.

2000 AMS Classification: 54A25, 54C35, 54D20, 91A44. Keywords: Menger property, Rothberger property, Hurewicz property, Reznichenko property, k-cover, countable fan tightness, countable strong fan tightness, T-tightness, groupability, $C_k(X)$, selection principles, game theory.

1. INTRODUCTION.

All spaces in this paper are assumed to be Tychonoff. Our notation and terminology are standard, mainly the same as in [2]. Some notions will be defined when we need them. By $C_k(X)$ we denote the space of continuous real-valued functions on a space X in the compact-open topology. Basic open sets of $C_k(X)$ are of the form

$$W(K_1, \dots, K_n; V_1, \dots, V_n) := \{ f \in C(X) : f(K_i) \subset V_i, i = 1, \dots, n \},\$$

where K_1, \ldots, K_n are compact subsets of X and $V_1 \ldots, V_n$ are open in \mathbb{R} . For a function $f \in \mathsf{C}_k(X)$, a compact set $K \subset X$ and a positive real number ε we let

$$W(f;K;\varepsilon) := \{g \in \mathsf{C}_k(X) : |g(x) - f(x)| < \varepsilon, \ \forall x \in K\}.$$

The standard local base of a point $f \in C_k(X)$ consists of the sets $W(f; K; \varepsilon)$, where K is a compact subset of X and ε is a positive real number.

The symbol $\underline{0}$ denotes the constantly zero function in $C_k(X)$. The space $C_k(X)$ is homogeneous so that we may consider the point $\underline{0}$ when studying local properties of $C_k(X)$.

Many results in the literature show that for a Tychonoff space X closure properties of the function space $C_p(X)$ of continuous real-valued functions on

^{*}Supported by the Serbian MSTD, grant 1233

X endowed with the topology of pointwise convergence can be characterized by covering properties of X. We list here some properties which are expressed in this manner.

(A) [Arhangel'skii–Pytkeev] $C_p(X)$ has countable tightness if and only if all finite powers of X have the Lindelöf property ([1]).

(B) [Arhangel'skii] $C_p(X)$ has countable fan tightness if and only if all finite powers of X have the Menger property ([1]).

(C) [Sakai] $C_p(X)$ has countable strong fan tightness if and only if all finite powers of X have the Rothberger property ([13]).

(D) [Kočinac–Scheepers] $C_p(X)$ has countable fan tightness and the Reznichenko property if and only if all finite powers of X have the Hurewicz property ([7]).

In this paper we consider these properties in the context of spaces $C_k(X)$. To get analogues for the compact-open topology one need modify the role of covers, preferably ω -covers from C_p -theory should be replaced by k-covers in C_k -theory.

Recall that an open cover \mathcal{U} of X is called a *k-cover* if for each compact set $K \subset X$ there is a $U \in \mathcal{U}$ such that $K \subset U$. The symbol \mathcal{K} denotes the collection of all *k*-covers of a space.

Let us mention one result of this sort which should be compared with the Arhangel'skii-Pytkeev theorem (A) above.

In [9] it was remarked (without proof) that the following holds:

Theorem 1.1. A space $C_k(X)$ has countable tightness if and only if for each k-cover \mathcal{U} of X there is a countable set $\mathcal{V} \subset \mathcal{U}$ which is a k-cover of X.

The proof of this result can be found in Theorem 3.13 of [11].

1.1. Selection principles and games. In this paper we shall need selection principles of the following two sorts: Let S be an infinite set and let \mathcal{A} and \mathcal{B} both be sets whose members are families of subsets of S.

Then $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n \ b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each n $B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

For a topological space X, let \mathcal{O} denote the collection of open covers of X. Then the property $S_1(\mathcal{O}, \mathcal{O})$ is called the *Rothberger property* [12],[5], and the property $S_{fin}(\mathcal{O}, \mathcal{O})$ is known as the *Menger property* [10], [3],[5].

There is a natural game for two players, ONE and TWO, denoted $G_{fin}(\mathcal{A}, \mathcal{B})$, associated with $S_{fin}(\mathcal{A}, \mathcal{B})$. This game is played as follows: There is a round per positive integer. In the *n*-th round ONE chooses an $A_n \in \mathcal{A}$, and TWO

responds with a finite set $B_n \subset A_n$. A play $A_1, B_1; \cdots; A_n, B_n; \cdots$ is won by TWO if $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} ; otherwise, ONE wins.

Similarly, one defines the game $G_1(\mathcal{A}, \mathcal{B})$, associated with $S_1(\mathcal{A}, \mathcal{B})$.

2. Countable (Strong) fan tightness of $C_k(X)$.

For X a space and a point $x \in X$ the symbol Ω_x denotes the set $\{A \subset X \setminus \{x\} : x \in \overline{A}\}$.

A space X has countable fan tightness [1] if for each $x \in X$ and each sequence $(A_n : n \in \mathbb{N})$ of elements of Ω_x there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n \quad B_n \subset A_n$ and $x \in \bigcup_{n \in \mathbb{N}} \overline{B_n}$, i.e. if $S_{fin}(\Omega_x, \Omega_x)$ holds for each $x \in X$. A space X has countable strong fan tightness [13] if for each $x \in X$ the selection principle $S_1(\Omega_x, \Omega_x)$ holds.

In [8], it was shown (compare with the corresponding theorem (B) of Arhangel'skii for $C_p(X)$):

Theorem 2.1. The space $C_k(X)$ has countable fan tightness if and only if X has property $S_{fin}(\mathcal{K}, \mathcal{K})$.

We show

Theorem 2.2. For a space X the following are equivalent:

- (a) $C_k(X)$ has countable strong fan tightness;
- (b) X has property $S_1(\mathcal{K}, \mathcal{K})$.

Proof. $(a) \Rightarrow (b)$: Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of k-covers of X. For a fixed $n \in \mathbb{N}$ and a compact subset K of X let $\mathcal{U}_{n,K} := \{U \in \mathcal{U}_n : K \subset U\}$. For each $U \in \mathcal{U}_{n,K}$ let $f_{K,U}$ be a continuous function from X into [0,1] such that $f_{K,U}(K) = \{0\}$ and $f_{K,U}(X \setminus U) = \{1\}$. Let for each n,

$$A_n = \{ f_{K,U} : K \text{ compact in } X, U \in \mathcal{U}_{n,K} \}.$$

Then, as it is easily verified, $\underline{0}$ is in the closure of A_n for each $n \in \mathbb{N}$.

Since $C_k(X)$ has countable strong fan tightness there is a sequence $(f_{K_n,U_n} : n \in \mathbb{N})$ such that for each $n, f_{K_n,U_n} \in A_n$ and $\underline{0} \in \overline{\{f_{K_n,U_n} : n \in \mathbb{N}\}}$. Consider the sets $U_n, n \in \mathbb{N}$. We claim that the sequence $(U_n : n \in \mathbb{N})$ witnesses that X has property $S_1(\mathcal{K}, \mathcal{K})$.

Let C be a compact subset of X. From $\underline{0} \in \overline{\{f_{K_n,U_n} : n \in \mathbb{N}\}}$ it follows that there is $i \in \mathbb{N}$ such that $W = W(\underline{0}; C; 1)$ contains the function f_{K_i,U_i} . Then $C \subset U_i$. Otherwise, for some $x \in C$ one has $x \notin U_i$ so that $f_{K_i,U_i}(x) = 1$, which contradicts the fact $f_{K_i,U_i} \in W$.

 $(b) \Rightarrow (a)$: Let $(A_n : n \in \mathbb{N})$ be a sequence of subsets of $\mathsf{C}_k(X)$ the closures of which contain $\underline{0}$. Fix n. For every compact set $K \subset X$ the neighborhood $W = W(\underline{0}; K; 1/n)$ of $\underline{0}$ intersects A_n so that there exists a function $f_{K,n} \in A_n$ such that $|f_{K,n}(x)| < 1/n$ for each $x \in K$. Since $f_{K,n}$ is a continuous function there are neighborhoods O_x , $x \in K$, such that for $U_{K,n} = \bigcup_{x \in K} O_x \supset K$ we have $f_{K,n}(U_{K,n}) \subset (-1/n, 1/n)$. Let $\mathcal{U}_n = \{U_{K,n} : K \text{ a compact subset of } X\}$. For each $n \in \mathbb{N}, \mathcal{U}_n$ is a k-cover of X. Apply that X is an $\mathsf{S}_1(\mathcal{K}, \mathcal{K})$ -set: for each $m \in \mathbb{N}$ there exists a sequence $(U_{K,n} : n \geq m)$ such that for each $n, U_{K,n} \in \mathcal{U}_n$ and $\{U_{K,n} : n \geq m\}$ is a k-cover for X. Look at the corresponding functions $f_{K,n}$ in A_n .

Let us show $\underline{0} \in \overline{\{f_{K,n} : n \in \mathbb{N}\}}$. Let $W = W(\underline{0}; C; \varepsilon)$ be a neighborhood of 0 in $C_k(X)$ and let m be a natural number such that $1/m < \varepsilon$. Since C is a compact subset of X and X is an $S_1(\mathcal{K}, \mathcal{K})$ -set, there is $j \in \mathbb{N}, j \geq m$ such that one can find a $U_{K,j}$ with $C \subset U_{K,j}$. We have

$$f_{K,j}(C) \subset f_{K,j}(U_{K,j}) \subset (-1/j, 1/j) \subset (-1/m, 1/m) \subset (-\varepsilon, \varepsilon),$$

i.e. $f_{K,j} \in W$.

3. Countable *T*-tightness of $C_k(X)$.

The notion of T-tightness was introduced by I. Juhász at the IV International Conference "Topology and its Applications", Dubrovnik, September 30 - October 5, 1985 (see [4]). A space X has countable T-tightness if for each uncountable regular cardinal ρ and each increasing sequence $(A_{\alpha} : \alpha < \rho)$ of closed subsets of X the set $\cup \{A_{\alpha} : \alpha < \rho\}$ is closed. In [14], the T-tightness of $C_p(X)$ was characterized by a covering property of X. The next theorem is an analogue of this result in the $C_k(X)$ context.

Theorem 3.1. For a space X the following are equivalent:

- (a) $C_k(X)$ has countable T-tightness:
- (b) for each regular cardinal ρ and each increasing sequence $(\mathcal{U}_{\alpha} : \alpha < \rho)$ of families of open subsets of X such that $\bigcup_{\alpha < \rho} \mathcal{U}_{\alpha}$ is a k-cover of X there is a $\beta < \rho$ so that \mathcal{U}_{β} is a k-cover of X.

Proof. (a) \Rightarrow (b): Let ρ be a regular uncountable cardinal and let ($\mathcal{U}_{\alpha} : \alpha < \rho$) be an increasing sequence of families of open subsets of X such that $\bigcup_{\alpha < \rho} \mathcal{U}_{\alpha}$ is a k-cover for X. For each $\alpha < \rho$ and each compact set $K \subset X$ let $\mathcal{U}_{\alpha,K} :=$ $\{U \in \mathcal{U}_{\alpha} : K \subset U\}$. For each $U \in \mathcal{U}_{\alpha,K}$ let $f_{K,U}$ be a continuous function from X into [0,1] such that $f_{K,U}(K) = \{0\}$ and $f_{K,U}(X \setminus U) = \{1\}$. For each $\alpha < \rho$ put

$$A_{\alpha} = \{ f_{K,U} : U \in \mathcal{U}_{\alpha,K} \}.$$

Since the T-tightness of $C_k(X)$ is countable, the set $A = \bigcup_{\alpha < \sigma} \overline{A_\alpha}$ is closed in $\mathsf{C}_k(X).$

Let $W(\mathbf{0}; K; \varepsilon)$ be a standard basic neighborhood of 0. There is an $\alpha < \rho$ such that for some $U \in \mathcal{U}_{\alpha}, K \subset U$. Then $U \in \mathcal{U}_{\alpha,K}$ and thus there is $f \in A_{\alpha}$, hence $f \in A_{\alpha} \cap W(\underline{0}; K; \varepsilon)$. Therefore, each neighborhood of $\underline{0}$ intersects some of the sets A_{α} , $\alpha < \rho$, which means that <u>0</u> belongs to the closure of the set $\bigcup_{\alpha < \rho} A_{\alpha}$. Since this set is actually the set A it follows there exists a $\beta < \rho$ with $\underline{0} \in \overline{A_{\beta}}$. We claim that the corresponding family \mathcal{U}_{β} is a k-cover of X.

Let C be a compact subset of X. Then the neighborhood $W(\underline{0}; C; 1)$ of $\underline{0}$ intersects A_{β} ; let $f_{K,U} \in A_{\beta} \cap W(\underline{0}; C; 1)$. By the definition of A_{β} , then from $f_{K,U}(X \setminus U) = 1$ it follows $C \subset U \in \mathcal{U}_{\beta}$.

258

 $(b) \Rightarrow (a)$: Let $(A_{\alpha} : \alpha < \rho)$ be an increasing sequence of closed subsets of $\mathsf{C}_k(X)$, with ρ a regular uncountable cardinal. We shall prove that the set $A := \bigcup_{\alpha < \rho} A_{\alpha}$ is closed. Let $f \in \overline{A}$. For each $n \in \mathbb{N}$ and each compact set $K \subset X$ the neighborhood W(f; K; 1/n) of f intersects A. Put

$$\mathcal{U}_{n,\alpha} = \{g^{\leftarrow}(-1/n, 1/n) : g \in A_{\alpha}\}$$

and

$$\mathcal{U}_n = \bigcup_{\alpha < \rho} \mathcal{U}_{n,\alpha}.$$

Let us check that for each $n \in \mathbb{N}$, \mathcal{U}_n is a k-cover of X. Let K be a compact subset of X. The neighborhood W := W(f; K; 1/n) of f intersects A, i.e. there is $g \in A$ such that |f(x) - g(x)| < 1/n for all $x \in K$; this means $K \subset g^{\leftarrow}(-1/n, 1/n) \in \mathcal{U}_n$.

By (b) there is $\mathcal{U}_{n,\beta_n} \subset \mathcal{U}_n$ which is a k-cover of X. Put $\beta_0 = \sup\{\beta_n : n \in \mathbb{N}\}$. Since ρ is a regular cardinal, $\beta_0 < \rho$. It is easy to verify that for each n the set \mathcal{U}_{n,β_0} is a k-cover of X. Let us show that $f \in A_{\beta_0}$. Take a neighborhood $W(f; C; \varepsilon)$ of f and let m be a positive integer such that $1/m < \varepsilon$. Since \mathcal{U}_{m,β_0} is a k-cover of X one can find $g \in A_{\beta_0}$ such that $C \subset g^{\leftarrow}(-1/m, 1/m)$. Then $g \in W(f; C; 1/m) \cap A_{\beta_0} \subset W(f; C; \varepsilon) \cap A_{\beta_0}$, i.e. $f \in \overline{A_{\beta_0}} = A_{\beta_0}$ and thus $f \in A$. So, A is closed.

4. The Reznichenko property of $C_k(X)$.

In this section we shall need the notion of groupability (see [7]).

- 1. A k-cover \mathcal{U} of a space X is groupable if there is a partition $(\mathcal{U}_n : n \in \mathbb{N})$ of \mathcal{U} into pairwise disjoint finite sets such that: For each compact subset K of X, for all but finitely many n, there is a $U \in \mathcal{U}_n$ such that $K \subset U$.
- 2. An element A of Ω_x is groupable if there is a partition $(A_n : n \in \mathbb{N})$ of A into pairwise disjoint finite sets such that each neighborhood of x has nonempty intersection with all but finitely many of the A_n .

We use the following notation:

- \mathcal{K}^{gp} the collection of all groupable k-covers of a space;
- Ω_x^{gp} the family of all groupable elements of Ω_x .

In 1996 Reznichenko introduced (in a seminar at Moscow State University) the following property: Each countable element of Ω_x is a member of Ω_x^{gp} . This property was further studied in [6] and [7] (see Introduction). In [6] it was called the *Reznichenko property at x*. When X has the Reznichenko property at each of its points, then X is said to have the *Reznichenko property*.

We study now the Reznichenko property in spaces $C_k(X)$.

Theorem 4.1. Let X be a Tychonoff space. If ONE has no winning strategy in the game $G_1(\mathcal{K}, \mathcal{K}^{gp})$, then $C_k(X)$ has property $S_1(\Omega_{\underline{0}}, \Omega_{\underline{0}}^{gp})$ (i.e. $C_k(X)$ has countable strong fan tightness and the Reznichenko property). Ljubiša D.R. Kočinac

Proof. Evidently, from the fact that ONE has no winning strategy in the game $G_1(\mathcal{K}, \mathcal{K}^{gp})$, it follows that X satisfies $S_1(\mathcal{K}, \mathcal{K}^{gr})$ and consequently X is in the class $S_1(\mathcal{K}, \mathcal{K})$. By Theorem 2.2 $C_k(X)$ has countable strong fan tightness, and thus countable tightness. Therefore, it remains to prove that each countable subset of Ω_0 is groupable (i.e. that $C_k(X)$ has the Reznichenko property).

Let A be a *countable* subset of $C_k(X)$ such that $\underline{0} \in \overline{A}$. We define the following strategy σ for ONE in $\mathsf{G}_1(\mathcal{K}, \mathcal{K}^{gp})$. For a compact set $K \subset X$ the neighborhood $W = W(\underline{0}; K; 1)$ of $\underline{0}$ intersects A. Let $f_K \in A \cap W$. As f_K is continuous, for every $x \in K$ there is a neighborhood O_x of x such that $f_K(O_x) \subset (-1,1)$. From the open cover $\{O_x : x \in K\}$ of K choose a finite subcover $\{O_{x_1}, \ldots, O_{x_m}\}$ and let $U_K = O_{x_1} \cup \cdots \cup O_{x_m}$. Then $f_K(U_K) \subset (-1, 1)$ and the set $\mathcal{U}_1 = \{U_K : K \text{ a compact subset of } X\}$ is a k-cover of X. ONE's first move, $\sigma(\emptyset)$, will be \mathcal{U}_1 . Let TWO's response be an element $U_{K_1} \in \mathcal{U}_1$. ONE considers now the corresponding function $f_{K_1} \in A$ (satisfying $f_{K_1}(U_{K_1}) \subset$ (-1,1) and looks at the set $A_1 = A \setminus \{f_{K_1}\}$ which obviously satisfies $\underline{0} \in$ $\overline{A_1}$. For every compact subset K of X ONE chooses a function $f_K \in A \cap$ $W(\underline{0}; K; 1/2)$ and a neighborhood U_K of K such that $f_K(U_K) \subset (-1/2, 1/2)$. The set $\mathcal{U}_2 = \{U_K : K \text{ a compact subset of } X\} \setminus \{U_{K_1}\}$ is a k-cover of X. ONE plays $\sigma(U_{K_1}) = \mathcal{U}_2$. Suppose that $U_{K_2} \in \mathcal{U}_2$ is TWO's response. ONE first considers the function $f_{K_2} \in A_1$ with $f_{K_2}(U_{K_2}) \subset (-1/2, 1/2)$ and then looks at the set $A_2 = A_1 \setminus \{f_{K_2}\}$ the closure of which contains $\underline{0}$, and so on.

The strategy σ , by definition, gives sequences $(\mathcal{U}_n : n \in \mathbb{N})$, $(U_n : n \in \mathbb{N})$ and $(f_n : n \in \mathbb{N})$ having the following properties:

- (i) $(\mathcal{U}_n : n \in \mathbb{N})$ is a sequence of k-covers of X and for each n $\mathcal{U}_n = \sigma(U_1, \ldots, U_{n-1});$
- (ii) For each $n, U_n \in \mathcal{U}_n$ and $U_n \notin \{U_1, \ldots, U_{n-1}\};$
- (iii) For each n, f_n is a member of $A \setminus \{f_1, \ldots, f_{n-1}\}$;
- (iv) For each $n, f_n(U_n) \subset (-1/n, 1/n)$.

Since σ is not a winning strategy for ONE, the play $\mathcal{U}_1, \mathcal{U}_1; \ldots; \mathcal{U}_n, \mathcal{U}_n; \ldots$ is lost by ONE so that $\mathcal{V} := \{U_n : n \in \mathbb{N}\}$ is a groupable k-cover of X. Therefore there is an increasing infinite sequence $n_1 < n_2 < \cdots < n_k < \ldots$ such that the sets $\mathcal{H}_k := \{U_i : n_k \leq i < n_{k+1}\}, k = 1, 2, \ldots$, are pairwise disjoint and for every compact set $K \subset X$ there is k_0 such that for each $k > k_0$ there is $H \in \mathcal{H}_k$ with $K \subset H$. Define also $M_k := \{f_i : n_k \leq i < n_{k+1}\}$. Then the sets M_k are finite pairwise disjoint subsets of A. One can also suppose that $A = \bigcup_{k \in \mathbb{N}} M_k$; otherwise we distribute countably many elements of $A \setminus \bigcup_{k \in \mathbb{N}} M_k$ among M_k 's so that after distribution new sets are still finite and pairwise disjoint. We claim that the sequence $(M_k : k \in \mathbb{N})$ witnesses that A is groupable (i.e. that $C_k(X)$ has the Reznichenko property).

Let $W(\underline{0}; K; \varepsilon)$ be a neighborhood of $\underline{0}$ and let m be the smallest natural number such that $1/m < \varepsilon$. There is n_0 such that for each $n > n_0$ one can choose an element $H_n \in \mathcal{H}_n$ with $K \subset H_n$; choose also a corresponding function $f_n \in M_n$ satisfying $f_n(H_n) \subset (-1/n, 1/n)$. So for each $n > \max\{n_0, m\}$ we have $f_n \in M_n \cap W(\underline{0}; K; \varepsilon)$, i.e for all but finitely many $n W(\underline{0}; K; \varepsilon) \cap M_n \neq \emptyset$. The theorem is shown.

In a similar way one can prove

Theorem 4.2. For a space X the statement (a) below implies the statement (b):

- (a) ONE has no winning strategy in the game $G_{fin}(\mathcal{K}, \mathcal{K}^{gp})$;
- (b) $C_k(X)$ has countable fan tightness and the Reznichenko property (i.e. $C_k(X)$ has property $S_{fin}(\Omega_0, \Omega_0^{gp})$).

Problem 4.3. Is the converse in Theorem 4.1 and in Theorem 4.2 true?

References

- [1] A.V. Arhangel'skii, Topological Function Spaces (Kluwer Academic Publishers, 1992).
- [2] R. Engelking, General Topology (PWN, Warszawa, 1977).
- [3] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.
- [4] I. Juhász, Variations on tightness, Studia Sci. Math. Hungar. 24 (1989), 179–186.
- [5] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996), 241–266.
- [6] Lj.D. Kočinac and M. Scheepers, Function spaces and a property of Reznichenko, Topology Appl. 123 (2002), 135–143.
- [7] Lj.D.R. Kočinac and M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. (to appear).
- [8] Shou Lin, Chuan Liu and Hui Teng, Fan tightness and strong Fréchet property of C_k(X), Adv. Math. (China) 23:3 (1994), 234–237 (Chinese); MR. 95e:54007, Zbl. 808.54012.
- [9] R.A. McCoy, Function spaces which are k-spaces, Topology Proc. 5 (1980), 139–146.
- [10] K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberischte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) 133 (1924), 421–444.
- [11] A. Okuyama and T. Terada, Function spaces, In: Topics in General Topology, K. Morita and J. Nagata, eds. (Elsevier Science Publishers B.V., Amsterdam, 1989), 411–458.
- [12] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55.
- $[13]\,$ M. Sakai, Property $C^{\prime\prime}$ and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917–919.
- [14] M. Sakai, Variations on tightness in function spaces, Topology Appl. 101 (2000), 273–280.

Received November 2001 Revised November 2002

LJUBIŠA D.R. KOČINAC Faculty of Sciences, University of Niš, 18000 Niš, Serbia E-mail address: lkocinac@ptt.yu