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Abstract. In previous papers, various notions of compact, T3, T4,
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compared. The main objective of this paper is to characterize each of
these classes of objects in the categories of filter and local filter conver-
gence spaces as well as to examine how these various generalizations
are related.
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1. Introduction

The following facts are well known:
(1) A topological space X is compact if and only if the projection π2 : X×

Y → Y is closed for each topological space Y ,
(2) A topological space X is Hausdorff if and only if the diagonal, ∆, is

closed in X ×X,
(3) For a topological space X the following are equivalent:

(i) X is Tychonoff (completely regular T1);
(ii) X is homeomorphic to a subspace of a compact Hausdorff space;
(iii) X is homeomorphic to a subspace of some T4 space.

The facts (1) and (2) are used by several authors (see, [7, 14, 22] and [25])
to motivate a closer look at analogous situations in a more general categorical
setting. Categorical notions of compactness and Hausdorffness with respect
to a factorization structure were defined in the case of a general category by
Manes [25] and Herrlich, Salicrup and Strecker [22]. A categorical study of these
notions with respect to an appropriate notion of “closedness” based on closure
operators (in the sense of [17]) was done in [18] (for the categories of various
types of filter convergence spaces) and [14] (for abstract categories). Baran
in [2] and [4] introduced the notion of “closedness” and “strong closedness”
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in set-based topological categories and used these notions in [7] to generalize
each of the notions of compactness and Hausdorffness to arbitrary set-based
topological categories.

By using (i) and (ii) of (3), in [7] and [14], there are various ways of general-
izing the usual Tychonoff separation axiom to arbitrary set based topological
categories.

We further recall from [2] and [8] that for a T1 topological space X, the
following are equivalent:

(a) X is T3;
(b) For every non-void subset F of X, the quotient space X/F (defined in

2.1 below) is T2 if it is T1;
(c) For every non-void closed subset F of X, the quotient space X/F is a

PreT2 space,
where a topological space is called PreT2 [2](or R1 in [13]) if for any two distinct
points, if there is a neighbourhood of one missing the other, then the two points
have disjoint neighbourhoods. The equivalence of (b) and (c) follows from the
facts that for T1 topological spaces, T2 is equivalent to PreT2, and F is closed
iff X/F is T1. We note also:

(d) A topological space X is T4 iff X is T1 and for every non-void subset
F of X, the space X/F is T3 if it is T1.

In view of (b) - (d), in [2] and [8], there are various ways of generalizing each
of the usual T3 and T4 separation axioms to arbitrary set based topological
categories.

The aim of this paper is to introduce, by using (3), various generalizations of
Tychonoff objects for an arbitrary set based topological category and compare
them with the ones that were given in [7, 9], and [14]. Furthermore, each of
the classes of T3 and T4-objects, compact and strongly compact objects, and
Tychonoff objects in the categories of filter and local filter convergence spaces
are characterized and relationships among various forms of these Tychonoff
objects are investigated in these categories.

2. Preliminaries

Let E be a category and Set be the category of sets. The functor U : E→
Set is said to be topological, and E is said to be a topological category over
Set, if U is concrete (i.e., faithful and amnestic, (i.e., if U(f) = id and f is an
isomorphism, then f = id )), has small (i.e., set) fibers, and for which every
U -source has an initial lift or, equivalently, for which each U -sink has a final
lift [19, 21, 26] or [29].

Note that a topological functor U : E→ Set is said to be normalized if there
is only one structure on the empty set and on a point [2] or [26].

Let E be a topological category and X ∈ E. Then F is called a subspace of
X if the inclusion map i : F → X is an initial lift (i.e, an embedding) and we
denote this by F ⊂ X.
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The categorical terminology is that of [20].
Let B be a set and p ∈ B. Let B

∨
pB be the wedge at p ([2] p. 334),

i.e., two disjoint copies of B identified at p, or in other words, the pushout of
p : 1 → B along itself (where 1 is a terminal object in Set). More precisely,
if i1 and i2 : B → B

∨
pB denote the inclusions of B as the first and second

factor, respectively, then i1p = i2p is a pushout diagram. A point x in B
∨
pB

will be denoted by x1 (x2) if x is in the first (resp. the second) component of
B
∨
pB. Note that p1 = p2. The skewed p-axis map Sp : B

∨
pB → B2 is given

by Sp(x1) = (x, x) and Sp(x2) = (p, x). The fold map at p, ∇p : B
∨
pB → B

is given by ∇p(xi) = x for i = 1, 2 ([2] p. 334 or [4] p. 386).
Note that the maps Sp and ∇p are the unique maps arising from the above

pushout diagram for which Spi1 = (id, id) : B → B2, Spi2 = (p, id) : B → B2,
and ∇pij = id, j = 1, 2, respectively, where, id : B → B is the identity map
and p : B → B is the constant map at p.

The infinite wedge product
∨∞
p B is formed by taking countably many dis-

joint copies of B and identifying them at the point p. Let B∞ = B × B × . . .
be the countable cartesian product of B. Define A∞p :

∨∞
p B → B∞ by

A∞p (xi) = (p, p, . . . , x, p, p, . . .), where xi is in the i-th component of the infinite
wedge and x is in the i-th place in (p, p, . . . , x, p, p, . . .) and 5∞p :

∨∞
p B → B

by 5∞p (xi) = x for all i, [2] p. 335 or [4] p. 386.
Note, also, that the map A∞p is the unique map arising from the multiple

pushout of p : 1 → B for which A∞p ij = (p, p, p, . . . , p, id, p, . . .) : B → B∞,
where the identity map, id, is in the j-th place.

Definition 2.1. (cf. [2] p. 335 or [4] p. 386). Let U : E→ Set be topological
and X an object in E with UX = B. Let F be a non-empty subset of B.
We denote by X/F the final lift of the epi U -sink q : U(X) = B → B/F =
(B\F )∪{∗}, where q is the epi map that is the identity on B\F and identifies
F with a point ∗ ([2] p. 336).

Let p be a point in B.
(1) X is T1 at p iff the initial lift of the U -source {Sp : B

∨
pB → U(X2) =

B2 and ∇p : B
∨
pB → UD(B) = B} is discrete, where D is the

discrete functor which is a left adjoint to U .
(2) p is closed iff the initial lift of the U -source {A∞p :

∨∞
p B → B∞ =

U(X∞) and 5∞p :
∨∞
p B → UD(B) = B} is discrete.

(3) F ⊂ X is strongly closed iff X/F is T1 at ∗ or F = ∅.
(4) F ⊂ X is closed iff ∗, the image of F , is closed in X/F or F = ∅.
(5) If B = F = ∅, then we define F to be both closed and strongly closed.

Remark 2.2. (1). In Top, the category of topological spaces, the notion of
closedness coincides with the usual closedness [2], and F is strongly closed iff F
is closed and for each x 6∈ F there exists a neighbourhood of F missing x [2]. If
a topological space is T1, then the notions of closedness and strong closedness
coincide [2].
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(2). In general, for an arbitrary topological category, the notions of closed-
ness and strong closedness are independent of each other [4]. Even if X ∈ E is
T1, where E is a topological category, then these notions are still independent
of each other ([8] p. 64).

Let A be a set and L a function on A that assigns to each point x of A a
set of filters (proper or not, where a filter δ is proper iff δ does not contain the
empty set, ∅, i.e., δ 6= [∅]), called the “filters converging to x”. L is called a
convergence structure on A (and (A,L) a filter convergence space) iff it satisfies
the following two conditions:

1. [x] = [{x}] ∈ L(x) for each x ∈ A (where [F ] = {B ⊂ A | F ⊂ B}).
2. β ⊃ α ∈ L(x) implies β ∈ L(x) for any filter β on A.

A map f : (A,L) → (B,S) between filter convergence spaces is called con-
tinuous iff α ∈ L(x) implies f(α) ∈ S(f(x)) (where f(α) denotes the filter
generated by {f(D) | D ∈ α}. The category of filter convergence spaces and
continuous maps is denoted by FCO (see [15] p.45 or [30] p.354). A filter con-
vergence space (A,L) is said to be a local filter convergence space (in [29], it is
called a convergence space) if α ∩ [x] ∈ L(x) whenever α ∈ L(x) ([28] p.1374
or [29] p.142). These spaces are the objects of the full subcategory LFCO
(in [29] Conv) of FCO. Note that both of these categories are (normalized)
topological categories [28], or [29].

More on these categories can be found in [1, 16, 24, 28, 29], and [30].
For filters α and β we denote by α ∪ β the smallest filter containing both α

and β.

Remark 2.3. An epimorphism f : (A,S)→ (B,L) in FCO (resp., LFCO) is
final iff for each b ∈ B, α ∈ L(b) implies that f(β) ⊂ α for some point a ∈ A
and filter β ∈ S(a) with f(a) = b ([28] p.1374 or [29] p.143).

Remark 2.4. A source {fi : (B,L)→ (Bi, Li), i ∈ I} in FCO (resp., LFCO)
is initial iff α ∈ L(a), for a ∈ B, precisely when fi(α) ∈ Li(fi(a)) for all i ∈ I
([15] p.46, [28] p.1374 or [29] p.20).

We give the following useful lemmas which will be needed later.

Lemma 2.5. (cf. [3], Lemma 3.16). Let ∅ 6= F ⊂ B and let q : B → B/F be
the epi map that is the identity on B\F and identifies F to the point ∗.

(1) For a ∈ B with a 6∈ F, q(α) ⊂ [a] iff α ⊂ [a],
(2) q(α) ⊂ [∗] iff α ∪ [F ] is proper.

Lemma 2.6. (cf. [10], Lemma 3.2). Let f : A→ B be a map.
(1) If α and β are proper filters on A, then f(α) ∪ f(β) ⊂ f(α ∪ β).
(2) If δ is a proper filter on B, then δ ⊂ ff−1(δ), where f−1(δ) is the

proper filter generated by {f−1(D) | D ∈ δ}.

Lemma 2.7. (cf. [8], Lemma 1.4) Let α and β be proper filters on B. Then
q(α)∪ q(β) is proper iff either α∪β is proper or α∪ [F ] and β∪ [F ] are proper.
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3. T2-objects

Recall, in [2] and [6], that there are various ways of generalizing the usual T2

separation axiom to topological categories. Moreover, the relationships among
various forms of T2-objects are established in [6].

Let B be a set and B2
∨

∆B2 the wedge product of B2, i.e. two disjoint
copies of B2 identified along the diagonal, ∆. A point (x, y) in B2

∨
∆B2 will be

denoted by (x, y)1 (resp. (x, y)2)) if (x, y) is in the first (resp., second) compo-
nent of B2

∨
∆B2 [10]. Recall that the principal axis map A : B2

∨
∆B2 → B3

is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y). The skewed axis map
S : B2

∨
∆B2 → B3 is given by S(x, y)1 = (x, y, y), S(x, y)2 = (x, x, y), and

the fold map, 5 : B2
∨

∆B2 → B2 is given by 5(x, y)i = (x, y) for i = 1,2 [2].

Definition 3.1. Let U : E → Set be topological and X an object in E with
UX = B.

1. X is T ′0 iff the initial lift of the U -source

{id : B2
∨
∆

B2 → U(B2
∨
∆

B2)′ = B2
∨
∆

B2 and

5 : B2
∨
∆

B2 → UD(B2) = B2}

is discrete, where (B2
∨

∆B2)′ is the final lift of the U -sink {i1, i2 :
U(X2) = B2 → B2

∨
∆B2}. Here, i1 and i2 are the canonical injec-

tions.
2. X is T1 iff the initial lift of the U -source {S : B2

∨
∆B2 → U(X3) = B3

and 5 : B2
∨

∆B2 → UD(B2) = B2} is discrete.
3. X is PreT ′2 iff the initial lift of the U -source {S : B2

∨
∆B2 → U(X3) =

B3} and the final lift of the U -sink {i1, i2 : U(X2) = B2 → B2
∨

∆B2}
coincide.

4. X is ∆T2 iff the diagonal, ∆, is closed in X2.
5. X is ST2 iff ∆ is strongly closed in X2.
6. X is T ′2 iff X is T ′0 and PreT ′2.

Remark 3.2. (1). Note that for the category Top of topological spaces, T ′0, T1,
PreT ′2, and all of the T2’s reduce to the usual T0, T1, PreT2 and T2 separation
axioms, respectively [2].

(2) If U : E→ B, where B is a topos [23], then parts (1) - (3), (5), and (6)
of Definition 3.1 still make sense since each of these notions requires only finite
products and finite colimits in their definitions. Furthermore, if B has infinite
products and infinite wedge products, then Definition 3.1 (4) also makes sense.

Lemma 3.3. Let (B,L) be in FCO (resp., LFCO) and ∅ 6= F ⊂ B.
(1) (B,L) is T1 iff for each distinct pair of points x and y in B, [x] 6∈ L(y).
(2) All objects (B,L) in FCO (resp., LFCO) are T ′0.
(3) ∅ 6= F ⊂ B is closed iff for any a 6∈ F , if there exists α ∈ L(a) such

that α ∪ [F ] is proper, then [a] 6∈ L(c) for all c ∈ F .
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(4) ∅ 6= F ⊂ B is strongly closed iff for any a ∈ B with a 6∈ F , [a] 6∈ L(c)
for all c ∈ F and α ∪ [F ] is improper for all α ∈ L(a).

(5) (B,L) is ∆T2 iff for all x 6= y in B, [x] 6∈ K(y) iff (B,L) is T1.
(6) (B,L) is ST2 iff for all x 6= y in B, L(x) ∩ L(y) = {[∅]}.
(7) (B,L) is PreT ′2 (T ′2) iff (B,L) is discrete, i.e, for all x in B, L(x) =
{[∅], [x]}.

Proof. (1), (2), and (7) are proved in [5]. The proof of (3)-(6) are given in
[4]. �

Corollary 3.4. Let (B,L) be in FCO (resp. LFCO) and ∅ 6= F ⊂ B.
(1) If (B,L) is T1, then B/F is T1 iff F is strongly closed.
(2) If (B,L) is T1, then F is always closed.
(3) If (B,L) is T1, then F is strongly closed iff ∀x ∈ B if x 6∈ F and

α ∈ L(x), then α ∪ [F ] is improper.
(4) If (B,L) is T ′2, then all the subsets of B are both closed and strongly

closed.

4. T3-objects

We now recall, ([2] and [8]), various generalizations of the usual T3 separation
axiom to arbitrary set based topological categories and characterize each of
them for the topological categories FCO and LFCO.

Definition 4.1. Let U : E → Set be topological and X an object in E with
UX = B. Let F be a non-empty subset of B.

1. X is ST ′3 iff X is T1 and X/F is PreT ′2 for all strongly closed F 6= ∅

in U(X).
2. X is T ′3 iff X is T1 and X/F is PreT ′2 for all closed F 6= ∅ in U(X).
3. X is ∆T3 iff X is T1 and X/F is ∆T2 if it is T1, for all F 6= ∅ in U(X).
4. X is ST3 iff X is T1 and X/F is ST2 if it is T1, for all F 6= ∅ in U(X).

Remark 4.2. (1). For the category Top of topological spaces, all of the T3’s
reduce to the usual T3 separation axiom ([2] and [8]).

(2). If U : E → B, where B is a topos [23], then Parts (1), (3), and (4) of
Definition 4.1 still make sense since each of these notions requires only finite
products and finite colimits in their definitions. Furthermore, if B has infinite
products and infinite wedge products, then Definition 4.1 (2), also, makes sense.

Theorem 4.3. Let (B,L) be in FCO (resp. LFCO).
(1) (B,L) is ∆T3 iff (B,L) is T1.
(2) (B,L) is ST3 iff (B,L) is ST2.
(3) (B,L) is ST ′3 iff for all x 6= y in F , [x] 6∈ L(y) and for any x ∈ B

and for any proper filter α ∈ L(x), either α = [x] or F ∈ α for all
non-empty strongly closed subsets F of B.

(4) (B,L) is T ′3 iff for all x 6= y in F , [x] 6∈ L(y) for any x ∈ B and for
any proper filter α ∈ L(x) either α = [x] or F ∈ α for any non-empty
subset F of B.
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Proof. (1). This follows from Definition 4.1 and Corollary 3.4.

(2). Suppose (B,L) is ST3. Take F ={a}, a one point set. It now follows
from Lemma 3.3 and Corollary 3.4 that (B,L) is ST2. Conversely, suppose
(B,L) is ST2. By Corollary 3.4, (B,L) is T1. Suppose B/F is T1, then by
Corollary 3.4, F is a strongly closed subset of B. We show that B/F is ST2.
Let x 6= y in B and α ∈ L′(x) ∩ L′(y), where L′ is the quotient structure on
B/F induced by the map q : B → B/F that identifies F with a point ∗ and
is the identity on B\F . If α is improper, then, by Corollary 3.4, we are done.
Suppose α is proper. Since q is the quotient map this implies (see Remark 2.3)
that ∃β ∈ L(a) and ∃δ ∈ L(b) such that q(β) ⊂ α, q(δ) ⊂ α, and qa = x,
qb = y. It follows that q(β) ∪ q(δ) is proper and, by Lemma 2.7, either β ∪ δ
is proper or β ∪ [F ] and δ ∪ [F ] are proper. The first case cannot occur since
(B,L) is ST2. Since x 6= y, we may assume a 6∈ F . Since F is strongly closed,
by Corollary 3.4, β ∪ [F ] is improper. This shows that the second case also
cannot hold. Therefore, α must be improper and by Corollary 3.4, we have the
result.

(3). Suppose (B,L) is ST ′3. Since (B,L) is T1, by Corollary 3.4, for all
x 6= y in B, [x] 6∈ L(y). If α ∈ L(x), where x ∈ B, then q(α) ∈ L′(qx). Since
B/F is PreT ′2, (F is a non-empty strongly closed subset of B) by Corollary 3.4,
q(α) = [qx] (since α is proper). If x 6∈ F , then, by Lemma 2.6, [x] = q−1(x) =
q−1q(α) ⊂ α and consequently α = [x]. If x ∈ F , it follows easily that q(α) = [∗]
iff F ∈ α. Conversely, suppose the conditions hold. By Corollary 3.4, clearly,
(B,L) is T1. We now show that B/F is PreT ′2 for all nonempty strongly
closed subsets F of X. If x ∈ B/F and α ∈ L′(x), it follows that there
exists β ∈ L(a) such that q(β) ⊂ α and qa = x. If β is improper, then so
is α. If β is proper, then by assumption β = [a] or F ∈ β. If the first case
holds, then [qa] = q(β) ⊂ α and thus α = [qa]. If the second case holds, then
{∗} = q(F ) ∈ q(β) ⊂ α and consequently α = [∗]. Hence, by Lemma 3.3, B/F
is PreT ′2 and by Definition 3.1, (B,L) is ST ′3.

The proof of (4) is similar to the proof of (3), on using Definition 3.1,
Lemma 3.3 and Corollary 3.4. �

Remark 4.4. For the category FCO (resp., LFCO), we have :

(1) By Theorem 4.3, ST ′3 ⇒ T ′3 ⇒ ST3 ⇒ ∆T3, but the converse of each
implication is not true in general.

(2) By Lemma 3.3 and Theorem 4.3, ST ′3 ⇒ T ′2 ⇒ ST3 ≡ ST2 ⇒ ∆T3 =
∆T2, but the converse of each implication is not true in general.

(3) By Corollary 3.4 and Theorem 4.3, if (B,L) is ST ′3 or T ′3, then all
subsets of X are both closed and strongly closed.

(4) By Corollary 3.4 and Theorem 4.3, if (B,L) is ∆T3, then F is always
closed and F is strongly closed iff ∀x ∈ B if x 6∈ F and α ∈ K(x), then
α ∪ [F ] is improper.
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5. T4-objects

We now recall various generalizations of the usual T4 separation axiom to
arbitrary set based topological categories that are defined in [2] and [8], and
characterize each of them for the topological categories FCO and LFCO.

Definition 5.1. Let U : E → Set be topological and X an object in E with
UX = B. Let F be a non-empty subset of B.

1. X is ST ′4 iff X is T1 and X/F is ST ′3 if it is T1, where F is any non-
empty subset of U(X).

2. X is T ′4 iff X is T1 and X/F is T ′3 if it is T1, where F is any non-empty
subset of U(X).

3. X is ∆T4 iff X is T1 and X/F is ∆T3 if it is T1, for all F 6= ∅ in U(X).
4. X is ST4 iff X is T1 and X/F is ST3 if it is T1, for all F 6= ∅ in U(X).

Remark 5.2. (1). For the category Top of topological spaces, all of the T4’s
reduce to the usual T4 separation axiom by the Introduction, [2], and [8].

(2). If U : E → B, where B is a topos [23], then Definition 5.1 still makes
sense since each of these notions requires only finite products and finite colimits
in their definitions.

Theorem 5.3. Let (B,L) be in FCO (resp., LFCO).
(1) (B,L) is ∆T4 iff (B,L) is T1.
(2) (B,L) is ST4 iff (B,L) is ST2.
(3) (B,L) is ST ′4 (T ′4) iff the following two conditions hold:

(i) For all x 6= y in B, we have [x] 6∈ L(y).
(ii) For any x ∈ B and for any proper filter α ∈ L(x), and for any

non-empty disjoint strongly closed (resp., closed) subsets F and
F ′ of B, we have either condition (I ) or (II ) below:

(I) α = [x];
(II) F ∈ α or F ′ ∈ α.

Proof. (1). This follows from Definition 5.1 and Theorem 4.3.
(2). The proof has the same form as that of Theorem 4.3 (2). One has only

to replace the term ST3 by ST4 and the numbers 3.3, 3.4, 3.4, 3.4, 3.4, 2.3, 3.4,
3.4 respectively by 3.1, 3.3, 4.3, 3.4, 4.3, 2.3, 3.3, 4.3.

(3). Suppose (B,L) is ST ′4. Since (B,L) is T1, by Corollary 3.4, for all x 6= y
in B, [x] 6∈ L(y). If α ∈ L(x), where x ∈ B, then q(α) ∈ L′(qx), where L′ is
the quotient structure on B/F induced by the map q of Definition 2.1. Since
B/F is ST ′3, (F is a non-empty strongly closed subset of B, i.e., B/F is T1)
by Corollary 3.4, we have either q(α) = [qx] (since α is proper) or F ′ ∈ q(α),
for any non-empty strongly closed subset F ′ of B/F not containing the point ∗
(Note that q−1(F ′) = F ′ and F ′ is disjoint from F ). Suppose that q(α) = [qx].
If x 6∈ F , then, by Lemma 2.6, [x] = q−1(x) = q−1q(α) ⊂ α, and consequently
α = [x]. If x ∈ F , it follows easily that q(α) = [∗] iff F ∈ α.

If F ′ ∈ q(α) for any non-empty strongly closed subset F ′ of B/F not con-
taining the point ∗, then it follows easily that F ′ ∈ α.
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Conversely, suppose the conditions hold. By Lemma 3.3, clearly, (B,L) is
T1. We now show that B/F is ST ′3 for all non-empty strongly closed subsets
F of B. If x ∈ B/F and α ∈ L′(x), it follows that there exists β ∈ L(a) such
that q(β) ⊂ α and qa = x. If β is improper, then so is α. If β is proper,
then by assumption either β = [a] or F ∈ β, or F ′ ∈ β for any strongly closed
subset F ′ of B disjoint from F . If the first case holds, then [qa] = q(β) ⊂ α
and thus α = [qa]. If the second case holds, then {∗} = q(F ) ∈ q(β) ⊂ α,
and consequently α = [∗] or F ′ = q(F ′) ∈ q(β) ⊂ α and consequently F ′ ∈ α.
Hence, by Theorem 4.3, B/F is ST ′3 and by Definition 5.1, (B,L) is ST ′4.

The proof for T ′4 is similar to the proof for ST ′4. �

Remark 5.4. For the category FCO (resp., LFCO), we have :
(1). By Theorem 4.3, ST ′4 ⇒ T ′4 ⇒ ST4 ⇒ ∆T4, but the converse of each

implication is not true in general.
(2). By Lemma 3.3, Theorem 4.3, and Theorem 5.3, ST ′4(T ′4)⇒ ST ′3(T ′3)⇒

T ′2 ⇒ ST4 = ST3 = ST2 ⇒ ∆T4 = ∆T3 = ∆T2, but the converse of each
implication is not true in general.

(3). By Remark 4.4 and Theorem 5.3, if (B,L) is ST ′4 or T ′4, then all subsets
of X are both closed and strongly closed.

(4). By Remark 4.4 and Theorem 5.3, if (B,L) is ∆T4, then all subsets F
of X are closed and F is strongly closed iff ∀x ∈ B, if x 6∈ F and α ∈ L(x),
then α ∪ [F ] is improper.

Corollary 5.5. Let (B,L) be in FCO (resp., LFCO). If (B,L) is ∆T4, ST4,
ST ′4 or T ′4, then any subspace of (B,L) is ∆T4, ST4, ST

′
4 or T ′4, respectively.

Proof. This follows from Remark 2.4, Theorem 5.3, and Remark 5.4 (3). �

6. Compact objects

Recall that each of the notions of (strongly) closed morphism and (strongly)
compact object in a topological category E over Set are introduced in [7].

Definition 6.1. Let U : E→ Set be topological, X and Y objects in E, and
f : X → Y a morphism in E.

1. f is said to be closed iff the image of each closed subobject of X is a
closed subobject of Y .

2. f is said to be strongly closed iff the image of each strongly closed
subobject of X is a strongly closed subobject of Y .

3. X is compact if and only if the projection π2 : X × Y → Y is closed for
each object Y in E.

4. X is strongly compact if and only if the projection π2 : X × Y → Y is
strongly closed for each object Y in E.

Remark 6.2. (1). For the category Top of topological spaces, the notions
of closed morphism and compactness reduce to the usual ones ([12] p. 97 and
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103). Furthermore, by Remark 2.2 and Definition 6.1, one can show that the
notions of compactness and strong compactness are equivalent.

(2). If U : E → B is topological, where B is a topos with infinite products
and infinite wedge products, then Definition 6.1 still makes sense.

(3). Since the notions of closedness and strong closedness are, in general,
different (see [4] p. 393), it follows that the notions of compactness and strong
compactness are different, in general.

(4). For an arbitrary topological category, it is not known in general whether
the closure used in 2.1 is a closure operator in the sense of Dikranjan and Giuli
[17] or not. However, it is shown, in [10], that the notions of closedness and
strong closedness that are defined in 2.1 form appropriate closure operators in
the sense of Dikranjan and Giuli [17] in case the category is one of the categories
FCO and LFCO. The same two facts are proved in [11] for the categories Lim
(limit spaces) and PrTop (pretopological spaces).

Theorem 6.3. Let E be one of the categories FCO (resp. LFCO).
(1) Every (B,L) ∈ E is compact.
(2) (B,L) ∈ E is strongly compact iff every ultrafilter in B converges.

Proof. (1). By Definition 5.1 (3) we need to show that, for all (A,S) ∈ E,
π2 : (B,L)× (A,S)→ (A,S) is closed. Suppose M ⊂ B×A is closed. Suppose
that for any a ∈ A there exists c ∈ π2M such that [a] ∈ S(c). It follows
that ∃x ∈ B such that (x, c) ∈ M . Note that [(x, a)] ∈ L2((x, c)), where L2

is the product structure on B × A, (since [x] ∈ L(x) and [a] ∈ S(c)). Since
M is closed, (x, a) ∈ M and consequently a = π2(x, a) ∈ π2(M). Hence, by
Lemma 3.3, π2(M) is closed and consequently, (B,L) is compact.

(2). Suppose every ultrafilter in B converges. We show that (B,L) is
strongly compact, i.e., by Definition 6.1 (4), we need to show that, for all
(A,S) ∈ E, π2 : (B,L) × (A,S) → (A,S) is strongly closed. Suppose that
M ⊂ B × A is strongly closed. To show that π2M is strongly closed, we as-
sume the contrary and apply Lemma 3.3 (4). Thus for some point a ∈ A with
a 6∈ π2M , we have either [a] ∈ S(c) for some c ∈ π2M or [π2M ] ∪ α is proper
for some α ∈ S(a). If the first case holds, that is for some a ∈ A we have
a 6∈ π2M and [a] ∈ S(c) for some c ∈ π2M , then it follows that ∃x ∈ B such
that (x, a) 6∈ M . Note that [(x, a)] ∈ L2((x, c)), a contradiction, since M is
strongly closed.

In the second case, suppose that for some a ∈ A with a 6∈ π2M and α ∈ S(a),
[π2M ] ∪ α is proper. Let σ = [M ] ∪ π−1

2 α. Note that σ is proper and π1(σ) is
a filter on B. It follows that there exists an ultrafilter β on B with β ⊃ π1(σ).
In view of the assumption on (B,L), there exists x ∈ B such that β ∈ L(x).
Let γ = π−1

1 β ∪ π−1
2 α . Note that γ ∈ L2(x, a) since π1(γ) = β ∈ L(x) and

π2(γ) = α ∈ S(a). Since a 6∈ π2M , we have (x, a) 6∈ M . It follows from
β ⊃ π1(σ) that [M ] ∪ γ is proper, a contradiction since M is strongly closed,
by Lemma 3.3 (4). Hence, by Lemma 3.3 (4), π2(M) must be strongly closed
and consequently, by Definition 6.1, (B,L) is strongly compact.
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Conversely, assume that (B,L) is strongly compact and α is a non convergent
ultrafilter of B, i.e., for all x ∈ B, α 6∈ L(x). Let A be the set obtained by
adjoining a new element, say∞, to B, i.e., A = B∪{∞}. Let (A,S), where S is
defined by S(x) = {[∅], [x]} for each x 6=∞ of A, and β ∈ S(∞) iff α = β∪ [B],
i.e., the trace of β on B coincides with α. Note that (A,S) ∈ FCO (resp.,
LFCO). Let ∆ = {(x, y) ∈ B × A | x = y} ⊂ B × A. Let σ = π−1

1 [x] ∪ π−1
2 α.

Since π1σ = [x] ∈ L(x) and π2σ = α ∈ S(∞), σ ∈ L2((x,∞)), where L2 is the
product structure on B×A. Note that σ∪ [∆] is improper (let V = A\{x} ∈ α
and V ∩ ∆ = ∅). Since [∞] 6∈ S(c) for all c ∈ B, it follows that [(x,∞)] 6∈
L2(c, c). Hence, by Lemma 3.3, ∆ is strongly closed in B × A. Note that
α ∪ [π2(∆)] is proper for α ∈ S(∞), a contradiction since (B,L) is strongly
compact. �

Remark 6.4. Results akin to Theorem 6.3 have been proved for the categories
Lim (limit spaces) and PrTop (pretopological spaces) in ([11], Lemma 4.3).

7. Tychonoff objects

We now define various forms of Tychonoff objects for an arbitrary set-based
topological category. Furthermore, we characterize each of them for the cate-
gories that are mentioned in Section 2 and investigate the relationships among
them.

Definition 7.1. Let U : E→ Set be topological and X an object in E.
1. X is ∆T3 1

2
iff X is a subspace of ∆T4.

2. X is ST3 1
2

iff X is a subspace of ST4.
3. X is T ′

3 1
2

iff X is a subspace of T ′4.
4. X is ST ′

3 1
2

iff X is a subspace of ST ′4.
5. X is C∆T3 1

2
iff X is a subspace of a compact ∆T2.

6. X is CST3 1
2

iff X is a subspace of a compact ST2.
7. X is LT3 1

2
iff X is a subspace of a compact T ′2.

8. X is S∆T3 1
2

iff X is a subspace of a strongly compact ∆T2.
9. X is SST3 1

2
iff X is a subspace of a strongly compact ST2.

10. X is SLT3 1
2

iff X is a subspace of a strongly compact T ′2.

Remark 7.2. (1). For the category Top of topological spaces, all ten of
the properties defined in Definition 7.1 are equivalent and reduce to the usual
T3 1

2
= Tychonoff, i.e, completely regular T1, spaces [27], Remark 5.2, and

Remark 6.2.
(2). For an arbitrary set-based topological category, properties (3–4) and

(5–7) are defined in [8] and [7], respectively.
(3). For the categories FCO and LFCO, it is shown in [10] that the notions

of closedness and strong closedness form appropriate closure operators in the
sense of [16]. As a consequence, properties (5) and (9) of Definition 6.1 reduce
to Definition 8.1 of [13].
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Theorem 7.3. Let X be in FCO (resp., LFCO).
1. X is ∆T3 1

2
(C∆T3 1

2
) iff X is T1.

2. X is ST3 1
2

(CST3 1
2
) iff X is ST2.

3. X is T ′
3 1

2
iff X is T ′4.

4. X is ST ′
3 1

2
iff X is ST ′4.

5. X is S∆T3 1
2

iff X is a subspace of a strongly compact T1.
6. X is SST3 1

2
iff X is a subspace of a strongly compact ST2.

7. X is SLT3 1
2

iff X is a finite discrete space.

Proof. (1)-(6) follow from Lemma 3.3, Theorem 5.3, Corollary 5.5, Theorem 6.3
and Definition 7.1. Note that every strongly compact discrete space is finite.
Thus, (7) follows from Remark 2.4, Lemma 3.3, Theorem 6.3, Definition 7.1,
and this fact. �

Remark 7.4. For the Category FCO (resp. LFCO), one has: By Theo-
rem 5.3, Theorem 6.3 and Theorem 7.3, SLT3 1

2
⇒ ST ′

3 1
2
⇒ T ′

3 1
2
⇒ ST3 1

2
=

CST3 1
2
⇒ ∆T3 1

2
= C∆T3 1

2
and SLT3 1

2
⇒ SST3 1

2
⇒ S∆T3 1

2
but the converse

of each implication is not true, in general.
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