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ABSTRACT. Binary trees are very useful tools in computer science for
estimating the running time of so-called comparison based algorithms,
algorithms in which every action is ultimately based on a prior compar-
ison between two elements. For two given algorithms A and B where
the decision tree of A is more balanced than that of B, it is known that
the average and worst case times of A will be better than those of B,
ie., Ta(n) < Tp(n) and TY (n) < T¥ (n). Thus the most balanced
and the most imbalanced binary trees play a main role. Here we con-
sider them as semilattices and characterize the most balanced and the
most imbalanced binary trees by topological and categorical properties.
Also we define the composition of binary trees as a commutative binary
operation, *, such that for binary trees A and B, A * B is the binary
tree obtained by attaching a copy of B to any leaf of A. We show that
(T, ) is a commutative po-monoid and investigate its properties.
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1. INTRODUCTION
Here we bring some definitions and statements from [11]:

Definition 1.1. Binary trees are reversed trees with a root node, in which every
internal node has exactly two children. The order of the leaves is insignificant,
so a tree is determined (up to permutation on the leaves) by the lengths of
the paths from the root node to each leaf ( the distance of the leaf from the
root). Thus we can represent equivalence classes of the rooted binary trees with

n leaves by sequences of n non-negative integers, which give the path-length of
each leaf.
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For example, the path-length sequence < 1334444 > represents a binary
tree with n = 7 leaves, of which one has path-length 1, two have path-length
3, and four have path-length 4. This is shown in the following:

Remark 1.2. Notice that both of the following binary trees are the same for
us.

/

We bring the following Theorem from [6]:

Theorem 1.3. If we denote the set of binary trees with n leaves by T,,
<x1...xn >ET, if and only if Y i 1/2% = 1.

Our interest in decision trees stems from the fact that in order to carry
out the running time analysis of so-called “comparison-based algorithms”, i.e.
algorithms in which every action is ultimately based on a prior comparison
between two elements, the notion of a decision tree is a fundamental tool [2].
Most sorting and searching algorithms are comparison-based. Decision trees are
binary trees representing the comparisons carried out during the computation
of a comparison-based algorithm. The path-length from the root (“input”) to
a leaf (“output”) gives the comparison time for the algorithm (i.e. the total
number of comparisons) to compute the output corresponding to the given
input.

The concept of the path-length of a tree is of great importance in the analysis
of algorithms, since this quantity is often directly related to the execution time
[6]. If we consider decision trees, then the path-length represents the number of
comparisons made while producing the result for a given input list. Therefore,
the sum of the path-length sequence represents the total number of comparisons
made by the sorting algorithm over all possible permutations of the input list.
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For example, if we consider some sorting algorithm A which sorts a list of size 3
then this will produce a decision tree with six leafs, each of which corresponds
to the computation involved in producing the sorted list for one of the six
possible input lists which can exist. Assume that the path-length sequence
for the decision tree of A is < 233233 >,(See the following diagram). As
mentioned previously, the path-length sequences form an equivalence class so
we can represent this tree with the sequence < 223333 >. From this sequence
we can see that two of the input lists took two comparisons to be sorted and
the other four input lists took three comparisons each.

ab,c

acbh abc bca bac

Definition 1.4. Consider * =< aj..a;paj2...d+1q+1..a, >,
y=<ai..a;p+1p+1lajz..q..a, >€ T,,. Then we say y can be ob-
tained from x via a ternary exchange. If ¢ = p+ 1 then we call this ternary
exchange, a minimal ternary exchange.

For every © =< ..z, >€ T,, the level of z is defined by L(z) =
(n—1)(n+2)/2- 5" ..

This type of balancing exchange has the effect of moving a subtree consisting
of two leaves at level ¢ in the tree to a leaf (which then becomes an internal
node) at level p in the tree. An example of this is shown in the following:

<13333> <22233>
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It is obvious that these minimal balancing exchanges have the effect of in-
creasing the level of balance of a tree by a value of one. Consequently, they
also have the effect of decreasing the sum of the path-lengths of a sequence
by a value of one. Therefore, every time we increase the level of balance of a
tree’s path-length sequence (through minimal balancing exchanges), we simul-
taneously decrease the sum of its path-lengths.

Definition 1.5. If z,y € T,, then we define x < y if there are ly,....l,m € Ty,
such that y = l1,x = l,, and for each i, 1 < i <m, l;y1 is obtained from l; via
a ternary exchange. So if x <y then we say that x is more balanced than y.

Example 1.6. In the following diagram, + =< 1233 > and y =< 2222 >,
p=1and ¢+ 1 = 3. So y is obtained from x via a ternary exchange which
is actually a minimal ternary exchange because ¢ = p + 1. Thus y is more
balanced than x, what is seen in the diagrams as well.

X y

The path-length from the root (“input”) to a leaf (“output”) gives the com-
parison time for the algorithm (i.e. the total number of comparisons) to com-
pute the output corresponding to the given input. So the total time is the
summation of all path-lengths from the root to the leaves. For instance in
Example 1.6 we can see that for z, the total summation of path-lengths is
1+2+3+3 =9 while for y, 2+ 2+ 2+ 2 =28. So it is seen in this example
that when y is more balanced than x then the summation of the path length
sequence for y is less than the summation of the path length sequence for z.
It is true in general that if the binary tree corresponding to the c.b. algorithm
(comparison based algorithm)A is less than or equal to the binary tree corre-
sponding to the c.b. algorithm B then the running(total) time of A (which is
actually the sum of path length sequence of the binary tree corresponding to
it) is less than the running time of B. In other words A is faster than B. In
other words when x =< z; ... x,, > is more balanced than y =< y; ...y, > then
i T < X v

The average time analysis and the worst and the best case analysis time for
a c.b. algorithm A which is defined as the usual, is denoted respectively by
T(A),T" (A) and TB(A). It was shown in [9, 10] that given two algorithms A
and B where the decision tree of A is more balanced than that of B, we have
that the average and worst case times of A will be better than those of B, i.e.,
Ta(n) <Tp(n)and TY (n) < TY (n).
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Proposition 1.7 ([11]). T, with the above order is a lattice.

Definition 1.8. The smallest element of T, is called the most balanced binary
tree and the biggest one is called the most imbalanced binary tree.

The notion of balance is very important in the context of running times
of algorithms. A binary tree is the most balanced if the height of the left
subtree of every node never differs by more than £1 from the height of its right
subtree [7]. If a decision tree is balanced then its sum of path-lengths will be
minimised [6]. This in turn means that the computation time for the algorithm
which produced this decision tree will be minimised.

2. TOPOLOGIES ON ORDERED TREES

In this section we look at binary trees as a semi-lattice. They are DCPOs
with the induced order. We study the Scott and lower topology on them and
will show that every join preserving map from a binary tree to another is Scott
continuous. Then we characterize the most imbalanced binary trees by using
the lower topology.

Definition 2.1. Consider the poset X and x,y € X such that x < y. We say
x is a lower cover of y and will denote x < y if there is no element between
them. In other words x <y if and only if {tjlz <t <y} =2.

Definition 2.2. An ordered tree is a conditionally complete \V-semilattice T' so
that for every x € T,

i) lyeTly<a}|=2o0r0
i) fyeT|lz <y} =1or0

By a conditionally complete join semilattice we mean a V-semilattice such
that every non-empty subset has a join.

Definition 2.3. For every ordered tree, T by \/ T we mean the biggest element
of T and by m(T) we mean the set of minimal elements of T

Every partial order on a DCPO (A poset such that every directed set has
a join) induces two topologies on this set, Scott topology and lower topology
and their join which is called Lawson topology.

We recall that if (X, <) is a DCPO, then A C X is called Scott open if it is
an upperset- which means that if a € A and a < b then b € A- and whenever
for directed set D C X, \/ D € A then DN A # @. The collection of the Scott
open sets is a topology and is called Scott topology. The topology generated
by X— 1z, z € X where | z = {y € X|y > «} is called lower topology and is
denoted by a.

We study these topologies in this section.

Theorem 2.4. Let T1,T5 be ordered trees. Then every join preserving map f
from Ty to Ty preserves arbitrary join and hence is Scott continuous.
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Proof. Consider {x;|i € I} C T1. We show that f(\/,c; zi) = \/;c; f(w;). Since
f is join preserving and hence order preserving which gives

Vier f(zi) < f(Vier @) (*)
Now if m,n < \/x;, m # n, then it is obvious that there are x;,z), where
h,l € I, x; # xp, such that z; < m and z, < n. Thus z; V zp, = \/ x;, so
f(z) Vv f(xn) = f(\/ x;). This shows

FV i) <V f(wi). (**)
From (*) and (**) we get f(\/ z;) =V f(z;) and the proof is complete. O

Definition 2.5. Let T be an ordered tree, then for every x € T, we define the
length of x be the distance of x to \/ T and we denote it by l(x). More precisely
foraxlet x = x9 < 21 < ... X \/T = zp, then l(x) = m. Also we define the
length of T, I(T) = maz{l(x)|x € m(T)}.

Remark 2.6. By the construction of ordered trees for every element of an
ordered tree T, there is a unique path which connects it to \/ T.

Definition 2.7. For every ordered tree, we define, S(T'), to be the increasing
sequence corresponding to the distance of the minimal elements to \/ T

Definition 2.8. In the lower topology, o, A € « is called principal if there
exists x € A such that A =] x. Obviously every minimal element is an open
set. We call them trivial open sets.

Definition 2.9. The principal a-open set V is called atomic if ¢(V) =
{W € oW C V, W is nontrivial and principal } with inclusion is a chain.
1t is called strongly atomic if ¢(V') has more than one element.

Theorem 2.10. Let T be an ordered tree with n minimal elements. Then

(1) Ewvery principal open set in the lower topology is atomic if and only if
for somen € {2,3,...}, S(T)=(1,...n—2,n—1,n—1).

(2) Every strongly atomic open set consists at least 8 minimal elements
with 3 different lengths.

Proof.

(1) Since every principal open set is atomic, T itself is atomic. Let 1,y <
\/ T. We show that one of 21 and y; is a minimal element. Equivalently
we show that | 1 N T = {x} or | y1 NT = {y}. First of all since T'
is a lower set | 1 =] x1 NT and | y1 =] y1 NT. Clearly these two
sets are non-empty. Now if | 1 07T and | y; N7 both have more
than one element, then both | 1 =] x1 NT and | y1 =] y1 NT are
nontrivial principal open sets which are contained in 7" and neither of
them contains the other one which contradicts the atomic property of
T. Thus either z; or y; is a minimal element. Let x; be minimal
element. Notice that if both are minimal elements then S(T') = (1,1).
Now by assumption | y; is atomic. Now if x2,y2 < y1 then again with
the same reason x5 is a minimal element or y, is a minimal element.
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Let z2 be a minimal element. Then again if we consider y, and assume
that x3,ys < y2 then we get another minimal element, 3 and so on.
Thus we get a sequence of minimal elements z1, x2, ..., ,_ where by
their structure l(x;) =i for ¢ = 1,2,...,n — 2. Now when we consider
Yn_o since T has n minimal elements this time x, 1 and y,_1 both
are minimal elements and their lengths are both n — 1. Thus S(T') =
(1,..on—=2,n—1,n—1).

Now assume that S(T) = (1,...,n —2,n — 1,n — 1). We have to
show that every principal open set is atomic. Let K be principal and
VK =e. Ifl(e) = s and m,n < e we show that m is a minimal element
or n is a minimal element. If neither of them is a minimal element then
T(m) = {z € T|xr < m} is an ordered tree so there are at least two
minimal elements with the same length. We have the same result for
n, too. Thus again T'(n) = {z € T|r < m} has two minimal elements
with the same length. Thus in the ordered tree there are 4 minimal
elements with at most 2 distinct lengths where the construction of S(7')
doesn’t allow this.

Thus either m or n is a minimal element. If both are minimal
elements then ¢(K) = @ and hence K is atomic. Now if m is a minimal
element but n is not, then | n € ¢(K) and is the maximum element of
¢(K). Inductively we can get a finite sequence which shows that ¢(K)
is a chain.

(2) Let M be a strongly atomic open set and I(\/ M) = s. Then by what we
have proved already if z,y < \/ M, one of them is a minimal element.
Let = be a minimal element then [(z) = s+ 1. Now if z,¢ < y and both
are minimal elements then ¢(M) = {{y, z,t}}, has one element which
contradicts M being strongly atomic. Thus one of z and ¢ is a minimal
element and the other is not, which means that we will have another
two lengths aside from the length of x and the proof is complete.

O

Remark 2.11. We can improve the above theorem to an infinite ordered tree
and notice that in this case we will have:

(1) Every principal open set in the lower topology is atomic if and only if
S(T)=(1,2,3,...).

(2) Every strongly atomic open set consists at least 3 minimal elements
with 3 different lengths.

3. CATEGORY OF ORDERED TREES

In this section we introduce the category of binary trees whose objects are
binary trees and morphisms are strictly length preserving maps. Then we
characterize the most balanced binary trees with 2% leaves, k € {0,1,2,...} as
weak initial objects of this category.
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Definition 3.1. Let T1,T> be ordered trees. A map f : m(Ty) — m(T2)
is length preserving if for minimal elements m,n € Ty, I(m) < l(n) implies

1(f(m)) < U(f(n)).
It is obvious that I(z) = I(y) implies I(f(z)) = I(f(y)).

Theorem 3.2. Let T1,T5 be ordered trees. Then every length preserving map
f:Ty — Ty can be extended to an order preserving map, g : Ty — Tb.

Proof. Define g : Ty — T3 such that for a € m(T1), g(a) = f(a) and for the
other points g(a) = \/ T. Then clearly g is order preserving. O

Theorem 3.3. The class of (finite) ordered trees with length preserving maps
is a category. We denote it by (FLT ) LT .

Proof. This is because the composition of two length preserving maps is a
length preserving map. (]

Theorem 3.4. 11,75 € FLT are isomorphic if and only if S(Th) = S(Ts).

Proof. First assume that 77 is isomorphic to T5. Thus there are length preserv-
ing maps, f: m(T1) — m(Ts) and g : m(T2) — m(T}) such that fog = idy (1)
and g o f = idy(p,). This implies |m(T1)| = |m(T2)|. Also notice that
I(z) < I(y), 2, & Ty, implies U((x)) < U(f(y)), because if 1(f(z)) = 1(f(y))
then 1(x) = Hg(f(2)) = Ug(F(y)) = L(y). Also if I(x) = I(y) then I(f(z)) =
I(f(y)), because if for example I(f(z)) < I(f(y)), then by the same proof
I(z) = Ug(f(2))) < Ug(f(y))) = U(y). Thus we can say I(x) = I(y) if and
only if I(f(z)) = I(f(y)). So the proof will be complete if we show that
I(x) = I(f(x)). But |{Z( ):x € Ty} = |{l( : x € Ty}, also for every
aGTh Hz e Ti:l(x) =la)}| = {z € Ty : I(z) = I(f(a))}].

Now the only thing that has remained is, {l(:L')|£L’ e Th} = {l(z)|z € Ta}.
We prove this by induction on the cardinality of |{l(z)|z € T1}|. If |{i(z)|z €
T1}| = 1, then {l(z)|z € T;} = {ki}, for i = 1,2. Then T; has 2% where
i = 1,2, minimal elements and since m(T}) = m(T) , 2" = 2*2 and hence
k1 = ko.

Now assume that [{I(z)|z € Th}| = {l(z)|x € T2}| = p and let I(T;) = m,,
for i = 1,2. We show that m; = ms. For this we derive isomorphic ordered
trees T} from T; for i = 1,2 such that {(T]) = I(T;) — 1. For this take T} =
T; — {x € m(T)|l(x) = m;}, for i = 1,2. Now m(T}) = A,UB;, for i = 1,2
where 4; = m(T;) N m(T}) and B; = m(T}) — A;. Notice that f(A4;) = A
and g(A2) = A;. By the definition of ordered trees, 2|B;| = |{z € m(T}) :
l(x) =mi}| = {z € m(Tz) : l(x) = ma}| = 2|Bz|. Since |By| = |Bz|, there is
a one one and onto function, h : By — Bs. Now define [’ : m(Ty) — m(Ty)
such that f/(z) = f(z), if # € A; and f'(z) = h(z) if z € B; and define
g m(Ty) — m(TY]) such that ¢'(x) = g(z), if x € Az and ¢'(z) = h= () if
2 € By. Then f’ and ¢’ are length preserving maps such that ¢’ o f' = id,, (1Y)
and f’' o ¢ =id,,(T4). Thus T] and T are isomorphic.
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Now if ny = max{l(z)|z € T1,1(x) < m1} and ne = maz{l(x)|x € Ty,l(x) <
ma}. Then my — ny = mg — ny. Assume the contrary for example m; —ny <
mso — ngy then if we reduce the length of 77 and T» like above m; — ny times
then the new ordered trees obtained from 77 and 75 are isomorphic, because
in every stage of reducing the length we get isomorphic ordered trees. But
the new ordered tree obtained from 73 has p — 1 different lengths and the new
ordered tree obtained by T, has again p different lengths. But it is impossible
to have two isomorphic ordered trees with different number of different lengths.
So m1—ny1 = mg—ns. Now we reduce the length mi —n; times in both ordered
trees, then we will have two isomorphic ordered trees with p—1 different lengths
and by using induction and by the proof, Va € T1,1(z) < my,l(z) = I(f(x)).
Thus in particular n; = no and since m1 —ny = mo —ng we get my = my. This
proves that if for x € Ty, I(z) = my then I(z) = I(f(z)) and also we showed
that Vo € T1,1(z) < my,l(z) = I(f(x)). Thus for every x € Ty, I(z) = I(f(z))
and the proof of this part is complete.

The converse of the theorem is trivial because of the definition of length,
length preserving maps and S(7). O

Now we introduce a useful subcategory of L7 (FLT) whose objects are
the object of L7 (FLT) but whose morphisms are strictly length preserving
maps-that is if 77, T% are trees and f : m(T1) — m(Ts), whenever [(z) < I(y)
for z,y € T1, then I(f(z)) < I(f(y)). We denote this subcategory by SLT
(FSLT).

Lemma 3.5. If f € Mor(LT) is a morphism of SLT then I(f(z)) = 1(f(y))
if and only if l(x) = l(y).

Proof. We know from length preserving maps, I(x) = I(y) implies I(f(z)) =
I(f(y)). Also if I(f(x)) = I(f(y)) then I(x) = I(y) because if for example
I(z) < l(y) then I(f(z)) <I(f(y)) which contradicts I(f(z)) = I(f(y)). O

Theorem 3.6. Ty, T2 € FSLT are isomorphic if and only if S(T1) = S(Tb).

Remark 3.7. Theorems 3.4 and 3.6 are not true for infinite ordered trees.
For example consider 77 and T» such that S(T1) = (1,2,3,...) and S(Tp) =
(2,3,4,...). Define f : m(Ty) — m(Ts) such that I(f(z)) = l(z) + 1 and
g : m(Tz) — m(T1) such that I(g(x)) = [(x) — 1. Then go f = id,, () and
J 0 g =idyr,). So T} is isomorphic to T but S(T1) # S(14).

Now we recall from (cf [1]) that the skeleton subcategory of a category is a

full subcategory such that for any object in the original category, there exists
a unique isomorphic object in the skeleton subcategory

Theorem 3.8. The skeletons of FSLT and FLT are the same.

Proof. 1t is true because we can characterize the skeletons of both SL7 and LT
by the path-length sequences which is exactly the characterization of binary
trees. 0
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Corollary 3.9. Consider the binary tree T ':

(1) T is the most imbalanced iff when we consider it as a semilattice every
open set in T is atomic

(2) If T is the most balanced then it has no atomic open set and so has no
strongly atomic open set.

Proof. By the above theorem and Theorem 2.10. (I

Now why have we introduced this special subcategory of L7 7?7

Because by this subcategory we can state some of the important issues in
computer science which are useful in practice as categorical properties.

One of the most important types of binary trees in computer science are
the most balanced binary trees. In the following theorem we characterize these
binary trees by categorical structures. First we recall the following definition.

Definition 3.10. An object, W in the category C is called weak initial if for
every object of C there is at least one morphism from W to it.

Theorem 3.11. Every object of LT (FLT ) is weak initial.

Proof. Consider A an object of L7 . Now for every object C of LT , if z € m(C),
then define f : m(A) — m(C), such that for every x € m(A), f(z) = z. O

Theorem 3.12. T € 0bj(SLT) is weak initial if and only if it is the most
balanced binary tree with 2F leaves, k € {0,1,2,...}.

Proof. Let T be the most balanced binary tree with 2% leaves, k € {0,1,2,...}.
Then for every binary tree W, define a constant map from m(T) to m(W)
which maps every leaf of T' to a fixed leaf of W. Then this map is strictly
length preserving. Conversely let T be a binary tree such that for every binary
tree W there is a strictly length preserving map from m(T) to m(W). If T is
not the most balanced binary tree with 2¥ leaves, k € {0,1,2, ...} then T has at
least two leaves with different lengths. But in this case there is not any strictly
length preserving map from 7" to the binary tree with 2 leaves. (I

4. COMPOSITION OF COMPARISON BASED ALGORITHMS

Sometimes a c.b. algorithm (comparison based algorithm) B acts on some
outputs of the c.b. algorithm A. Here we study this situation, and give a
formula for it. We try to show it as an algebraic operation.

Let the binary tree corresponding to A be < aj...a,, > and the binary
tree corresponding to B be < by ...b, >. Let C be the algorithm obtained
when B acts on the output of A at the leaf xp of A. We can obtain the
binary tree corresponding to C by attaching a copy of B to the leaf z;. So
C =[<¢1..Cho1Cll oo Clon Chit1 --- Cm >] such that ¢; = a; fori = 1,...,k —
L,k+1,...,mand cx; =ap+b;, for i =1,...,n and has (m — 1) + n leaves. By
[<epcho1 Ck,1 --- Ckyn Ck+t1 - Cm >| we mean the increasing sequence obtaining
from the sequence < ¢j ... Ck—1 C,1 -.. Ch, Chit1 --- Cy >. If B acts on more than
one output of the algorithm A the final binary tree is obtained similarly.
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Now consider c.b. algorithm C obtained when B acts on all outputs of the
¢.b. algorithm A. So if we consider their correspondence binary trees, a copy of
the binary tree corresponding to A is attached to every leaf of the binary tree
corresponding to 4. Thus in this case the decision binary tree corresponding
to C will be [< ¢;; >] such that ¢;; = a; +b;, wherei =1,...,mand j =1,...,n.
We denote C by A * B.

Now we try to formalize this definition. We bring the following from [3].

Definition 4.1. A po-groupoid (or m-poset), (M,.,<) is a poset M with a
binary multiplication, ., which satisfies the isotonicity condition

a < b implies v.a < x.b and a.x < b.x *)

for all a,b,x € M. When multiplication is (commutative) associative, M is
called a (commutative) po-semigroup. A po-semigroup with identity 1, such
that x.1 = l.x = z for all x € M s called a partly ordered monoid, or po-
monoid. A po-group is (G,+,<) such that (G,+) is a group which satisfies
(). An l-group is a po-group such that (G,<) is a lattice.

If T, is the set of binary trees with n leaves, n € N, then as was mentioned
when A € T,, and B € T, then A+ B € Ty,,. Take T = |J,, ey Tn- Then
% : T x T — T defined by (A, B) = A« B is a binary operation on T'. We call
x product. Now we define <7 on T as follows:

A <p B if and only if there is n € N such that A, B € T,, and A < B.

Now we have the following theorem:
Theorem 4.2. (T,*,<r) is a commutative po-monoid.

Proof. One can easily see that if A € T,, and B € T}, then AxB = Bx A. Also
the binary tree with one leaf (< 0 >), is the identity because for every A € T,
where n € N, Ax < 0 >=< 0 > *A = A. Also notice that if A <p B then for
every C € T, AxC <p B x C. Because if for example the binary tree A is
obtained from the binary tree B via a ternary exchange then A x C'is obtained
from B x C via m ternary exchanges, where C' € T,,. O

Remark 4.3. Notice that (T, *, <r) is not group-because, for example there
is no binary tree L such that Lx < 11 >=< 11 > L =< 0 >.

Corollary 4.4. If the c.b. algorithm A is faster than the c.b. algorithm B,
then for every c.b. algorithm C, A x C is faster than B x C.

Corollary 4.5. If the algorithm C' is the product of the c.b. algorithm B with
A and the algorithm D is the product of A with B. Then C and D are the
same.

For proving the next theorem we need the definition of a multi-set.

Definition 4.6. A multi-set is a finite set-like object in which order is ignored
but multiplicity is explicity significant. Thus contrary to sets, multi-sets allow
for the repetition of elements. Therefore multi-sets {1,2,3} and {3,2,1} are
considered to be equivalent, but {1,2,2,3} and {1,2,3} differ. Also for the
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multi-sets A and B by A — B we mean the set A with the elements in com-
mon with the set B removed according to their multiplicity. For example if
{1,2,2,2,3} and {1,2,2,3,4} then A — B = {2}.

Theorem 4.7. Consider A, B and C in T then:

(1)
(2)

Proof.

(1)

(2)

A™ = B™, where m € N implies A = B.
AxC = BxC implies A= B

It is enough to show that A2 = B? implies A = B. Since 42 = B?,
there exists some n € N such that A € T,, and B € T,,. Let A =<
ai...ap_10ap—1 > and B =< by ...b,_1b,_1 >. Assume that A # B
and let ¢ be the first position that a; and b; differ. Assume a; < b;.
Since a; = bj, for j = 1,2,...,4 — 1, the multi-sets {a; + ax|j, k =
1,...,i—1} and {b;+bx|j,k = 1,...,i—1} are equal. Thus the multi-sets
—{aj+aklj,k=1,...,i—1} and B> —{b; + by|j,k =1,...,i— 1} are
equal. Notice that since these sequences are increasing and A% = B?,
the smallest number that appears in A2 is 2a; and in B? is 2b;, so
a1 = by. Thus ¢ > 1. Now the smallest element that appears in
—{aj+aklj,k=1,..,i—1}is a1 +a; and the smallest element that
appears in B — {b; +by|j,k =1,...,i — 1} is by +b; = a1 + b; > a1 +a;
which contradicts A2 —{a;+ag|j, k = 1,...,i—1} = B> —{b; + by|j, k =
1,...,i —1}. Thus A? = B2. Similar method yields that A™ = B™
implies A = B.
By the same technique we get A = B.
O

Theorem 4.8. For the c.b. algorithms A1, Az, where A1 € T,, and Ay € Tyy,:

(1)
(2)
(3)
Proof.
(1)

(3)

TAl * Ao (nm) TAl ( ) + TA2 ( )
Ty, a,(nm) = TAI(”) + T4 (m)
T% wa,(nm) =TF (n) +TZ,(m )

Let Ay =< z1...xp, > and Ay =< y1...ym > then Ay x Ay = [<
zij >, #ij = ® +y;, where i = 1,..,n and j = 1,..,m. Thus
nmT ayea,(nm) = 32, iz = 3o, (@ +y;) = 25,00,(w +y5) =
> (may + Zj yj)=m ,xi+n Zj y; = mnT 4, (n) +nmT a,(m). So
TAl * Az (nm) - TAI (n) + TAz (m)

Aq % Ag is obtained when we attach a copy of As to every leaf of Aj.
So the longest path-length in Ay % As is the leaf which is the result of
the longest length in A5 attaching to the longest length in A;. So the
longest length in Ay * Ay is the summation of longest lengths in A; and
As. So TK*AQ (nm) = TXZ (n)+ TXZ(m)

It is proved similar to the previous part.
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Definition 4.9. A nontrivial Binary tree is called prime if it can not been
written as the product of two nontrivial binary trees (binary trees with at least
two leaves) otherwise it is decomposable.

Remark 4.10. Notice that the binary tree with one leaf is not neither prime
nor decomposable, we denote it by 1.

Theorem 4.11. If the binary tree T is decomposable, then it is not atomic.

Proof. Let T be the product of 2 nontrivial binary trees A and B. Then the
length of every leaf of T is at least 2. Now consider \/ T, then there are z,y
such that z,y < \/T. Since T doesn’t have any leaf with length less than 2,
x,y are not leaves. Now {t|t < z} and {t|t < y} neither A and B contains the
other one. So ¢(T') is not a chain and so T is not atomic. (|

Theorem 4.12. FEwvery element of T,, when n is prime natural number is a
prime binary tree.

Proof. If C € T, is the product of A and B, where A € T; and B € Tj,
j.k €{2,3,...} then A+ B € Tj,. Thus n = jk for j,k € {2,3,...}, which is a
contradiction. O

Remark 4.13. The converse of the previous theorem is not true. For example
<1233 >€ Ty is prime while 4 is not a prime number.

I tried to prove a theorem like the fundamental theorem of arithmetic for
binary trees in the sense that ”Every binary tree is 1 or prime or can be
decomposed uniquely apart from rearrangement to the prime binary trees.” I
worked on it for a while and I could not prove it. Then I decided to leave it
in the article as a Conjecture. But while Mr Diarmuid Early was helping me
with the English he found the following counter example.

Example 4.14. Consider A =< 122>, B=<13335555>,C=<1233 >
and D =< 124444 >. Four of these binary trees are prime and A x B =
CxD=<23344455555566

6677777777>. So it is seen that you can write a binary tree as the product
of prime binary trees in several ways.

Acknowledgements. I would like to thank Dr Michel Schellekens and Mr
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