

APPLIED GENERAL TOPOLOGY © Universidad Politécnica de Valencia Volume 10, No. 2, 2009 pp. 269-276

Compact self T_1 -complementary spaces without isolated points

Mikhail Tkachenko

ABSTRACT. We present an example of a compact Hausdorff self T_1 -complementary space without isolated points. This answers Question 3.11 from [A compact Hausdorff topology that is a T_1 -complement of itself, *Fund. Math.* **175** (2002), 163–173] affirmatively.

2000 AMS Classification: 54A10, 54A25, 54D30

Keywords: Alexandroff duplicate; Čech–Stone compactification; Compact; Isolated point; T₁-complementary; Transversal topology

1. INTRODUCTION

We deal with the concept of complementarity in the lattice of T_1 -topologies on a given infinite set. Two elements a, b of an abstract lattice $\{L, \lor, \land, \mathbf{0}, \mathbf{1}\}$ with the smallest and greatest elements $\mathbf{0}$ and $\mathbf{1}$, respectively, are called *complementary* if $a \lor b = \mathbf{1}$ and $a \land b = \mathbf{0}$. Birkhoff noted in [1] that the family $\mathcal{L}(X)$ of all topologies on a nonempty set X becomes a lattice when the infimum $\tau_1 \land \tau_2$ of $\tau_1, \tau_2 \in \mathcal{L}(X)$ is defined to be the intersection $\tau_1 \cap \tau_2$ and the supremum $\tau_1 \lor \tau_2$ is the topology on X with the subbase $\tau_1 \cup \tau_2$. Clearly, the smallest element $\mathbf{0}$ of $\mathcal{L}(X)$ is the coarsest topology $\{\varnothing, X\}$, while the greatest element $\mathbf{1}$ of $\mathcal{L}(X)$ is the discrete topology of X.

In the case of the lattice $\mathcal{L}_1(X)$ of all T_1 -topologies on X, the smallest element **0** of $\mathcal{L}_1(X)$ is the *cofinite* topology

$$cfin(X) = \{\emptyset\} \cup \{X \setminus F : F \subseteq X, F \text{ is finite}\}.$$

Therefore, two topologies $\tau_1, \tau_2 \in \mathcal{L}_1(X)$ are *complementary* in $\mathcal{L}_1(X)$ if $\tau_1 \cap \tau_2 = cfin(X)$ and $\tau_1 \cup \tau_2$ is a subbase for the discrete topology on X. It is said that τ_1 and τ_2 are T_1 -complementary in this case.

The study of complementarity in $\mathcal{L}_1(X)$ was initiated by A. Steiner and E. Steiner in [6, 8, 7]. Later on, S. Watson used an elaborated combinatorics in

[10] to prove that a set X of cardinality \mathfrak{c}^+ , where $\mathfrak{c} = 2^{\omega}$, admits a Tychonoff self T_1 -complementary topology τ . Self T_1 -complementarity of τ means that there exists a bijection f of X onto itself such that the topologies τ and $\sigma = \{f^{-1}(U) : U \in \tau\}$ are T_1 -complementary.

In [4], D. Shakhmatov and the author applied a recursive construction to show that the Alexandroff duplicate $A(\beta\omega \setminus \omega)$ of $\beta\omega \setminus \omega$ is a T_1 -complement of itself. $A(\beta\omega \setminus \omega)$ was the first example of an infinite compact Hausdorff space with this property. It is clear that $|A(\beta\omega \setminus \omega)| = 2^{\mathfrak{c}} > \mathfrak{c}$, which looks quite similar to the cardinality of Watson's self T_1 -complementary space in [10]. The necessity of working with topologies on big sets was explained in [4, Corollary 3.6]—the existence of a compact Hausdorff self T_1 -complementary space of cardinality less than or equal to \mathfrak{c} is independent of ZFC.

The concept of T_1 -complementarity of topologies is naturally split into transversality and T_1 -independence. Following [5, 9], we say that topologies $\tau_1, \tau_2 \in \mathcal{L}_1(X)$ are transversal if $\tau_1 \vee \tau_2$ is the discrete topology, and T_1 -independent if $\tau_1 \wedge \tau_2$ is the cofinite topology on X. In addition, if the topologies τ_1 and τ_2 are homeomorphic (i.e., τ_2 is obtained from τ_1 by means of a bijection of X), we come to the notions of self-transversality and self T_1 -independence, respectively.

A usual way to produce self-transversal topologies is to work with a space that has many isolated points. Indeed, suppose that X is a space with topology $\tau, Y \subseteq X, |Y| = |X| = |X \setminus Y|$, and each point of Y is isolated in X. Take any bijection $f: X \to X$ such that $f(X \setminus Y) = Y$ and put

$$\sigma = \{ f^{-1}(U) : U \in \tau \}.$$

It is easy to see that every point of X is isolated either in τ or in σ , so $\tau \lor \sigma$ is the discrete topology on X. In other words, the space (X, τ) is self-transversal. This approach was also adopted in [4, Corollary 3.8] to show that the compact space $A(\beta \omega \setminus \omega)$ is self-transversal (as a part of the proof that the space is self T_1 -complementary). This explains Question 3.11 from [4]: Does there exist a self T_1 -complementary compact Hausdorff space without isolated points?

Theorem 2.1 answers this question in the affirmative. Our space (or, better to say, a series of spaces) is $A(\beta \omega \setminus \omega) \times Y$, where Y is any dense-in-itself compact Hausdorff space of cardinality \mathfrak{c} . It is worth mentioning that the idea of the proof of Theorem 2.1 is a natural refinement of the arguments in [4] and [2]. Taking Y to be the closed unit interval or the Cantor set, we obtain in ZFC an example of a compact Hausdorff space without isolated points which is a T_1 -complement of itself (see Corollary 2.2). Further, assuming that $2^{\aleph_1} = \mathfrak{c}$ and taking $Y = \{0, 1\}^{\omega_1}$, we get an example of a compact Hausdorff space without points of countable character which is again a T_1 -complement of itself (see Corollary 2.3). We finish the article with three open problems about possible cardinalities of compact Hausdorff self T_1 -complementary spaces.

2. The Alexandroff duplicate of $\beta \omega \setminus \omega$ and products

In what follows K denotes $\beta \omega \setminus \omega$, the remainder of the Čech–Stone compactification of the countable discrete space ω . It is clear that every nonempty

open subset of K has cardinality 2^c. We will also use the fact that K contains a pairwise disjoint family λ of open sets such that $|\lambda| = \mathfrak{c}$.

The Alexandroff duplicate of K is A(K). It is easy to verify that every infinite closed subset of A(K) has cardinality 2^c. The reader can find a detailed discussion of the properties of A(X), for an arbitrary space X, in [3].

Theorem 2.1. For every compact Hausdorff space Y with $|Y| \leq \mathfrak{c}$, the product space $A(K) \times Y$ is self T_1 -complementary.

Proof. Let $Z = A(K) \times Y$. Let also τ be the product topology of Z. By recursion of length $\kappa = 2^{\mathfrak{c}}$ we will construct a bijection $f: Z \to Z$ such that

(1) $f \circ f = id_Z;$

(2) the topology $\sigma = \{f(U) : U \in \tau\}$ is T_1 -complementary to τ .

Let $K^* = A(K) \setminus K$. One of the main ideas of our construction is to use open fibers $\{x\} \times Y \subseteq Z$, with $x \in K^*$, to guarantee that each point $z \in Z$ will be isolated in $(Z, \tau \lor \sigma)$. More precisely, we will construct the bijection fto satisfy the following additional conditions:

(3) $f(K \times Y) = K^* \times Y;$

(4) for every
$$x \in K^*$$
, the image $f(\{x\} \times Y)$ is a discrete subset of $K \times Y$.

Let us show first that every bijection f satisfying conditions (1), (3), and (4) produces the topology $\sigma = f(\tau)$ transversal to τ . Indeed, let $\pi: A(K) \times Y \to A(K)$ be the projection. Take a point $z \in Z$ such that $x = \pi(z) \in K^*$. Clearly, $z \in \{x\} \times Y$ and, by (4), $f(\{x\} \times Y)$ is a discrete subset of $K \times Y$. Hence there exists an open set U in Z such that

$$(*) \qquad \qquad \{f(z)\} = U \cap f(\{x\} \times Y).$$

Since the point x is isolated in A(K), the set $\{x\} \times Y$ is τ -open in $A(K) \times Y$. Hence (*) implies that f(z) is an isolated point of the space $(Z, \tau \lor \sigma)$. Further, it follows from (1) and (3) that $K \times Y = f(K^* \times Y)$, and we conclude that every point of $K \times Y$ is isolated in $(Z, \tau \lor \sigma)$. Applying f to both parts of (*) and taking into account (1), we obtain the equality $\{z\} = f(U) \cap (\{x\} \times Y)$. This means that every point of $K^* \times Y$ is isolated in $(Z, \tau \lor \sigma)$. We have thus proved that the topology $\tau \lor \sigma$ is discrete, i.e., τ and σ are transversal.

To guarantee the T_1 -independence of τ and σ is a more difficult task. We can reformulate the latter relation between τ and σ by saying that f(F) is not τ -closed in Z, for every proper infinite τ -closed set $F \subseteq Z$. Let us describe the recursive construction of the bijection f in detail. In what follows the space Z always carries the topology τ unless the otherwise is specified.

We start with three observations that will be used in our construction of f. The first and the third of them are evident.

Fact 1. If B is an infinite subset of A(K), then the set $\overline{B} \cap K$ has cardinality $\kappa = 2^{\mathfrak{c}}$, where \overline{B} is the closure of B in A(K).

Fact 2. If $C \subseteq Z$ and the set $\pi(C)$ is infinite, then the projection $\pi(\overline{C} \cap (K \times Y))$ has cardinality κ , where \overline{C} is the closure of C in Z.

Indeed, since the projection π is a closed mapping, we have the equality $\pi(C) = \pi(C)$. It follows from $|\pi(C)| \geq \omega$ and Fact 1 that the set $\pi(C) \cap K$ has cardinality κ . Again, since the mapping π is closed, we see that $\pi^{-1}(x) \cap \overline{C} \neq \emptyset$ for each $x \in \overline{\pi(C)} \cap K$. Hence $|\pi(\overline{C} \cap (K \times Y))| = \kappa$.

Fact 3. If U is open in Z and $U \cap (K \times Y) \neq \emptyset$, then $|U \setminus (K \times Y)| = \kappa$.

It is clear that $\chi(K) \leq w(K) = \mathfrak{c}, \ \chi(A(K)) = \chi(K) \leq \mathfrak{c}, \ \text{and} \ w(Y) \leq |Y| \leq \mathfrak{c}$ c. Therefore, $\chi(z,Z) \leq \mathfrak{c}$ for every $z \in Z$. Since $|K \times Y| = |K| = \kappa$, there exists a base \mathcal{B} for $K \times Y$ in Z with $|\mathcal{B}| \leq \kappa$. In other words, \mathcal{B} is a family of open sets in Z with the property that for every $z \in K \times Y$ and every open neighbourhood O of z in Z, there exists $U \in \mathcal{B}$ such that $z \in U \subseteq O$. Clearly, we can assume that $U \cap (K \times Y) \neq \emptyset$ for each $U \in \mathcal{B}$. Since $\kappa = \kappa^{\omega}$, we see that $|[Z]^{\omega} \times \mathcal{B}| = \kappa$, where $[Z]^{\omega}$ denotes the family of all countably infinite subsets of Z. Let $\{(C_{\alpha}, U_{\alpha}) : \alpha < \kappa\}$ be an enumeration of the set $[Z]^{\omega} \times \mathcal{B}$ such that for every pair $(C, U) \in [Z]^{\omega} \times \mathcal{B}$, the set $\{\alpha < \kappa : (C, U) = (C_{\alpha}, U_{\alpha})\}$ is cofinal in κ .

Let $\{z_{\alpha} : \alpha < \kappa\}$ be a faithful enumeration of Z. By recursion on $\alpha < \kappa$ we will construct sets $Z_{\alpha} \subseteq Z$ and mappings $f_{\alpha} \colon Z_{\alpha} \to Z_{\alpha}$ satisfying the following conditions:

(i_{$$\alpha$$}) $|Z_{\alpha}| \leq |\alpha| \cdot \mathfrak{c};$

- (ii_{α}) if $\gamma < \alpha$, then $Z_{\gamma} \subseteq Z_{\alpha}$;
- (iii_{α}) $z_{\alpha} \in Z_{\alpha+1}$;
- (iv_{α}) f_{α} is a bijection of Z_{α} onto itself and $f_{\alpha} \circ f_{\alpha} = id_{Z_{\alpha}}$;
- $\begin{array}{l} (\mathbf{v}_{\alpha}) \text{ if } \gamma < \alpha, \text{ then } f_{\alpha} \upharpoonright_{Z_{\gamma}} = f_{\gamma}; \\ (\mathbf{vi}_{\alpha}) \text{ if } z', z'' \in Z_{\alpha}, \ \pi(z') = \pi(z''), \text{ and } z' \neq z'', \text{ then } \pi(f_{\alpha}(z')) \neq \pi(f_{\alpha}(z'')); \end{array}$
- (vii_{α}) $f_{\alpha+1}(U_{\alpha}\cap Z_{\alpha+1})\cap \overline{f_{\alpha+1}(C_{\alpha}\cap Z_{\alpha+1})} \neq \emptyset$ provided that the set $\pi f_{\alpha}(C_{\alpha}\cap Z_{\alpha+1})$ Z_{α}) is infinite;
- (viii_{α}) $\pi^{-1}(x) \subseteq Z_{\alpha}$ for each $x \in \pi(Z_{\alpha}) \cap K^*$;
- (ix_{α}) if $x \in \pi(Z_{\alpha}) \cap K^*$, then $f_{\alpha}(\{x\} \times Y)$ is a discrete subset of $K \times Y$; $(\mathbf{x}_{\alpha}) f_{\alpha}(Z_{\alpha} \cap (K \times Y)) \subseteq K^* \times Y.$

Put $Z_0 = \emptyset$ and $f_0 = \emptyset$. Clearly, Z_0 and f_0 satisfy $(i_0)-(x_0)$. Let $\alpha < \kappa$, and suppose that a set $Z_{\beta} \subseteq Z$ and a mapping f_{β} of Z_{β} to itself satisfying conditions $(i_{\beta})-(x_{\beta})$ have already been defined for all $\beta < \alpha$. If $\alpha > 0$ is limit, we put $Z_{\alpha} = \bigcup \{ Z_{\beta} : \beta < \alpha \}$ and $f_{\alpha} = \bigcup \{ f_{\beta} : \beta < \alpha \}$. Then the subset Z_{α} of Z and the mapping $f_{\alpha} \colon Z_{\alpha} \to Z_{\alpha}$ satisfy $(i_{\alpha})-(x_{\alpha})$, except for (iii_{α}) and (vii_{α}) which are valid for all $\beta < \alpha$.

Suppose now that $\alpha = \gamma + 1$. Let $Z'_{\gamma} = Z_{\gamma} \cup \{z_{\gamma}\}$. Since $U_{\gamma} \cap (K \times Y) \neq \emptyset$, the cardinality of the set $U_{\gamma} \setminus (K \times Y)$ is κ by Fact 3. It follows from $|Z'_{\gamma}| \leq |Z_{\gamma}| + 1 \leq$ $|\gamma+1| \cdot \mathfrak{c} < \kappa \text{ and } |\pi^{-1}\pi(Z'_{\gamma})| \le |Z'_{\gamma}| \cdot |Y| < \kappa \text{ that } |(U_{\gamma} \setminus (K \times Y)) \setminus \pi^{-1}\pi(Z'_{\gamma})| = \kappa.$ Therefore, we can pick a point $s_{\alpha} \in U_{\gamma} \setminus \pi^{-1}(K \cup \pi(Z'_{\gamma}))$.

If $\pi f_{\gamma}(C_{\gamma} \cap Z_{\gamma})$ is infinite, then $\overline{f_{\gamma}(C_{\gamma} \cap Z_{\gamma})} \cap (K \times Y)$ is a closed subset of Z whose projection to A(K) has cardinality κ by Fact 2. We then use the inequalities $|Z'_{\gamma}| < \kappa$ and $|Y| \leq \mathfrak{c}$ to pick a point $t_{\alpha} \in (K \times Y) \cap \overline{f_{\gamma}(C_{\gamma} \cap Z_{\gamma})}$

 $\pi^{-1}\pi(Z'_{\gamma})$. Otherwise pick an arbitrary point $t_{\alpha} \in \pi^{-1}(K \setminus \pi(Z'_{\gamma}))$; again, such a point exists because $|\pi(Z'_{\gamma})| \leq |Z'_{\gamma}| < \kappa = |K|$. In either case, $t_{\alpha} \in K \times Y$.

Suppose that $z_{\gamma} = (x_{\gamma}, y_{\gamma})$, $s_{\alpha} = (x'_{\alpha}, y'_{\alpha})$, and $t_{\alpha} = (x''_{\alpha}, y''_{\alpha})$. Notice that $x'_{\alpha} \in K^* \setminus \pi(Z'_{\gamma})$ and $x''_{\alpha} \in K \setminus \pi(Z'_{\gamma})$. To define Z_{α} , we consider the following possible cases.

Case 1. $z_{\gamma} \in Z_{\gamma}$. Then $Z'_{\gamma} = Z_{\gamma}$ and we choose a discrete set $D_{\alpha} \subseteq K \times \{y''_{\alpha}\}$ such that $t_{\alpha} \in D_{\alpha}, \pi(D_{\alpha}) \cap \pi(Z_{\gamma}) = \emptyset$, and $|D_{\alpha}| = |Y|$. This is possible since $x''_{\alpha} = \pi(t_{\alpha}) \notin \pi(Z_{\gamma})$ and K contains \mathfrak{c} pairwise disjoint nonempty open sets, each of cardinality κ . Put

$$Z_{\alpha} = Z_{\gamma} \cup D_{\alpha} \cup (\{x'_{\alpha}\} \times Y).$$

It follows from the definition that $\{z_{\gamma}, s_{\alpha}, t_{\alpha}\} \subseteq Z_{\alpha}$. Since the sets $D_{\alpha}, \{x'_{\alpha}\} \times Y$, and Z_{γ} are pairwise disjoint, there exists an idempotent bijection f_{α} of Z_{α} onto itself such that f_{α} extends $f_{\gamma}, f_{\alpha}(\{x'_{\alpha}\} \times Y) = D_{\alpha}$, and $f_{\alpha}(s_{\alpha}) = t_{\alpha}$. Case 2. $z_{\gamma} \notin Z_{\gamma}$. Again, we split this case into two subcases.

Case 2.1. $z_{\gamma} \in K \times Y$, i.e., $x_{\gamma} \in K$. Then we choose a discrete subset D_{α} of $K \times Y$ such that $\{z_{\gamma}, t_{\alpha}\} \subseteq D_{\alpha}, D_{\alpha} \cap Z_{\gamma} = \emptyset$, the restriction of π to D_{α} is one-to-one, and $|D_{\alpha}| = |Y|$. Again, this is possible since neither z_{γ} nor t_{α} is in Z_{γ} and, by the choice of $t_{\alpha}, x_{\gamma} = \pi(z_{\gamma}) \neq \pi(t_{\alpha}) = x''_{\alpha}$. As in Case 1, we put

$$Z_{\alpha} = Z_{\gamma} \cup D_{\alpha} \cup (\{x'_{\alpha}\} \times Y)$$

Then $\{z_{\gamma}, s_{\alpha}, t_{\alpha}\} \subseteq Z_{\alpha}$. Since the sets $D_{\alpha}, \{x'_{\alpha}\} \times Y$, and Z_{γ} are pairwise disjoint, there exists an idempotent bijection $f_{\alpha} \colon Z_{\alpha} \to Z_{\alpha}$ such that f_{α} extends $f_{\gamma}, f_{\alpha}(s_{\alpha}) = t_{\alpha}$, and $f_{\alpha}(\{x'_{\alpha}\} \times Y) = D_{\alpha}$.

Case 2.2. $x_{\gamma} \in K^*$. We choose a discrete set $D_{\alpha} \subseteq K \times \{y''_{\alpha}\}$ such that $t_{\alpha} \in D_{\alpha}, \pi(D_{\alpha}) \cap \pi(Z_{\gamma}) = \emptyset$, and $|D_{\alpha}| = |Y|$. Then we put

$$Z_{\alpha} = Z_{\gamma} \cup D_{\alpha} \cup (\{x_{\gamma}, x_{\alpha}'\} \times Y).$$

Clearly, $\{z_{\gamma}, s_{\alpha}, t_{\alpha}\} \subseteq Z_{\alpha}$. Since $\{x_{\gamma}, x'_{\alpha}\} \subseteq K^*$ and $\{z_{\gamma}, s_{\alpha}\} \cap Z_{\gamma} = \emptyset$, it follows from (viii_{γ}) that $(\{x_{\gamma}, x'_{\alpha}\} \times Y) \cap Z_{\gamma} = \emptyset$. In addition, the set D_{α} is disjoint from both Z_{γ} and $\{x_{\gamma}, x'_{\alpha}\} \times Y$, so there exists an idempotent bijection f_{α} of Z_{α} onto itself such that f_{α} extends $f_{\gamma}, f_{\alpha}(\{x_{\gamma}, x'_{\alpha}\} \times Y) = D_{\alpha}$, and $f_{\alpha}(s_{\alpha}) = t_{\alpha}$.

Clearly, conditions (i_{α}) , (ii_{α}) , (ii_{γ}) , (iv_{α}) , (v_{α}) , and $(viii_{\alpha})$ - (x_{α}) hold true. Let us verify conditions (vi_{α}) and (vii_{γ}) .

We verify $(\operatorname{vi}_{\alpha})$ only in Case 2.1—the argument in the rest of cases is analogous or even simpler. Suppose that z' and z'' are distinct elements of Z_{α} such that $\pi(z') = \pi(z'')$. If $\{z', z''\} \subseteq Z_{\gamma}$, then $(\operatorname{v}_{\alpha})$ and $(\operatorname{vi}_{\gamma})$ imply that $\pi(f_{\alpha}(z')) = \pi(f_{\gamma}(z')) \neq \pi(f_{\gamma}(z'')) = \pi(f_{\alpha}(z''))$. If $\{z', z''\} \subseteq \{x'_{\alpha}\} \times Y$, then $\pi(f_{\alpha}(z')) \neq \pi(f_{\alpha}(z''))$ since $f_{\alpha}(\{x'_{\alpha}\} \times Y) = D_{\alpha}$ and the restriction of π to D_{α} is one-to-one. The case $\{z', z''\} \subseteq D_{\alpha}$ is clearly impossible. Finally, suppose that $z' \in Z_{\gamma}$ and $z'' \in Z_{\alpha} \setminus Z_{\gamma}$ (or vice versa). Since $x'_{\alpha} \notin \pi(Z_{\gamma})$, if follows from $\pi(z') = \pi(z'')$ and the definition of Z_{α} that $z'' \in D_{\alpha}$. Our choice of f_{α} implies that $f_{\alpha}(D_{\alpha}) = \{x'_{\alpha}\} \times Y$ because f_{α} is an idempotent bijection of Z_{α} onto itself. Hence $\pi(f_{\alpha}(z'')) = x'_{\alpha} \notin \pi(Z_{\gamma})$ and, therefore, $\pi(f_{\alpha}(z'')) \neq \pi(f_{\alpha}(z'))$. To check (vii_{γ}), suppose that $\pi f_{\gamma}(C_{\gamma} \cap Z_{\gamma})$ is infinite. It follows from our construction that $s_{\alpha} \in U_{\gamma} \cap Z_{\alpha}$ and $f_{\alpha}(s_{\alpha}) = t_{\alpha} \in \overline{f_{\gamma}(C_{\gamma} \cap Z_{\gamma})}$ which yields $t_{\alpha} \in f_{\alpha}(U_{\gamma} \cap Z_{\alpha}) \cap \overline{f_{\alpha}(C_{\gamma} \cap Z_{\alpha})} \neq \emptyset$. The recursive step is completed.

We can now define the bijection $f: Z \to Z$. From (iii_{α}) for all $\alpha < \kappa$ it follows that $Z = \bigcup \{Z_{\alpha} : \alpha < \kappa\}$. Let $f = \bigcup \{f_{\alpha} : \alpha < \kappa\}$. Since (ii_{α}), (iv_{α}) and (v_{α}) hold for all $\alpha < \kappa$, f is an idempotent bijection of Z onto itself. This means that (1) holds. It also follows from (viii_{α}) and (ix_{α}) for all $\alpha < \kappa$ that $f(K^* \times Y) \subseteq K \times Y$, while (x_{α}) implies that $f(K \times Y) \subseteq K^* \times Y$. Since f is a bijection, we conclude that $f(K^* \times Y) = K \times Y$ and $f(K \times Y) = K^* \times Y$, i.e., (3) holds. Similarly, conditions (viii_{α}) and (ix_{α}) for all $\alpha < \kappa$ together imply the validity of (4).

It was shown before the recursive construction that for any bijection $f: Z \to Z$ satisfying (1), (3), and (4), the topologies τ and $\sigma = f(\tau)$ on Z are transversal. It only remains to prove that τ and $\sigma = f(\tau)$ are T_1 -independent, for this special bijection f. In other words, we have to verify that for every proper infinite closed subset Φ of Z, the image $f(\Phi)$ is not closed in Z. Let us consider two cases.

Case A. The projection $\pi(\Phi)$ is finite. Since $\Phi \subseteq \pi^{-1}\pi(\Phi)$ and each fiber $\pi^{-1}(x)$ has cardinality $|Y| \leq \mathfrak{c}$, we see that $|\Phi| \leq \mathfrak{c}$. Also, since $\kappa^{\mathfrak{c}} = \kappa$, the cofinality of the cardinal κ is greater than \mathfrak{c} . Applying the equality $Z = \bigcup \{Z_{\alpha} : \alpha < \kappa\}$ and (ii_{α}) for $\alpha < \kappa$, we see that $\Phi \subseteq Z_{\beta}$ for some $\beta < \kappa$. It is also clear that $\pi^{-1}(x) \cap \Phi$ is infinite for some $x \in A(K)$. Then (vi_{β}) yields that the set $\pi(f(\Phi)) = \pi(f_{\beta}(\Phi))$ is infinite. In its turn, it follows from Fact 2 that the closure of $f(\Phi)$ in Z has cardinality κ and, since $|\Phi| \leq \mathfrak{c}$, the set $f(\Phi)$ cannot be closed in Z.

Case B. The set $\pi(\Phi)$ is infinite. Then $|\Phi| = \kappa$, by Fact 2. Again, we split this case into two subcases.

Case B.1. $(K \times Y) \setminus \Phi \neq \emptyset$. Since $cf(\kappa) > \mathfrak{c} > \omega$, the set $\pi f_{\beta}(\Phi \cap Z_{\beta})$ must be infinite for some $\beta < \kappa$. Indeed, otherwise $\pi f(\Phi)$ is finite and hence $|\Phi| = |f(\Phi)| \leq \mathfrak{c}$, a contradiction. Choose a countable set $C \subseteq \Phi \cap Z_{\beta}$ such that $\pi f(C)$ is infinite. Take a point $z \in (K \times Y) \setminus \Phi$ and an element $U \in \mathcal{B}$ such that $z \in U \subseteq Z \setminus \Phi$. This is possible because \mathcal{B} is a base for $K \times Y$ in Z. Note that $(C, U) \in [Z]^{\omega} \times \mathcal{B}$. Since the set $\{\alpha < \kappa : (C, U) = (C_{\alpha}, U_{\alpha})\}$ is cofinal in κ , $(C, U) = (C_{\alpha}, U_{\alpha})$ for some α with $\beta \leq \alpha < \kappa$. From $Z_{\alpha} \supseteq Z_{\beta}$ and $C_{\alpha} = C \subseteq Z_{\beta}$ we get $C_{\alpha} \cap Z_{\alpha} \supseteq C_{\alpha} \cap Z_{\beta} = C$ and, since $\pi f(C)$ is infinite, so is $\pi f(C_{\alpha} \cap Z_{\alpha}) = \pi f_{\alpha}(C_{\alpha} \cap Z_{\alpha})$. Then (vii_{\alpha}) shows that $f_{\alpha+1}(U_{\alpha} \cap Z_{\alpha+1}) \cap f_{\alpha+1}(C_{\alpha} \cap Z_{\alpha+1}) \neq \emptyset$. Since f extends f_{α} and $\Phi \supseteq C = C_{\alpha}$, it follows that

$$f(U_{\alpha}) \cap \overline{f(\Phi)} \supseteq f(U_{\alpha}) \cap \overline{f(C_{\alpha})} \supseteq f_{\alpha+1}(U_{\alpha} \cap Z_{\alpha+1}) \cap \overline{f_{\alpha+1}(C_{\alpha} \cap Z_{\alpha+1})} \neq \emptyset.$$

Therefore, there exists $z^* \in U_\alpha$ such that $f(z^*) \in \overline{f(\Phi)}$. It follows from $U_\alpha = U \subseteq Z \setminus \Phi$ that $z^* \notin \Phi$. Since f is a bijection of Z, this yields $f(z^*) \notin f(\Phi)$. Thus $f(z^*) \in \overline{f(\Phi)} \setminus f(\Phi)$, that is, the set $f(\Phi)$ is not closed in Z.

Case B.2. $K \times Y \subseteq \Phi$. Suppose to the contrary that $f(\Phi)$ is closed in Z. Since $f(K \times Y) = K^* \times Y$ and the latter set is dense in Z, we see that $K^* \times Y \subseteq f(\Phi) = Z$. This contradicts our choice of Φ as a proper subset of Z.

We have thus proved that $f(\Phi)$ fails to be closed in Z, i.e., the topologies τ and $\sigma = f(\tau)$ are T_1 -independent. Since we already know that τ and σ are transversal, this finishes the proof of the theorem.

Taking Y in Theorem 2.1 to be the Cantor set or the closed unit interval $\mathbb{I} = [0, 1]$, we obtain the following result which answers Question 3.11 from [4] in the affirmative:

Corollary 2.2. There exists an infinite compact Hausdorff self T_1 -complementary space without isolated points.

Under additional set-theoretic assumptions, one can refine Corollary 2.2 as follows:

Corollary 2.3. Let κ be a cardinal with $\omega \leq \kappa < \mathfrak{c}$. It is consistent with ZFC that there exists a compact Hausdorff self T_1 -complementary space Z such that $\chi(z, Z) \geq \kappa$ for each $z \in Z$.

Proof. One can assume that $2^{\kappa} = 2^{\omega} = \mathfrak{c}$ and take $Y = \mathbb{I}^{\kappa}$ in Theorem 2.1. \Box

The following questions remain open.

Problem 2.4. Let $K = \beta \omega \setminus \omega$. Is the product space $A(K) \times K$ self T_1 -complementary?

Problem 2.5. Is it true that for every cardinal λ , there exists a compact Hausdorff self T_1 -complementary space Z with $|Z| \ge \lambda$?

Here is a stronger version of the above problem:

Problem 2.6. Is it true that for every cardinal λ , there exists a compact Hausdorff self T_1 -complementary space Z such that $\chi(z, Z) \geq \lambda$ for all $z \in Z$?

References

- [1] G. Birkhoff, On the combination of topologies, Fund. Math. 26 (1936), 156-166.
- [2] A. Błaszczyk and M. G. Tkachenko, Transversal and T₁-independent topologies and the Alexandroff duplicate, submitted.
- [3] R. Engelking, On the Double Circumference of Alexandroff, Bull. Acad. Polon. Sci. 16 (1968), 629–634.
- [4] D. Shakhmatov and M.G. Tkachenko, A compact Hausdorff topology that is a T₁complement of itself, Fund. Math. 175 (2002), 163–173.
- [5] D. Shakhmatov, M. G. Tkachenko, and R. G. Wilson, *Transversal and T₁-independent topologies*, Houston J. Math. **30** (2004), no. 2, 421–433.
- [6] A.K. Steiner, Complementation in the lattice of T₁-topologies, Proc. Amer. Math. Soc. 17 (1966), 884–885.
- [7] A. K. Steiner and E. F. Steiner, Topologies with T₁-complements, Fund. Math. 61 (1967), 23-38.
- [8] A.K. Steiner and E.F. Steiner, A T₁-complement of the reals, Proc. Amer. Math. Soc. 19 (1968), 177-179.

M. Tkachenko

- M. G. Tkachenko and Iv. Yaschenko, Independent group topologies on Abelian groups, Topol. Appl. 122 (2002), no. 1-2, 425–451.
- [10] W.S. Watson, A completely regular space which is the T_1 -complement of itself, *Proc.* Amer. Math. Soc. **124** (1996), no. 4, 1281–1284.

Received September 2009

Accepted November 2009

MIKHAIL TKACHENKO (mich@xanum.uam.mx)

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, México D.F., México