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Relative dimension r-dim and finite spaces
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Abstract

In [4] a relative covering dimension is defined and studied which is
denoted by r-dim. In this paper we give an algorithm of polynomial
order for computing the dimension r-dim of a pair (Q,X), where Q is
a subset of a finite space X, using matrix algebra.
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1. Introduction and preliminaries

The “ relative dimensions ” or “ positional dimensions ” are functions whose
domains are classes of subsets. By a class of subsets we mean a class consisting
of pairs (Q,X), where Q is a subset of a space X .

The class of finite topological spaces was first studied by P.A. Alexandroff in
1937 in [1]. A topological space X is finite if the set X is finite. In what follows
we denote by X = {x1, . . . , xn} a finite space of n elements and by Ui the
smallest open set of X containing the point xi, i = 1, . . . , n. The cardinality of
a set X is denoted by |X | and the first infinite cardinal is denoted by ω.

Let X = {x1, . . . , xn} be a finite space of n elements. The n × n matrix
T = (tij), where

tij =

{
1, if xi ∈ Uj

0, otherwise

is called the incidence matrix of X . We observe that

Uj = {xi : tij = 1}, j = 1, . . . , n.
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We denote by c1, . . . , cn the n columns of the matrix T . Let

ci =

⎛
⎜⎜⎜⎝

c1i
c2i
...
cni

⎞
⎟⎟⎟⎠ and cj =

⎛
⎜⎜⎜⎝

c1j
c2j
...

cnj

⎞
⎟⎟⎟⎠

be two n× 1 matrices. Then, by max ci we denote the maximum

max{c1i, c2i, . . . , cni}
and by ci + cj the n× 1 matrix

ci + cj =

⎛
⎜⎜⎜⎝

c1i + c1j
c2i + c2j

...
cni + cnj

⎞
⎟⎟⎟⎠ .

Also, we write ci ≤ cj if only if cki ≤ ckj for each k = 1, . . . , n.

For the following notions see for example [2].

Let X be a space. A cover of X is a non-empty set of subsets of X , whose
union is X . A cover c of X is said to be open (closed) if all elements of c is
open (closed). A family r of subsets of X is said to be a refinement of a family
c of subsets of X if each element of r is contained in an element of c.

Define the order of a family r of subsets of a space X as follows:

(a) ord(r) = −1 if and only if r consists of only the empty set.
(b) ord(r) = n, where n ∈ ω, if and only if the intersection of any n + 2

distinct elements of r is empty and there exist n+ 1 distinct elements
of r, whose intersection is not empty.

(c) ord(r) = ∞, if and only if for every n ∈ ω there exist n distinct elements
of r, whose intersection is not empty.

Definition 1.1 (see [4]). We denote by r-dim the (unique) function that has
as domain the class of all subsets and as range the set ω ∪ {−1,∞} satisfying
the following condition r-dim(Q,X) ≤ n, where n ∈ {−1} ∪ ω if and only if
for every finite family c of open subsets of X such that Q ⊆ ∪{U : U ∈ c}
there exists a finite family r of open subsets of X refinement of c such that
Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n.

Finite topological spaces and the notion of dimension play an important role
in digital spaces, computer graphics, and image analysis. In [5] the authors gave
an algorithm for computing the covering dimension of a finite topological space
using matrix algebra. In this paper we give an algorithm of polynomial order
for computing the dimension r-dim of a pair (Q,X), where Q is a subset of a
finite space X , using matrix algebra.
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2. Finite spaces and dimension r-dim

In this section we present some propositions concerning the dimension r-dim
of a pair (Q,X), where Q is a subset of a finite space X .

Proposition 2.1. Let X = {x1, . . . , xn} be a finite space and Q ⊆ X. Then,
r-dim(Q,X) ≤ k, where k ∈ ω, if and only if there exists a family {Uj1 , . . . ,Ujm}
such that {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ . . . ∪Ujm and ord({Uj1 , . . . ,Ujm) ≤ k.

Proof. Let r-dim(Q,X) ≤ k, where k ∈ ω. We prove that there exists a
family {Uj1 , . . . ,Ujm} such that {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ . . . ∪ Ujm and
ord({Uj1 , . . . ,Ujm) ≤ k.

Let

ν = min{m ∈ ω : there exist j1, . . . , jm ∈ {1, . . . , n} such that
{xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm}

and c = {Uj1 , . . . ,Ujν} be a family such that

{xj1 , . . . , xjν} ⊆ Q ⊆ Uj1 ∪ . . . ∪Ujν .

Since r- dim(Q,X) ≤ k, there exists a family r = {V1, . . . , Vμ} of open subsets
of X refinement of c such that Q ⊆ V1 ∪ . . . ∪ Vμ and ord(r) ≤ k. Clearly, it
suffices to prove that {Uj1 , . . . ,Ujν} ⊆ r. Indeed, we suppose that there exists
α ∈ {1, . . . , ν} such that Ujα /∈ r. Since xjα ∈ Q, there exists β ∈ {1, . . . , μ}
such that xjα ∈ Vβ . By the fact that Ujα is the smallest open set of X
containing the point xjα we have that Ujα ⊆ Vβ . Also, since Ujα /∈ r, we have
Ujα �= Vβ . Therefore, Ujα ⊂ Vβ . Since r is a refinement of c, there exists
γ ∈ {1, . . . , ν} such that Vβ ⊆ Ujγ . Hence,

Ujα ⊂ Ujγ .

We observe that Q ⊆ (Uj1 ∪ . . . ∪Ujν ) \Ujα , which is a contradiction by the
choice of ν. Thus, c ⊆ r.

Conversely, we suppose that there exists a family {Uj1 , . . . ,Ujm} such that
{xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ . . . ∪Ujm and ord({Uj1 , . . . ,Ujm) ≤ k. We prove
that r-dim(Q,X) ≤ k.

Indeed, let c be a finite family of open subsets ofX such thatQ ⊆ ∪{U : U ∈ c}.
It suffices to prove that the family {Uj1 , . . . ,Ujm} is a refinement of c. For
every i ∈ {1, . . . ,m} there exists Vi ∈ c such that xji ∈ Uji ⊆ Vi. This means
that the family {Uj1 , . . . ,Ujm} is a refinement of c. �

Proposition 2.2. Let X = {x1, . . . , xn} be a finite space, where n > 1, and
Q ⊆ X. Then,

r-dim(Q,X) ≤ |Q| − 1.

Proof. Let Q = {xj1 , . . . , xjm}. The family {Uj1 , . . . ,Ujm} has m elements
and, therefore, ord({Uj1 , . . . ,Ujm}) ≤ m − 1. Thus, by Proposition 2.1,
r-dim(Q,X) ≤ m− 1 = |Q| − 1. �
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Note 1. In the following propositions we suppose that X = {x1, . . . , xn} is a
finite space with n elements, Q ⊆ X , T = (tij), i = 1, . . . , n, j = 1, . . . , n,
the incidence matrix of X , and c1, . . . , cn the n columns of the matrix T . We
denote by 1Q the n× 1 matrix ⎛

⎜⎜⎜⎝
a1
a2
...
an

⎞
⎟⎟⎟⎠ ,

where

ai =

{
1, if xi ∈ Q

0, otherwise.

Example 2.3. Let X = {x1, x2, x3, x4, x5} and Q = {x1, x3, x4}. Then,

1Q =

⎛
⎜⎜⎜⎜⎝

1
0
1
1
0

⎞
⎟⎟⎟⎟⎠ .

Proposition 2.4. If cj = 1Q and xj ∈ Q for some j ∈ {1, . . . , n}, then
r-dim(Q,X) = 0.

Proof. Since cj = 1Q, we have tij = 1 for every xi ∈ Q and, therefore, Q ⊆ Uj .
Since ord({Uj}) = 0, by Proposition 2.1, we have r-dim(Q,X) = 0. �

Proposition 2.5. Let cji , i = 1, . . . ,m, be m columns of the matrix T . Then,
cj1 + . . .+ cjm ≥ 1Q if and only if Q ⊆ Uj1 ∪ . . . ∪Ujm .

Proof. Let cj1+. . .+cjm ≥ 1Q. We prove that Q ⊆ Uj1∪. . .∪Ujm . Let xi0 ∈ Q.
By the definition of the matrix T and by the assumption cj1 + . . .+ cjm ≥ 1Q,
there exists κ ∈ {1, . . . ,m} such that ti0jκ = 1. Since Ujκ = {xi : tijκ = 1},
we have xi0 ∈ Ujκ . Thus, Q ⊆ Uj1 ∪ . . . ∪Ujm .

Conversely, we suppose that Q ⊆ Uj1 ∪ . . . ∪Ujm . Then, for every xi ∈ Q
there exists κ(i) ∈ {1, . . . ,m} such that xi ∈ Ujκ(i)

. Therefore, by the definition
of the matrix T , tijκ(i)

= 1. Thus, cj1 + . . .+ cjm ≥ 1Q. �

Proposition 2.6 (see Proposition 2.6 of [5]). Let cji , i = 1, . . . ,m, be m
columns of the matrix T and k = max(cj1 + . . .+cjm), that is k is the maximum
element of the n× 1 matrix cj1 + . . .+ cjm . Then,

ord({Uj1 , . . . ,Ujm}) = k − 1.

Definition 2.7. We define a preorder � on the set of all families {xj1 , . . . , xjm}
with {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm by

{xj1 , . . . , xjm1
} � {xj′1 , . . . , xj′m2

}
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if and only if

{Uj1 , . . . ,Ujm1
} ⊆ {Uj′1 , . . . ,Uj′m2

}.
Remark 2.8. The spaceX is T0 if and only if Ui = Uj implies xi = xj for every
i, j (see [1]). Therefore, if the spaceX is T0, then the relation � is an order. We
note that if the space X is T0, then there exists exactly one minimal family on
the set of all families {xj1 , . . . , xjm} with {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪· · ·∪Ujm .

Proposition 2.9. Let {xi1 , . . . , xiμ} ⊆ Q ⊆ {Ui1 , . . . ,Uiμ},
ν = min{m ∈ ω : there exist j1, . . . , jm ∈ {1, . . . , n} such that

{xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm},
and {xj1 , . . . , xjν} ⊆ Q ⊆ {Uj1 , . . . ,Ujν}. Then,

{xj1 , . . . , xjν} � {xi1 , . . . , xiμ}.
Proof. The proof is similar to that of Proposition 2.1. �

Proposition 2.10. Let {xj1 , . . . , xjν} be a minimal family on the set of all
families {xj1 , . . . , xjm} with {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm . If

ord({Uj1 , . . . ,Ujν}) = k ≥ 0,

then for every family {xr1 , . . . , xrμ} with {xr1 , . . . , xrμ} ⊆ Q ⊆ Ur1 ∪ · · · ∪Urμ

we have ord({Ur1 , . . . ,Urμ} ≥ k.

Proof. Let {Ur1 , . . . ,Urμ} be a family such that

{xr1 , . . . , xrμ} ⊆ Q ⊆ Ur1 ∪ · · · ∪Urμ .

Then,

{xj1 , . . . , xjν} � {xr1 , . . . , xrμ}
and, therefore,

{Uj1 , . . . ,Ujν} ⊆ {Ur1 , . . . ,Urμ}.
Since ord({Uj1 , . . . ,Ujν}) = k, we have ord({Ur1 , . . . ,Urμ} ≥ k. �

Proposition 2.11. Let {xj1 , . . . , xjν} be a minimal family on the set of all
families {xj1 , . . . , xjm} with {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm . Then,

r-dim(Q,X) = max(cj1 + . . .+ cjν )− 1.

Proof. Let k = max(cj1 + . . .+ cjν ). Then, by Proposition 2.6, we have

ord({Uj1 , . . . ,Ujν}) = k − 1

and, therefore, by Proposition 2.1, r- dim(Q,X) ≤ k − 1. We prove that
r- dim(Q,X) = k − 1. We suppose that r- dim(Q,X) < k − 1. Then, by
Proposition 2.1, there exists a family {Ur1 , . . . ,Urμ} such that

{xr1 , . . . , xrμ} ⊆ Q ⊆ Ur1 ∪ · · · ∪Urμ

and

ord({Ur1 , . . . ,Urμ}) < k − 1.
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Since ord({Uj1 , . . . ,Ujν}) = k − 1, by Proposition 2.10, we have

ord({Ur1 , . . . ,Urμ}) ≥ k − 1

which is a contradiction. Thus, r- dim(Q,X) = k − 1. �
Proposition 2.12. Let cji , i = 1, . . . , ν, be ν columns of the matrix T such
that cj1 + . . . + cjν ≥ 1Q and {xj1 , . . . , xjν} ⊆ Q. If cr1 + . . . + crq � 1Q for
every {xr1 , . . . , xrq} ⊆ Q and q < ν, then {xj1 , . . . , xjν} is a minimal family on
the set of all families {xj1 , . . . , xjm} with {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪· · ·∪Ujm .

Proof. Since cj1+. . .+cjν ≥ 1Q and cr1+. . .+crq � 1Q for every {xr1 , . . . , xrq} ⊆
Q and q < m, by Proposition 2.5, we have

ν = min{m ∈ ω : there exist j1, . . . , jm ∈ {1, . . . , n} such that
{xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm}.

Thus, by Proposition 2.9, {xj1 , . . . , xjν} is a minimal family on the set of all
families {xj1 , . . . , xjm} with {xj1 , . . . , xjm} ⊆ Q ⊆ Uj1 ∪ · · · ∪Ujm . �

By Propositions 2.11 and 2.12 we have the following corollary.

Corollary 2.13. Let cji , i = 1, . . . , ν, be ν columns of the matrix T such that
cj1 + . . .+ cjν ≥ 1Q and {xj1 , . . . , xjν} ⊆ Q. If cr1 + . . .+ crq � 1Q for every
{xr1 , . . . , xrq} ⊆ Q and q < ν, then

r-dim(Q,X) = max(cj1 + . . .+ cjν )− 1.

3. An algorithm for computing the covering dimension

In this section we give an algorithm of polynomial order for computing the
dimension r-dim(Q,X), where Q is a subset of a finite space X , using the
Propositions 2.11 and 2.5.

Algorithm 3.1. Let X = {x1, . . . , xn} be a finite space of n elements, Q =
{xλ1 , . . . , xλl

} ⊆ X, and T = (tij) the n × n incidence matrix of X. Our
intended algorithm contains l − 1 steps:

Step 1. Read the l columns cλ1 , . . . , cλl
of the matrix T . If some column is

equal to 1Q, then print
r-dim(Q,X) = 0.

Otherwise go to the Step 2.

Step 2. Find the sums

cλj11
+ cλj21

+ . . .+ cλj(l−1)1

for each {j11, j21, . . . , j(l−1)1} ⊆ {1, . . . , l}.
If there exists {j011, j021, . . . , j0(l−1)1} ⊆ {1, . . . , l} such that

cλ
j0
11

+ cλ
j0
21

+ . . .+ cλ
j0
(l−1)1

≥ 1Q,

then go to the Step 3.
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Otherwise print

r-dim(Q,X) = max(cλ1 + cλ2 + . . .+ cλl
)− 1.

Step 3. Find the sums

cλj12
+ cλj22

+ . . .+ cλj(l−2)2

for each {j12, j22, . . . , j(l−2)2} ⊆ {j011, j021, . . . , j0(l−1)1}.
If there exists {j012, j022, . . . , j0(l−2)2} ⊆ {j011, j021, . . . , j0(l−1)1} such that

cλ
j012

+ cλ
j022

+ . . .+ cλ
j0
(l−2)2

≥ 1Q,

then go to the Step 4.

Otherwise print

r-dim(Q,X) = max(cλ
j011

+ cλ
j021

+ . . .+ cλ
j0
(l−1)1

)− 1.

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Step l− 2. Find the sums

cλj1(l−3)
+ cλj2(l−3)

+ cλj3(l−3)

for each {j1(l−3), j2(l−3), j3(l−3)} ⊆ {j01(l−4), j
0
2(l−4), j

0
3(l−4), j

0
4(l−4)}.

If there exists {j01(l−3), j
0
2(l−3), j

0
3(l−3)} ⊆ {j01(l−4), j

0
2(l−4), j

0
3(l−4), j

0
4(l−4)} such

that
cλ

j0
1(l−3)

+ cλ
j0
2(l−3)

+ cλ
j0
3(l−3)

≥ 1Q,

then go to the Step l − 1.

Otherwise print

r-dim(Q,X) = max(cλ
j0
1(l−4)

+ cλ
j0
2(l−4)

+ cλ
j0
3(l−4)

+ cλ
j0
4(l−4)

)− 1.

Step l− 1. Find the sums

cλj1(l−2)
+ cλj2(l−2)

for each {j1(l−2), j2(l−2)} ⊆ {j01(l−3), j
0
2(l−3), j

0
3(l−3)}.

If there exists {j01(l−2), j
0
2(l−2)} ⊆ {j01(l−3), j

0
2(l−3), j

0
3(l−3)} such that

cλ
j0
1(l−2)

+ cλ
j0
2(l−2)

≥ 1,

then print
r-dim(Q,X) = max(cλ

j0
1(l−2)

+ cλ
j0
2(l−2)

)− 1.

Otherwise print

r-dim(Q,X) = max(cλ
j0
1(l−3)

+ cλ
j0
2(l−3)

+ cλ
j0
3(l−3)

)− 1.
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Example 3.2. Let X = {x1, x2, x3, x4} with the topology

τ = {∅, {x2}, {x1, x2}, {x2, x3}, {x1, x2, x3}, X}
and Q = {x1, x3}. Then,

1Q =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ .

We observe that U1 = {x1, x2}, U2 = {x2}, U3 = {x2, x3}, U4 = X . There-
fore,

T =

⎛
⎜⎜⎝

1 0 0 1
1 1 1 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ , c1 =

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ , c3 =

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ .

Moreover,

c1 + c3 =

⎛
⎜⎜⎝

1
2
1
0

⎞
⎟⎟⎠ ≥ 1Q

and

max(c1 + c3) = 2.

Thus, r-dim(Q,X) = max(c1 + c3)− 1 = 1.

4. Remarks on the algorithm for computing the covering

dimension of finite topological spaces

Remark 4.1. Let A = (αij) be a n× n matrix and B = (βij) a m×m matrix.
The Kronecker product of A and B (see [3]) is the mn×mn block matrix

A⊗B =

⎛
⎜⎝

α11B . . . α1nB
...

. . .
...

αn1B . . . αnnB

⎞
⎟⎠ .

More explicitly, the Kronecker product of A and B is the matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11β11 . . . α11β1m . . . α1nβ11 . . . α1nβ1m

...
. . .

...
...

. . .
...

α11βm1 . . . α11βmm . . . α1nβm1 . . . α1nβmm

...
...

...
...

αn1β11 . . . αn1β1m . . . αnnβ11 . . . αnnβ1m

...
. . .

...
...

. . .
...

αn1βm1 . . . αn1βmm . . . αnnβm1 . . . αnnβmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let X = {x1, . . . , xn} be a finite space of n elements and Y = {y1, . . . , ym} a
finite space of m elements. It is known that if TX is the incidence matrix of X
and TY is the incidence matrix of Y , then the incidence matrix of

X × Y = {(x1, y1), . . . , (x1, ym), . . . , (xn, y1), . . . , (xn, ym)}
is the Kronecker product TX ⊗ TY of TX and TY (see [8]).

Example 4.2. Let X = {x1, x2, x3} with the topology

τX = {∅, {x2}, {x1, x2}, {x2, x3}, X}
and Y = {y1, y2, y3, y4} with the topology

τY = {∅, {y3}, {y1, y3}, {y2, y3}, {y1, y2, y3}, Y }.
Also, let QX = {x1, x3} and QY = {y1, y2, y3}. Then,

QX ×QY = {(x1, y1), (x1, y2), (x1, y3), (x3, y1), (x3, y2), (x3, y3)}
and

1QX =

⎛
⎝ 1

0
1

⎞
⎠ , 1QY =

⎛
⎜⎜⎝

1
1
1
0

⎞
⎟⎟⎠ , 1QX×QY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0
0
0
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The incidence matrix TX of X is

TX =

⎛
⎝ 1 0 0

1 1 1
0 0 1

⎞
⎠
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and the incidence matrix TY of Y is

TY =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 1
1 1 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Therefore, the incidence matrix TX×Y of the product space X × Y is

TX×Y = TX ⊗ TY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We observe that

c1 + c2 + c9 + c10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2
0
2
2
4
0
1
1
2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 1QX×QY ,

cr1 + cr2 + cr3 � 1QX×QY for every {r1, r2, r3} ⊆ {1, 2, 9, 10}, and
max(c1 + c2 + c9 + c10) = 4.

Thus,

r-dim(QX ×QY , X × Y ) = max(c1 + c2 + c9 + c10)− 1 = 3.

Also, we observe that r-dim(QX , X) = 1 and r-dim(QY , Y ) = 1.

Remark 4.3. Let X = {x1, . . . , xn} be a finite T0-space and Q ⊆ X . Then,
there exists a finite space Y homeomorphic to X such that the incidence matrix
TY of Y is an upper triangular matrix. Let h a homeomorphism from X to Y
such that the incidence matrix TY of Y is an upper triangular matrix. In order
to calculate the r-dim(Q,X) it suffices to calculate r-dim(h(Q), Y ).
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Example 4.4. Let X = {x1, x2, x3} with the topology

τX = {∅, {x2}, {x1, x2}, {x2, x3}, X}
and Q = {x2, x3}. We consider the space Y = {y1, y2, y3} with the topology

τY = {∅, {y1}, {y1, y2}, {y1, y3}, Y }.
We observe that the map h : X → Y defined by h(x1) = y2, h(x2) = y1,
and h(x3) = y3 is a homeomorphism from X to Y with h(Q) = {y1, y3}. The
incidence matrix TY of Y is

TY =

⎛
⎝ 1 1 1

0 1 0
0 0 1

⎞
⎠ .

Since

c3 =

⎛
⎝ 1

0
1

⎞
⎠ = 1h(Q),

we have r-dim(h(Q), Y ) = 0. Therefore, r-dim(Q,X) = 0.

Proposition 4.5. An upper bound on the number of iterations of the algorithm
for computation of the dimension r-dim of a pair (Q,X), where Q is a subset

of a finite space X, is the number
1

2
|Q|2 + 3

2
|Q| − 3.

Proof. Let |Q| = l. We observe that the number of iterations the algorithm
performs in Steps

1, 2, 3, 4, . . . , l − 2, l − 1

is
l, l, l− 1, l − 2, . . . , 4, 3

respectively. Thus, the number of iterations the algorithm performs is

l + l + (l − 1) + (l − 2) + . . .+ 4 + 3 = l +
(l − 2)(l + 3)

2
=

1

2
l2 +

3

2
l − 3

=
1

2
|Q|2 + 3

2
|Q| − 3.

�

5. Problems

In [9] (see also [6] and [7]) two relative covering dimensions are defined and
studied which are denoted by dim and dim∗. The given two definitions below
are actually the definitions of dimensions dim and dim∗ given in [9] for regular
spaces.

Definition 5.1. We denote by dim the (unique) function with domain the class
of all subsets and range the set ω ∪ {−1,∞}, satisfying the following condition
dim(Q,X) ≤ n, where n ∈ {−1} ∪ ω if and only if for every finite open cover
c of the space X there exists a finite open cover rQ of Q such that rQ is a
refinement of c and ord(rQ) ≤ n.
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Definition 5.2. We denote by dim∗ the (unique) function with domain the
class of all subsets and range the set ω ∪ {−1,∞}, satisfying the following
condition dim∗(Q,X) ≤ n, where n ∈ {−1} ∪ ω if and only if for every finite
open cover c of the space X there exists a finite family r of open subsets of X
refinement of c such that Q ⊆ ∪{V : V ∈ r} and ord(r) ≤ n.

Problem 5.3. Find an algorithm for computing the dimension dim of a pair
(Q,X), where Q is a subset of a finite space X, using matrix algebra.

Problem 5.4. Find an algorithm for computing the dimension dim∗ of a pair
(Q,X), where Q is a subset of a finite space X, using matrix algebra.
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