Relative dimension r-dim and finite spaces

A. C. Megaritis

Abstract

> In [4] a relative covering dimension is defined and studied which is denoted by r-dim. In this paper we give an algorithm of polynomial order for computing the dimension r-dim of a pair (Q, X), where Q is a subset of a finite space X, using matrix algebra.

2010 MSC: 54F45, 54A05, 65F30.
KEYWORDS: Covering dimension, relative dimension, finite space, incidence matrix.

1. Introduction and preliminaries

The "relative dimensions" or "positional dimensions" are functions whose domains are classes of subsets. By a class of subsets we mean a class consisting of pairs (Q, X), where Q is a subset of a space X.

The class of finite topological spaces was first studied by P.A. Alexandroff in 1937 in [1]. A topological space X is finite if the set X is finite. In what follows we denote by $X=\left\{x_{1}, \ldots, x_{n}\right\}$ a finite space of n elements and by \mathbf{U}_{i} the smallest open set of X containing the point $x_{i}, i=1, \ldots, n$. The cardinality of a set X is denoted by $|X|$ and the first infinite cardinal is denoted by ω.

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space of n elements. The $n \times n$ matrix $T=\left(t_{i j}\right)$, where

$$
t_{i j}= \begin{cases}1, & \text { if } x_{i} \in \mathbf{U}_{j} \\ 0, & \text { otherwise }\end{cases}
$$

is called the incidence matrix of X. We observe that

$$
\mathbf{U}_{j}=\left\{x_{i}: t_{i j}=1\right\}, j=1, \ldots, n
$$

We denote by c_{1}, \ldots, c_{n} the n columns of the matrix T. Let

$$
c_{i}=\left(\begin{array}{c}
c_{1 i} \\
c_{2 i} \\
\vdots \\
c_{n i}
\end{array}\right) \text { and } c_{\mathrm{j}}=\left(\begin{array}{c}
c_{1 j} \\
c_{2 j} \\
\vdots \\
c_{n j}
\end{array}\right)
$$

be two $n \times 1$ matrices. Then, by $\max c_{i}$ we denote the maximum

$$
\max \left\{c_{1 i}, c_{2 i}, \ldots, c_{n i}\right\}
$$

and by $c_{i}+c_{j}$ the $n \times 1$ matrix

$$
c_{i}+c_{j}=\left(\begin{array}{c}
c_{1 i}+c_{1 j} \\
c_{2 i}+c_{2 j} \\
\vdots \\
c_{n i}+c_{n j}
\end{array}\right)
$$

Also, we write $c_{i} \leq c_{j}$ if only if $c_{k i} \leq c_{k j}$ for each $k=1, \ldots, n$.
For the following notions see for example [2].
Let X be a space. A cover of X is a non-empty set of subsets of X, whose union is X. A cover c of X is said to be open (closed) if all elements of c is open (closed). A family r of subsets of X is said to be a refinement of a family c of subsets of X if each element of r is contained in an element of c.

Define the order of a family r of subsets of a space X as follows:
(a) $\operatorname{ord}(r)=-1$ if and only if r consists of only the empty set.
(b) $\operatorname{ord}(r)=n$, where $n \in \omega$, if and only if the intersection of any $n+2$ distinct elements of r is empty and there exist $n+1$ distinct elements of r, whose intersection is not empty.
(c) $\operatorname{ord}(r)=\infty$, if and only if for every $n \in \omega$ there exist n distinct elements of r, whose intersection is not empty.

Definition 1.1 (see [4]). We denote by r-dim the (unique) function that has as domain the class of all subsets and as range the set $\omega \cup\{-1, \infty\}$ satisfying the following condition $\mathrm{r}-\operatorname{dim}(Q, X) \leq n$, where $n \in\{-1\} \cup \omega$ if and only if for every finite family c of open subsets of X such that $Q \subseteq \cup\{U: U \in c\}$ there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \cup\{V: V \in r\}$ and $\operatorname{ord}(r) \leq n$.

Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, and image analysis. In [5] the authors gave an algorithm for computing the covering dimension of a finite topological space using matrix algebra. In this paper we give an algorithm of polynomial order for computing the dimension r-dim of a pair (Q, X), where Q is a subset of a finite space X, using matrix algebra.

2. Finite spaces and dimension r-dim

In this section we present some propositions concerning the dimension r-dim of a pair (Q, X), where Q is a subset of a finite space X.

Proposition 2.1. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space and $Q \subseteq X$. Then, $\mathrm{r}-\operatorname{dim}(Q, X) \leq k$, where $k \in \omega$, if and only if there exists a family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ such that $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$ and $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right) \leq k\right.$.
Proof. Let $\mathrm{r}-\operatorname{dim}(Q, X) \leq k$, where $k \in \omega$. We prove that there exists a family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ such that $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$ and $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right) \leq k\right.$.

Let

$$
\begin{aligned}
& \nu=\min \left\{m \in \omega: \text { there exist } j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}\right. \text { such that } \\
& \left.\qquad\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}\right\}
\end{aligned}
$$

and $c=\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\}$ be a family such that

$$
\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{\nu}}
$$

Since r- $\operatorname{dim}(Q, X) \leq k$, there exists a family $r=\left\{V_{1}, \ldots, V_{\mu}\right\}$ of open subsets of X refinement of c such that $Q \subseteq V_{1} \cup \ldots \cup V_{\mu}$ and $\operatorname{ord}(r) \leq k$. Clearly, it suffices to prove that $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\} \subseteq r$. Indeed, we suppose that there exists $\alpha \in\{1, \ldots, \nu\}$ such that $\mathbf{U}_{j_{\alpha}} \notin r$. Since $x_{j_{\alpha}} \in Q$, there exists $\beta \in\{1, \ldots, \mu\}$ such that $x_{j_{\alpha}} \in V_{\beta}$. By the fact that $\mathbf{U}_{j_{\alpha}}$ is the smallest open set of X containing the point $x_{j_{\alpha}}$ we have that $\mathbf{U}_{j_{\alpha}} \subseteq V_{\beta}$. Also, since $\mathbf{U}_{j_{\alpha}} \notin r$, we have $\mathbf{U}_{j_{\alpha}} \neq V_{\beta}$. Therefore, $\mathbf{U}_{j_{\alpha}} \subset V_{\beta}$. Since r is a refinement of c, there exists $\gamma \in\{1, \ldots, \nu\}$ such that $V_{\beta} \subseteq \mathbf{U}_{j_{\gamma}}$. Hence,

$$
\mathbf{U}_{j_{\alpha}} \subset \mathbf{U}_{j_{\gamma}}
$$

We observe that $Q \subseteq\left(\mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{\nu}}\right) \backslash \mathbf{U}_{j_{\alpha}}$, which is a contradiction by the choice of ν. Thus, $c \subseteq r$.

Conversely, we suppose that there exists a family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ such that $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$ and $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right) \leq k\right.$. We prove that r-dim $(Q, X) \leq k$.
Indeed, let c be a finite family of open subsets of X such that $Q \subseteq \cup\{U: U \in c\}$. It suffices to prove that the family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ is a refinement of c. For every $i \in\{1, \ldots, m\}$ there exists $V_{i} \in c$ such that $x_{j_{i}} \in \mathbf{U}_{j_{i}} \subseteq V_{i}$. This means that the family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ is a refinement of c.

Proposition 2.2. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space, where $n>1$, and $Q \subseteq X$. Then,

$$
\mathrm{r}-\operatorname{dim}(Q, X) \leq|Q|-1
$$

Proof. Let $Q=\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$. The family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ has m elements and, therefore, $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}\right) \leq m-1$. Thus, by Proposition 2.1, $\mathrm{r}-\operatorname{dim}(Q, X) \leq m-1=|Q|-1$.

Note 1. In the following propositions we suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a finite space with n elements, $Q \subseteq X, T=\left(t_{i j}\right), i=1, \ldots, n, j=1, \ldots, n$, the incidence matrix of X, and c_{1}, \ldots, c_{n} the n columns of the matrix T. We denote by $\mathbf{1}_{Q}$ the $n \times 1$ matrix

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

where

$$
a_{i}= \begin{cases}1, & \text { if } x_{i} \in Q \\ 0, & \text { otherwise }\end{cases}
$$

Example 2.3. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and $Q=\left\{x_{1}, x_{3}, x_{4}\right\}$. Then,

$$
\mathbf{1}_{Q}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

Proposition 2.4. If $c_{j}=\mathbf{1}_{Q}$ and $x_{j} \in Q$ for some $j \in\{1, \ldots, n\}$, then r-dim $(Q, X)=0$.

Proof. Since $c_{j}=\mathbf{1}_{Q}$, we have $t_{i j}=1$ for every $x_{i} \in Q$ and, therefore, $Q \subseteq \mathbf{U}_{j}$. Since $\operatorname{ord}\left(\left\{\mathbf{U}_{j}\right\}\right)=0$, by Proposition 2.1, we have r-dim $(Q, X)=0$.

Proposition 2.5. Let $c_{j_{i}}, i=1, \ldots, m$, be m columns of the matrix T. Then, $c_{j_{1}}+\ldots+c_{j_{m}} \geq \mathbf{1}_{Q}$ if and only if $Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$.

Proof. Let $c_{j_{1}}+\ldots+c_{j_{m}} \geq \mathbf{1}_{Q}$. We prove that $Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$. Let $x_{i_{0}} \in Q$. By the definition of the matrix T and by the assumption $c_{j_{1}}+\ldots+c_{j_{m}} \geq \mathbf{1}_{Q}$, there exists $\kappa \in\{1, \ldots, m\}$ such that $t_{i_{0} j_{\kappa}}=1$. Since $\mathbf{U}_{j_{\kappa}}=\left\{x_{i}: t_{i j_{\kappa}}=1\right\}$, we have $x_{i_{0}} \in \mathbf{U}_{j_{\kappa}}$. Thus, $Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$.

Conversely, we suppose that $Q \subseteq \mathbf{U}_{j_{1}} \cup \ldots \cup \mathbf{U}_{j_{m}}$. Then, for every $x_{i} \in Q$ there exists $\kappa(i) \in\{1, \ldots, m\}$ such that $x_{i} \in \mathbf{U}_{j_{\kappa(i)}}$. Therefore, by the definition of the matrix $T, t_{i j_{k(i)}}=1$. Thus, $c_{j_{1}}+\ldots+c_{j_{m}} \geq \mathbf{1}_{Q}$.
Proposition 2.6 (see Proposition 2.6 of [5]). Let $c_{j_{i}}, i=1, \ldots, m$, be m columns of the matrix T and $k=\max \left(c_{j_{1}}+\ldots+c_{j_{m}}\right)$, that is k is the maximum element of the $n \times 1$ matrix $c_{j_{1}}+\ldots+c_{j_{m}}$. Then,

$$
\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}\right)=k-1
$$

Definition 2.7. We define a preorder \leqslant on the set of all families $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}$ by

$$
\left\{x_{j_{1}}, \ldots, x_{j_{m_{1}}}\right\} \leqslant\left\{x_{j_{1}^{\prime}}, \ldots, x_{j_{m_{2}}^{\prime}}\right\}
$$

if and only if

$$
\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m_{1}}}\right\} \subseteq\left\{\mathbf{U}_{j_{1}^{\prime}}, \ldots, \mathbf{U}_{j_{m_{2}}^{\prime}}\right\}
$$

Remark 2.8. The space X is T_{0} if and only if $\mathbf{U}_{i}=\mathbf{U}_{j}$ implies $x_{i}=x_{j}$ for every i, j (see [1]). Therefore, if the space X is T_{0}, then the relation \leqslant is an order. We note that if the space X is T_{0}, then there exists exactly one minimal family on the set of all families $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}$.
Proposition 2.9. Let $\left\{x_{i_{1}}, \ldots, x_{i_{\mu}}\right\} \subseteq Q \subseteq\left\{\mathbf{U}_{i_{1}}, \ldots, \mathbf{U}_{i_{\mu}}\right\}$,
$\nu=\min \left\{m \in \omega:\right.$ there exist $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$ such that

$$
\left.\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}\right\}
$$

and $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\} \subseteq Q \subseteq\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\}$. Then,

$$
\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\} \leqslant\left\{x_{i_{1}}, \ldots, x_{i_{\mu}}\right\}
$$

Proof. The proof is similar to that of Proposition 2.1.
Proposition 2.10. Let $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\}$ be a minimal family on the set of all families $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}$. If

$$
\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\}\right)=k \geq 0
$$

then for every family $\left\{x_{r_{1}}, \ldots, x_{r_{\mu}}\right\}$ with $\left\{x_{r_{1}}, \ldots, x_{r_{\mu}}\right\} \subseteq Q \subseteq \mathbf{U}_{r_{1}} \cup \cdots \cup \mathbf{U}_{r_{\mu}}$ we have $\operatorname{ord}\left(\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\} \geq k\right.$.

Proof. Let $\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\}$ be a family such that

$$
\left\{x_{r_{1}}, \ldots, x_{r_{\mu}}\right\} \subseteq Q \subseteq \mathbf{U}_{r_{1}} \cup \cdots \cup \mathbf{U}_{r_{\mu}}
$$

Then,

$$
\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\} \leqslant\left\{x_{r_{1}}, \ldots, x_{r_{\mu}}\right\}
$$

and, therefore,

$$
\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\} \subseteq\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\}
$$

Since $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\}\right)=k$, we have ord $\left(\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\} \geq k\right.$.
Proposition 2.11. Let $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\}$ be a minimal family on the set of all families $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}$. Then,

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{j_{1}}+\ldots+c_{j_{\nu}}\right)-1
$$

Proof. Let $k=\max \left(c_{j_{1}}+\ldots+c_{j_{\nu}}\right)$. Then, by Proposition 2.6, we have

$$
\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\}\right)=k-1
$$

and, therefore, by Proposition 2.1, $\mathrm{r}-\operatorname{dim}(Q, X) \leq k-1$. We prove that $\mathrm{r}-\operatorname{dim}(Q, X)=k-1$. We suppose that $\mathrm{r}-\operatorname{dim}(Q, X)<k-1$. Then, by Proposition 2.1, there exists a family $\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\}$ such that

$$
\left\{x_{r_{1}}, \ldots, x_{r_{\mu}}\right\} \subseteq Q \subseteq \mathbf{U}_{r_{1}} \cup \cdots \cup \mathbf{U}_{r_{\mu}}
$$

and

$$
\operatorname{ord}\left(\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\}\right)<k-1
$$

Since $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{\nu}}\right\}\right)=k-1$, by Proposition 2.10, we have

$$
\operatorname{ord}\left(\left\{\mathbf{U}_{r_{1}}, \ldots, \mathbf{U}_{r_{\mu}}\right\}\right) \geq k-1
$$

which is a contradiction. Thus, $\mathrm{r}-\operatorname{dim}(Q, X)=k-1$.
Proposition 2.12. Let $c_{j_{i}}, i=1, \ldots, \nu$, be ν columns of the matrix T such that $c_{j_{1}}+\ldots+c_{j_{\nu}} \geq \mathbf{1}_{Q}$ and $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\} \subseteq Q$. If $c_{r_{1}}+\ldots+c_{r_{q}} \nsupseteq \mathbf{1}_{Q}$ for every $\left\{x_{r_{1}}, \ldots, x_{r_{q}}\right\} \subseteq Q$ and $q<\nu$, then $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\}$ is a minimal family on the set of all families $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}$.
Proof. Since $c_{j_{1}}+\ldots+c_{j_{\nu}} \geq \mathbf{1}_{Q}$ and $c_{r_{1}}+\ldots+c_{r_{q}} \nsupseteq \mathbf{1}_{Q}$ for every $\left\{x_{r_{1}}, \ldots, x_{r_{q}}\right\} \subseteq$ Q and $q<m$, by Proposition 2.5, we have
$\nu=\min \left\{m \in \omega:\right.$ there exist $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$ such that

$$
\left.\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}\right\}
$$

Thus, by Proposition 2.9, $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\}$ is a minimal family on the set of all families $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\} \subseteq Q \subseteq \mathbf{U}_{j_{1}} \cup \cdots \cup \mathbf{U}_{j_{m}}$.

By Propositions 2.11 and 2.12 we have the following corollary.
Corollary 2.13. Let $c_{j_{i}}, i=1, \ldots, \nu$, be ν columns of the matrix T such that $c_{j_{1}}+\ldots+c_{j_{\nu}} \geq \mathbf{1}_{Q}$ and $\left\{x_{j_{1}}, \ldots, x_{j_{\nu}}\right\} \subseteq Q$. If $c_{r_{1}}+\ldots+c_{r_{q}} \nsupseteq \mathbf{1}_{Q}$ for every $\left\{x_{r_{1}}, \ldots, x_{r_{q}}\right\} \subseteq Q$ and $q<\nu$, then

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{j_{1}}+\ldots+c_{j_{\nu}}\right)-1
$$

3. An algorithm For computing the covering dimension

In this section we give an algorithm of polynomial order for computing the dimension r-dim (Q, X), where Q is a subset of a finite space X, using the Propositions 2.11 and 2.5.

Algorithm 3.1. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space of n elements, $Q=$ $\left\{x_{\lambda_{1}}, \ldots, x_{\lambda_{l}}\right\} \subseteq X$, and $T=\left(t_{i j}\right)$ the $n \times n$ incidence matrix of X. Our intended algorithm contains $l-1$ steps:
Step 1. Read the l columns $c_{\lambda_{1}}, \ldots, c_{\lambda_{l}}$ of the matrix T. If some column is equal to $\mathbf{1}_{Q}$, then print

$$
\mathrm{r}-\operatorname{dim}(Q, X)=0
$$

Otherwise go to the Step 2.
Step 2. Find the sums

$$
c_{\lambda_{j_{11}}}+c_{\lambda_{j_{21}}}+\ldots+c_{\lambda_{j_{(l-1) 1}}}
$$

for each $\left\{j_{11}, j_{21}, \ldots, j_{(l-1) 1}\right\} \subseteq\{1, \ldots, l\}$.
If there exists $\left\{j_{11}^{0}, j_{21}^{0}, \ldots, j_{(l-1) 1}^{0}\right\} \subseteq\{1, \ldots, l\}$ such that

$$
c_{\lambda_{j_{11}^{0}}}+c_{\lambda_{j_{21}^{0}}}+\ldots+c_{\lambda_{j_{(l-1) 1}^{0}}} \geq \mathbf{1}_{Q}
$$

then go to the Step 3.

Otherwise print

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{\lambda_{1}}+c_{\lambda_{2}}+\ldots+c_{\lambda_{l}}\right)-1
$$

Step 3. Find the sums

$$
c_{\lambda_{j_{12}}}+c_{\lambda_{j_{22}}}+\ldots+c_{\lambda_{j_{(l-2) 2}}}
$$

for each $\left\{j_{12}, j_{22}, \ldots, j_{(l-2) 2}\right\} \subseteq\left\{j_{11}^{0}, j_{21}^{0}, \ldots, j_{(l-1) 1}^{0}\right\}$.
If there exists $\left\{j_{12}^{0}, j_{22}^{0}, \ldots, j_{(l-2) 2}^{0}\right\} \subseteq\left\{j_{11}^{0}, j_{21}^{0}, \ldots, j_{(l-1) 1}^{0}\right\}$ such that

$$
c_{\lambda_{j_{12}^{0}}}+c_{\lambda_{j_{22}^{0}}}+\ldots+c_{\lambda_{j_{(l-2) 2}^{0}}} \geq \mathbf{1}_{Q}
$$

then go to the Step 4.
Otherwise print

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{\lambda_{j_{11}^{0}}}+c_{\lambda_{j_{21}^{0}}}+\ldots+c_{\lambda_{j_{(l-1) 1}^{0}}}\right)-1 .
$$

...........
.........

Step l-2. Find the sums

$$
c_{\lambda_{j_{1(l-3)}}}+c_{\lambda_{j_{2(l-3)}}}+c_{\lambda_{j_{3(l-3)}}}
$$

for each $\left\{j_{1(l-3)}, j_{2(l-3)}, j_{3(l-3)}\right\} \subseteq\left\{j_{1(l-4)}^{0}, j_{2(l-4)}^{0}, j_{3(l-4)}^{0}, j_{4(l-4)}^{0}\right\}$.
If there exists $\left\{j_{1(l-3)}^{0}, j_{2(l-3)}^{0}, j_{3(l-3)}^{0}\right\} \subseteq\left\{j_{1(l-4)}^{0}, j_{2(l-4)}^{0}, j_{3(l-4)}^{0}, j_{4(l-4)}^{0}\right\}$ such that

$$
c_{\lambda_{j_{1(l-3)}^{0}}}+c_{\lambda_{j_{2(l-3)}^{0}}}+c_{\lambda_{j_{3(l-3)}^{0}}} \geq \mathbf{1}_{Q}
$$

then go to the Step $l-1$.
Otherwise print

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{\lambda_{j_{1(l-4)}^{0}}}+c_{\lambda_{j_{2(l-4)}^{0}}}+c_{\lambda_{j_{3(l-4)}^{0}}}+c_{\lambda_{j_{4(l-4)}^{0}}}\right)-1 .
$$

Step l-1. Find the sums

$$
c_{\lambda_{j_{1(l-2)}}}+c_{\lambda_{j_{2(l-2)}}}
$$

for each $\left\{j_{1(l-2)}, j_{2(l-2)}\right\} \subseteq\left\{j_{1(l-3)}^{0}, j_{2(l-3)}^{0}, j_{3(l-3)}^{0}\right\}$.
If there exists $\left\{j_{1(l-2)}^{0}, j_{2(l-2)}^{0}\right\} \subseteq\left\{j_{1(l-3)}^{0}, j_{2(l-3)}^{0}, j_{3(l-3)}^{0}\right\}$ such that

$$
c_{\lambda_{j_{1(l-2)}^{0}}}+c_{\lambda_{j_{2(l-2)}^{0}}} \geq \mathbf{1}
$$

then print

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{\lambda_{j_{1(l-2)}^{0}}}+c_{\lambda_{j_{2(l-2)}^{0}}}\right)-1 .
$$

Otherwise print

$$
\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{\lambda_{j_{1(l-3)}^{0}}}+c_{\lambda_{j_{2(l-3)}^{0}}}+c_{\lambda_{j_{3(l-3)}^{0}}}\right)-1
$$

Example 3.2. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with the topology

$$
\tau=\left\{\varnothing,\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}, X\right\}
$$

and $Q=\left\{x_{1}, x_{3}\right\}$. Then,

$$
\mathbf{1}_{Q}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

We observe that $\mathbf{U}_{1}=\left\{x_{1}, x_{2}\right\}, \mathbf{U}_{2}=\left\{x_{2}\right\}, \mathbf{U}_{3}=\left\{x_{2}, x_{3}\right\}, \mathbf{U}_{4}=X$. Therefore,

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), c_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), c_{3}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

Moreover,

$$
c_{1}+c_{3}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right) \geq \mathbf{1}_{Q}
$$

and

$$
\max \left(c_{1}+c_{3}\right)=2
$$

Thus, $\mathrm{r}-\operatorname{dim}(Q, X)=\max \left(c_{1}+c_{3}\right)-1=1$.
4. Remarks on the algorithm for computing the covering dimension of finite topological spaces
Remark 4.1. Let $A=\left(\alpha_{i j}\right)$ be a $n \times n$ matrix and $B=\left(\beta_{i j}\right)$ a $m \times m$ matrix. The Kronecker product of A and B (see [3]) is the $m n \times m n$ block matrix

$$
A \otimes B=\left(\begin{array}{ccc}
\alpha_{11} B & \ldots & \alpha_{1 n} B \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} B & \ldots & \alpha_{n n} B
\end{array}\right)
$$

More explicitly, the Kronecker product of A and B is the matrix

$$
\left(\begin{array}{ccccccc}
\alpha_{11} \beta_{11} & \ldots & \alpha_{11} \beta_{1 m} & \ldots & \alpha_{1 n} \beta_{11} & \ldots & \alpha_{1 n} \beta_{1 m} \\
\vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\
\alpha_{11} \beta_{m 1} & \ldots & \alpha_{11} \beta_{m m} & \ldots & \alpha_{1 n} \beta_{m 1} & \ldots & \alpha_{1 n} \beta_{m m} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\alpha_{n 1} \beta_{11} & \ldots & \alpha_{n 1} \beta_{1 m} & \ldots & \alpha_{n n} \beta_{11} & \ldots & \alpha_{n n} \beta_{1 m} \\
\vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\
\alpha_{n 1} \beta_{m 1} & \ldots & \alpha_{n 1} \beta_{m m} & \ldots & \alpha_{n n} \beta_{m 1} & \ldots & \alpha_{n n} \beta_{m m}
\end{array}\right)
$$

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space of n elements and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ a finite space of m elements. It is known that if T_{X} is the incidence matrix of X and T_{Y} is the incidence matrix of Y, then the incidence matrix of

$$
X \times Y=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{1}, y_{m}\right), \ldots,\left(x_{n}, y_{1}\right), \ldots,\left(x_{n}, y_{m}\right)\right\}
$$

is the Kronecker product $T_{X} \otimes T_{Y}$ of T_{X} and T_{Y} (see [8]).
Example 4.2. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ with the topology

$$
\tau_{X}=\left\{\varnothing,\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}, X\right\}
$$

and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ with the topology

$$
\tau_{Y}=\left\{\varnothing,\left\{y_{3}\right\},\left\{y_{1}, y_{3}\right\},\left\{y_{2}, y_{3}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}, Y\right\}
$$

Also, let $Q^{X}=\left\{x_{1}, x_{3}\right\}$ and $Q^{Y}=\left\{y_{1}, y_{2}, y_{3}\right\}$. Then,

$$
Q^{X} \times Q^{Y}=\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{1}, y_{3}\right),\left(x_{3}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}
$$

and

$$
\mathbf{1}_{Q^{X}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \mathbf{1}_{Q^{Y}}=\left(\begin{array}{c}
1 \\
1 \\
1 \\
0
\end{array}\right), \mathbf{1}_{Q^{X} \times Q^{Y}}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
0
\end{array}\right) .
$$

The incidence matrix T_{X} of X is

$$
T_{X}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and the incidence matrix T_{Y} of Y is

$$
T_{Y}=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Therefore, the incidence matrix $T_{X \times Y}$ of the product space $X \times Y$ is

$$
T_{X \times Y}=T_{X} \otimes T_{Y}=\left(\begin{array}{cccccccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

We observe that

$$
c_{1}+c_{2}+c_{9}+c_{10}=\left(\begin{array}{c}
1 \\
1 \\
2 \\
0 \\
2 \\
2 \\
4 \\
0 \\
1 \\
1 \\
2 \\
0
\end{array}\right)>\mathbf{1}_{Q^{X} \times Q^{Y}}
$$

$c_{r_{1}}+c_{r_{2}}+c_{r_{3}} \nsupseteq \mathbf{1}_{Q^{X} \times Q^{Y}}$ for every $\left\{r_{1}, r_{2}, r_{3}\right\} \subseteq\{1,2,9,10\}$, and

$$
\max \left(c_{1}+c_{2}+c_{9}+c_{10}\right)=4
$$

Thus,

$$
\mathrm{r}-\operatorname{dim}\left(Q^{X} \times Q^{Y}, X \times Y\right)=\max \left(c_{1}+c_{2}+c_{9}+c_{10}\right)-1=3
$$

Also, we observe that r-dim $\left(Q^{X}, X\right)=1$ and r-dim $\left(Q^{Y}, Y\right)=1$.
Remark 4.3. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite T_{0}-space and $Q \subseteq X$. Then, there exists a finite space Y homeomorphic to X such that the incidence matrix T_{Y} of Y is an upper triangular matrix. Let h a homeomorphism from X to Y such that the incidence matrix T_{Y} of Y is an upper triangular matrix. In order to calculate the r-dim (Q, X) it suffices to calculate r-dim $(h(Q), Y)$.

Example 4.4. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ with the topology

$$
\tau_{X}=\left\{\varnothing,\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}, X\right\}
$$

and $Q=\left\{x_{2}, x_{3}\right\}$. We consider the space $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ with the topology

$$
\tau_{Y}=\left\{\varnothing,\left\{y_{1}\right\},\left\{y_{1}, y_{2}\right\},\left\{y_{1}, y_{3}\right\}, Y\right\}
$$

We observe that the map $h: X \rightarrow Y$ defined by $h\left(x_{1}\right)=y_{2}, h\left(x_{2}\right)=y_{1}$, and $h\left(x_{3}\right)=y_{3}$ is a homeomorphism from X to Y with $h(Q)=\left\{y_{1}, y_{3}\right\}$. The incidence matrix T_{Y} of Y is

$$
T_{Y}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since

$$
c_{3}=\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right)=\mathbf{1}_{h(Q)}
$$

we have r-dim $(h(Q), Y)=0$. Therefore, r-dim $(Q, X)=0$.
Proposition 4.5. An upper bound on the number of iterations of the algorithm for computation of the dimension r-dim of a pair (Q, X), where Q is a subset of a finite space X, is the number $\frac{1}{2}|Q|^{2}+\frac{3}{2}|Q|-3$.
Proof. Let $|Q|=l$. We observe that the number of iterations the algorithm performs in Steps

$$
1,2,3,4, \ldots, l-2, l-1
$$

is

$$
l, l, l-1, l-2, \ldots, 4,3
$$

respectively. Thus, the number of iterations the algorithm performs is

$$
\begin{aligned}
l+l+(l-1)+(l-2)+\ldots+4+3 & =l+\frac{(l-2)(l+3)}{2}=\frac{1}{2} l^{2}+\frac{3}{2} l-3 \\
& =\frac{1}{2}|Q|^{2}+\frac{3}{2}|Q|-3
\end{aligned}
$$

5. Problems

In [9] (see also [6] and [7]) two relative covering dimensions are defined and studied which are denoted by dim and dim*. The given two definitions below are actually the definitions of dimensions dim and dim* given in [9] for regular spaces.
Definition 5.1. We denote by dim the (unique) function with domain the class of all subsets and range the set $\omega \cup\{-1, \infty\}$, satisfying the following condition $\operatorname{dim}(Q, X) \leq n$, where $n \in\{-1\} \cup \omega$ if and only if for every finite open cover c of the space X there exists a finite open cover r_{Q} of Q such that r_{Q} is a refinement of c and $\operatorname{ord}\left(r_{Q}\right) \leq n$.

Definition 5.2. We denote by dim* the (unique) function with domain the class of all subsets and range the set $\omega \cup\{-1, \infty\}$, satisfying the following condition $\operatorname{dim}^{*}(Q, X) \leq n$, where $n \in\{-1\} \cup \omega$ if and only if for every finite open cover c of the space X there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \cup\{V: V \in r\}$ and $\operatorname{ord}(r) \leq n$.

Problem 5.3. Find an algorithm for computing the dimension dim of a pair (Q, X), where Q is a subset of a finite space X, using matrix algebra.

Problem 5.4. Find an algorithm for computing the dimension dim^{*} of a pair (Q, X), where Q is a subset of a finite space X, using matrix algebra.

Acknowledgements. The author would like to thank the referee for very helpful comments and suggestions.

References

[1] P. Alexandroff, Diskrete Räume, Mat. Sb. (N.S.) 2 (1937), 501-518.
[2] R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10. Heldermann Verlag, Lemgo, 1995. viii+401 pp.
[3] H. Eves, Elementary matrix theory, Dover Publications, Inc., New York, 1980. xvi+325 pp.
[4] D. N. Georgiou and A. C. Megaritis, On a New Relative Invariant Covering Dimension, Extracta Mathematicae 25, no. 3 (2010), 263-275.
[5] D. N. Georgiou and A. C. Megaritis, Covering dimension and finite spaces, Applied Mathematics and Computation 218 (2011), 3122-3130.
[6] D. N. Georgiou and A. C. Megaritis, On the relative dimensions dim and dim* I, Questions and Answers in General Topology 29 (2011), 1-16.
[7] D. N. Georgiou and A. C. Megaritis, On the relative dimensions dim and dim* II, Questions and Answers in General Topology 29 (2011), 17-29.
[8] M. Shiraki, On finite topological spaces, Rep. Fac. Sci. Kagoshima Univ. 1 1968 1-8.
[9] J. Valuyeva, On relative dimension concepts, Questions Answers Gen. Topology 15, no. 1 (1997), 21-24.
(Received November 2011 - Accepted March 2012)
A. C. Megaritis (megariti@master.math.upatras.gr)

Department of Accounting, Technological Educational Institute of Messolonghi, 30200 Messolonghi, Greece

