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Relative dimension r-dim and finite spaces

A. C. MEGARITIS

ABSTRACT

In [4] a relative covering dimension is defined and studied which is
denoted by r-dim. In this paper we give an algorithm of polynomial
order for computing the dimension r-dim of a pair (Q, X), where Q is
a subset of a finite space X, using matrix algebra.

2010 MSC: 54F45, 54A05, 65F30.

KEYWORDS: Covering dimension, relative dimension, finite space, incidence
matrix.

1. INTRODUCTION AND PRELIMINARIES

The “relative dimensions” or “positional dimensions” are functions whose
domains are classes of subsets. By a class of subsets we mean a class consisting
of pairs (@, X), where @ is a subset of a space X.

The class of finite topological spaces was first studied by P.A. Alexandroff in
1937 in [1]. A topological space X is finite if the set X is finite. In what follows
we denote by X = {x1,...,z,} a finite space of n elements and by U; the
smallest open set of X containing the point z;, i = 1,...,n. The cardinality of
a set X is denoted by |X| and the first infinite cardinal is denoted by w.

Let X = {x1,...,2,} be a finite space of n elements. The n x n matrix
T = (ti;), where

1, ifz; €Uy
tij = .
0, otherwise
is called the incidence matriz of X. We observe that

Uj={z;:t;y=1}, j=1,...,n.
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We denote by cy, ..., c, the n columns of the matrix T'. Let
C1i C1j
C2; C2j
= . and c; =
Cni Cnj

be two n x 1 matrices. Then, by maxc¢; we denote the maximum
max{ci, 24, .-, Cni}

and by ¢; + ¢; the n x 1 matrix

C1; + C1j
C2; + €25
¢ +cj = .
Cni + Cnj
Also, we write ¢; < ¢; if only if cp; < cpj for each k =1,...,n.

For the following notions see for example [2].

Let X be a space. A cover of X is a non-empty set of subsets of X, whose
union is X. A cover ¢ of X is said to be open (closed) if all elements of ¢ is
open (closed). A family r of subsets of X is said to be a refinement of a family
¢ of subsets of X if each element of r is contained in an element of c.

Define the order of a family r of subsets of a space X as follows:

(a) ord(r) = —1 if and only if r consists of only the empty set.

(b) ord(r) = n, where n € w, if and only if the intersection of any n + 2
distinct elements of r is empty and there exist n + 1 distinct elements
of r, whose intersection is not empty.

(¢) ord(r) = oo, if and only if for every n € w there exist n distinct elements
of r, whose intersection is not empty.

Definition 1.1 (see [4]). We denote by r-dim the (unique) function that has
as domain the class of all subsets and as range the set w U {—1, 0o} satisfying
the following condition r-dim(Q, X) < n, where n € {—1} Uw if and only if
for every finite family ¢ of open subsets of X such that @ C U{U : U € ¢}
there exists a finite family » of open subsets of X refinement of ¢ such that
Q CU{V:V er}and ord(r) < n.

Finite topological spaces and the notion of dimension play an important role
in digital spaces, computer graphics, and image analysis. In [5] the authors gave
an algorithm for computing the covering dimension of a finite topological space
using matrix algebra. In this paper we give an algorithm of polynomial order
for computing the dimension r-dim of a pair (Q, X), where @ is a subset of a
finite space X, using matrix algebra.
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2. FINITE SPACES AND DIMENSION r-dim

In this section we present some propositions concerning the dimension r-dim
of a pair (@, X), where @ is a subset of a finite space X.

Proposition 2.1. Let X = {z1,...,z,} be a finite space and Q@ C X. Then,
r-dim(Q, X) < k, where k € w, if and only if there exists a family {U;,,..., U, }
such that {zj,,....,z;,} CQCU; U...UU; andord{U,,...,U; ) <k.

m

Proof. Let r-dim(Q,X) < k, where k € w. We prove that there exists a
family {Uj,,...,Uj;, } such that {z;,,...,2;,} € Q C U; U...UUj, and
ord({Uj,,...,U;,,) < k.

Let

v = min{m € w : there exist j1,...,jm € {1,...,n} such that
{zji, 3, €QC U, U---UT; }

and ¢ = {Uj,,..., U, } be a family such that
{xjmvxju} g QQ U]l UUU]V

Since r-dim(Q, X) < k, there exists a family r = {V4,...,V,} of open subsets
of X refinement of ¢ such that @ C V3 U... UV, and ord(r) < k. Clearly, it
suffices to prove that {Uj,,...,U;, } C r. Indeed, we suppose that there exists
a € {1,...,v} such that U, ¢ r. Since z;, € Q, there exists 5 € {1,...,u}
such that z;, € V. By the fact that Uj;, is the smallest open set of X
containing the point x;, we have that U, C V3. Also, since U, ¢ r, we have
U;, # Vg. Therefore, U; C V. Since r is a refinement of ¢, there exists
v €{1,...,v} such that V5 C U; . Hence,

Uja C ij .

We observe that Q C (Uj, U...UUj;, )\ Uj_, which is a contradiction by the
choice of v. Thus, ¢ C r.

Conversely, we suppose that there exists a family {Uj,,...,Uj,  } such that
{zj,...,25,} CQCU; U...uUj; and ord({Uj,,...,U; ) < k. We prove
that r-dim(Q, X) < k.

Indeed, let ¢ be a finite family of open subsets of X such that Q@ C U{U : U € ¢}.
It suffices to prove that the family {Uj;,...,U;  } is a refinement of ¢. For
every ¢ € {1,...,m} there exists V; € ¢ such that z;, € U;; C V;. This means
that the family {U;,,...,U,, } is a refinement of c. O

Proposition 2.2. Let X = {x1,...,2,} be a finite space, where n > 1, and
Q C X. Then,

r-dim(Q, X) < |Q| - L.

Proof. Let Q = {zj,,...,zj,}. The family {Uj;,,...,U;, } has m elements
and, therefore, ord({Uj,,...,U;, }) < m — 1. Thus, by Proposition 2.1,
r-dim(@Q, X) <m —1=1Q| — 1. O
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Note 1. In the following propositions we suppose that X = {z1,...,2,} is a
finite space with n elements, @ C X, T = (t;;), i = 1,....n, j = 1,...,n,
the incidence matrix of X, and ¢y, ..., ¢, the n columns of the matrix 7. We

denote by 1¢ the n x 1 matrix

where

{1, ifx; €@
a; =

0, otherwise.

Example 2.3. Let X = {1, 2z2,23,24,25} and Q = {21, 23,24}. Then,

1gp =

— = O =

0

Proposition 2.4. If ¢; = 1g and z; € Q for some j € {1,...,n}, then
r-dim(Q, X) = 0.

Proof. Since ¢; = 1¢, we have ¢;; = 1 for every x; € @ and, therefore, @ C Uj.
Since ord({U;}) = 0, by Proposition 2.1, we have r-dim(Q, X) = 0. O

Proposition 2.5. Let cj,, i =1,...,m, be m columns of the matriz T'. Then,
cjy +...+¢c;, >1g ifand only if Q C Uy, U...UU; .

Proof. Let cj, +...+c;,, > 1g. We prove that ) C U; U...UU; . Let 23, € Q.
By the definition of the matrix 7" and by the assumption ¢;, +...+¢;,, > 1g,
there exists k € {1,...,m} such that ¢;,;, = 1. Since U;_, = {z; : t;;, = 1},
we have z;, € U;,. Thus, Q CU; U...UUj .

Conversely, we suppose that @ € U; U...UUj, . Then, for every z; € Q
there exists r(i) € {1,...,m} such that z; € Uj_ . Therefore, by the definition
of the matrix T', ¢;5, . = 1. Thus, ¢j, +...+¢;,, > 1q. O

Proposition 2.6 (sce Proposition 2.6 of [5]). Let c¢j,, i = 1,...,m, be m
columns of the matriz T and k = max(c;, +...4c¢;,,), that is k is the mazimum
element of the n x 1 matriz cj, + ...+ ¢, . Then,

ord{Uj,,....U,,.}) =k —1.

Definition 2.7. We define a preorder < on the set of all families {z;,,...,z;, . }
with {zj,,...,2;,} CQCU; U---UU,, by

{zjns g, <z, @, )
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if and only if
{Uj17 ey Uj'rn,l } g {U]ia sy Uj;n,Q }

Remark 2.8. The space X is Ty if and only if U; = U; implies z; = x; for every
i,7 (see [1]). Therefore, if the space X is Tg, then the relation < is an order. We
note that if the space X is Ty, then there exists exactly one minimal family on
the set of all families {x;,,...,z;, } with {z,,,...,z;,} CQ C U, U---UU,, .
Proposition 2.9. Let {z;,,...,2;,} €Q C {U;,..., U, },
v = min{m € w : there exist j1,...,Jjm € {1,...,n} such that

{xjn i wxjm} cQc Ujl U UUjm}’
and {J)jl, ce ,J?j,j} - Q - {Uju .. .,Uj,j}. Then,

{J?jl, e ,J?ju} S {J)il, e ,J)iﬂ}.
Proof. The proof is similar to that of Proposition 2.1. O
Proposition 2.10. Let {zj,,...,x;,} be a minimal family on the set of all

families {zj,, ..., z;, } with {z;,...,z;,} CQCU; U---uU, . If
ord({Uj,,...,U;, }) =k >0,
then for every family {x,,, ..., x,,} with {x,,...,z,,} CQC U, U---UU,,
we have ord({U,,,..., U, } > k.
Proof. Let {U,,,...,U,, } be a family such that
{r), .2,y CQCU, U---UU

Then,
{lev'“vxju} < {xﬁa"'vxru}
and, therefore,
{Ujlﬂ"'7Uju} c {UTU'-';UT;L}'
Since ord({Ujy,,..., Uy, }) = k, we have ord({U,,,..., U, } > k. O
Proposition 2.11. Let {zj,,...,x;, } be a minimal family on the set of all
families {xzj,, ..., z;, } with {z;,,...,z;, } CQ CU; U---UUj, . Then,
r-dim(Q, X) = max(¢cj, +...+¢;,) — 1.
Proof. Let k = max(cj, + ...+ ¢;,). Then, by Proposition 2.6, we have
ord({Uj,,.... U, })=k—1
and, therefore, by Proposition 2.1, r-dim(Q,X) < k — 1. We prove that
r-dim(Q, X) = k — 1. We suppose that r-dim(Q,X) < k — 1. Then, by
Proposition 2.1, there exists a family {U,,,..., U, } such that
{r,. 2, } CQC U, U---UU,,

and
ord{U,,,..., U, }) <k -1
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Since ord({Uj,,...,U;, }) = k — 1, by Proposition 2.10, we have

ord{U;,,..., U, }) > k-1
which is a contradiction. Thus, r-dim(Q, X) =k — 1. O
Proposition 2.12. Let ¢j,, i = 1,...,v, be v columns of the matriz T such
that cj, + ...+ ¢j, > 1g and {xj,...,2;,} C Q. If ey, +...+ ¢, # 1q for

every {xy,,...,xr, } CQ and q < v, then {x;,,...,x;,} is a minimal family on
the set of all families {x;,,...,x;, } with{z;,...,z;,} CQ CU;U---UU;, .
Proof. Since ¢j,+...+¢;, > 1g and ¢ +. . .+¢,, # 1¢ forevery {z,,, ...,z } C
Q@ and ¢ < m, by Proposition 2.5, we have

v = min{m € w : there exist j1,...,jm € {1,...,n} such that

{zjse 2, CQC U, U--- Uy,
Thus, by Proposition 2.9, {z;,,...,z;, } is a minimal family on the set of all
families {z;,,...,z;,, } with {z;,,...,2;,} CQCU,;, U---UUj . O
By Propositions 2.11 and 2.12 we have the following corollary.
Corollary 2.13. Letcj,, i =1,...,v, be v columns of the matriz T such that

¢y ...+, >1g and {xj,,...,x;,} C Q. If o + ...+ cr, # 1q for every
{Zr, .., 20, } ©Q and g < v, then

r-dim(Q, X) = max(¢cj, +...+¢;,) — 1.
3. AN ALGORITHM FOR COMPUTING THE COVERING DIMENSION

In this section we give an algorithm of polynomial order for computing the
dimension r-dim(Q, X), where @ is a subset of a finite space X, using the
Propositions 2.11 and 2.5.

Algorithm 3.1. Let X = {x1,...,z,} be a finite space of n elements, Q =
{zr,--,2xn} C X, and T = (t;;) the n x n incidence matriz of X. Our
intended algorithm contains | — 1 steps:
Step 1. Read the | columns cy,,...,cx, of the matriz T. If some column is
equal to 1q, then print

r-dim(Q, X) = 0.
Otherwise go to the Step 2.
Step 2. Find the sums

Cjyy +c\... +...+¢c

J21 )‘1(171)1
for each {ji1, 21, ..., ja—1)1} S {1,...,1}.
If there exists {j¥1,5%, ... ,j?lfl)l} C{1,...,1} such that

C)\jo -I—C)\jo +"'+C)‘7'0 > 1@,
i1 31 Ja—1)1

then go to the Step 3.
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Otherwise print

r-dim(Q, X) = max(cy, +cx, +...+c¢y) — 1.

Step 3. Find the sums

C)‘hz + C)‘Jzz t+...+ C’\J'(Z—2)2

for each {ji2, 22, ju—2)2} € {j1, 451, - - aj?lfl)l}'
If there exists {39, 39, ... ,j?l_Q)Q} C {59,439, ... ,j?l_l)l} such that
Cry TCry T...FCr, Z]_Q7
J12 J22 IT(1—2)2

then go to the Step 4.
Otherwise print

r-dim(Q, X) = Inax(c,\j?1 Fteng oot C)\j?I—l)l) -1

Step I — 2. Find the sums

Cx + cy + cy

J1(1—3) J2(1—3) J3(1—3)

for each {j1—3), J2—3) Jsa—3)} S {00 390_ay» I801—a)+ T80 —a)}-

If there ewists {j?(zfzs)’jg(zfzs)ng(lfs)} < {jg(lfz;)ng(lfz;)’j§(174)’jg(zf4)} such
that

Cx o o +cx, > 1q,

. CX. .
T1(1—3) J2(1—3) I3(1—3)

then go to the Step [ — 1.
Otherwise print

r-dim (@, X) = max(cy , + e, Cx o + e,
I1(1—4) T2(1—4) I3(1—4) Ja(1—a)

) 1.

Step I — 1. Find the sums

C) “+ c)

J1(1—2) J2(1-2)

Jor each {jl(le)an(lfQ)} c {j?(lﬁg)ajg(lfgg)ajg(lf:g)}'

If there exists {j(l)(l—Z)’jg(l—Q)} - {j?(z—3)ajg(z—3)ng(l—3)} such that
CX .o + CX o 2 1;
T1(1—2) T2(1—2)

then print

r-dim(Q, X) = max(cy , +en, )-L

I1(1—2) J2(1—2)
Otherwise print
r-dim(Q, X) = max(c)\jo +

) +Cx o
1(1—3) J2(1—3) I3(1—3)

) 1.
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Example 3.2. Let X = {x1, 2,23, 24} with the topology

T = {@, {xQ}a {xlva}a {(EQ,iL‘g}, {(El,CL'Q,:L'g}, X}
and @ = {x1,23}. Then,

1gp =

O = O

We observe that Uy = {z1, 22}, Us = {22}, Us = {x2,23}, Uy = X. There-
fore,

1 0 0 1 1 0
1 1 1 1 1 1
T=loor1 1" o] 2|1
0 0 0 1 0 0
Moreover,
1
2
c1+c3 = 1 ZIQ
0
and

max(c; + ¢3) = 2.

Thus, r-dim(Q, X) = max(c; +¢3) — 1 = 1.

4. REMARKS ON THE ALGORITHM FOR COMPUTING THE COVERING
DIMENSION OF FINITE TOPOLOGICAL SPACES

Remark 4.1. Let A = (a;;) be a n x n matrix and B = (3;;) a m X m matrix.
The Kronecker product of A and B (see [3]) is the mn x mn block matrix

OénB OélnB
A® B =

anB ... a.B

More explicitly, the Kronecker product of A and B is the matrix
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aitfin .o anBim o amfin oo QfBim
an.ﬁml . all,émm, e aln.ﬁml coo 10 Bmm
C¥n1.511 cee anl.ﬂlm e Oénn.ﬂll cee ann.ﬂlm
On1Bm1 oo CmiBum oo ConBmi e OCnnBam

Let X = {z1,...,2z,} be a finite space of n elements and Y = {y1,...,ym} a
finite space of m elements. It is known that if T'x is the incidence matrix of X
and Ty is the incidence matrix of Y, then the incidence matrix of

XxY = {(xlayl)v sy (xlvyM)a cey (xnvyl)a B (xnaym)}
is the Kronecker product T'xy ® Ty of Tx and Ty (see [8]).

Example 4.2. Let X = {1, 22,23} with the topology
X = {@7 {xQ}v {xlv 1‘2}, {an {E3}, X}
and Y = {y1, y2, Y3, ya} with the topology

Ty = {@) {y3}7 {y17y3}5 {yQa y3}a {yla y27y3}a Y}
Also, let QX = {x1, 23} and Q¥ = {y1,v2,93}. Then,

QX X QY = {(xlvyl)a (1‘1, y2)7 ($1,y3), (1‘3, y1)7 ($3,y2), (1‘3, yB)}

and
1
1
1
0
1 1 :
1QX — O 5 1QY — 1 5 1QX><QY = 0
1 0 0
1
1
1
0
The incidence matrix T'x of X is
1 0 0
Tx = 1 1 1
0 0 1
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and the incidence matrix Ty of Y is

1 0 0 1
01 0 1
=11111
0 0 0 1
Therefore, the incidence matrix T'x xy of the product space X x Y is
1 0 01 00 0O O0OO0OO0OO0O0
01 01 0 0O0O0OO0OTO0OOUO0OTO0
111100 0 0O0O0O0TO
00010 O0O0OO0O0TUO0OOUO0OTO0
1 001 1.0 011001
01 01 01 01 01 01
Dov=Tx®Ty =11 1 1 111111111
0001 0O0O0OT1TO0OU0TO0°1
0 00O0O0OOOTOT1TO0OTGO0O?1
00 0 0 0 O0 O0OO0OO0OT1O01
00 00 O0O0OO0OO0OT1TTI1TT11
00 0 0 0 0 0 O0O0O0OO0 1
We observe that
1
1
2
0
2
2
C1+ c2 + cg + Cc10 = 4 >1QX><QY,
0
1
1
2
0

Cry + Cry + Cry F Lgx gy for every {ry,ro,r3} C {1,2,9,10}, and
max(c1 + 2 + g + ¢19) = 4.

Thus,

r—dim(QX x QY, X x Y) =max(c1 + ¢+ c9g+c19) — 1 = 3.
Also, we observe that r-dim(Q~X, X) = 1 and r-dim(QY,Y) = 1.
Remark 4.3. Let X = {x1,...,2,} be a finite To-space and @ C X. Then,
there exists a finite space Y homeomorphic to X such that the incidence matrix
Ty of Y is an upper triangular matrix. Let h a homeomorphism from X to Y

such that the incidence matrix Ty of Y is an upper triangular matrix. In order
to calculate the r-dim (@, X) it suffices to calculate r-dim(h(Q),Y).
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Example 4.4. Let X = {x1, 2,23} with the topology

X = {@7 {xQ}v {xlv 1‘2}, {an {E3}, X}
and @ = {x2,23}. We consider the space Y = {y1,y2,ys} with the topology

Ty = {97 {y1}7 {y17 yQ}a {yh y3}a Y}
We observe that the map h : X — Y defined by h(z1) = y2, h(z2) = 1,
and h(x3) = y3 is a homeomorphism from X to Y with h(Q) = {y1,y3}. The
incidence matrix Ty of Y is

1 1 1
Tvy=|( 0 1 0
0 0 1
Since
1
ca= | 0 | =1ne;
1

we have r-dim(h(Q),Y") = 0. Therefore, r-dim(Q, X) = 0.

Proposition 4.5. An upper bound on the number of iterations of the algorithm
for computation of the dimension r-dim of a pair (Q, X), where Q is a subset

1 3
of a finite space X, is the number §|Q|2 + §|Q| - 3.

Proof. Let |Q| = I. We observe that the number of iterations the algorithm
performs in Steps
1,2,3, 4, ...,00—2,1-1
is
LLl—=1,1-2 ...,4, 3
respectively. Thus, the number of iterations the algorithm performs is
(-2)1+3) 1 3

I+14+(1-1)+(1-2)+...44+3 = l+f:5l2+§l—3

1,5 3
= SleP+3iel-3

5. PROBLEMS

In [9] (see also [6] and [7]) two relative covering dimensions are defined and
studied which are denoted by dim and dim™. The given two definitions below
are actually the definitions of dimensions dim and dim* given in [9] for regular
spaces.

Definition 5.1. We denote by dim the (unique) function with domain the class
of all subsets and range the set wU {—1, 00}, satisfying the following condition
dim(Q, X) < n, where n € {—1} Uw if and only if for every finite open cover
c of the space X there exists a finite open cover rg of @ such that rg is a
refinement of ¢ and ord(rq) < n.
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Definition 5.2. We denote by dim” the (unique) function with domain the
class of all subsets and range the set w U {—1, 00}, satisfying the following
condition dim*(Q, X) < n, where n € {—1} Uw if and only if for every finite
open cover ¢ of the space X there exists a finite family » of open subsets of X
refinement of ¢ such that Q C U{V : V € r} and ord(r) < n.

Problem 5.3. Find an algorithm for computing the dimension dim of a pair
(Q, X)), where Q is a subset of a finite space X, using matriz algebra.

Problem 5.4. Find an algorithm for computing the dimension dim™ of a pair
(Q, X), where Q is a subset of a finite space X, using matriz algebra.
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