
@ Applied General Topology

c© Universidad Politécnica de Valencia

Volume 13, no. 2, 2012

pp. 115-134

Computational Topology Counterexamples with

3D Visualization of Bézier Curves

J. Li, T. J. Peters∗, D. Marsh and K. E. Jordan

Abstract

For applications in computing, Bézier curves are pervasive and are

defined by a piecewise linear curve L which is embedded in R
3 and

yields a smooth polynomial curve C embedded in R
3. It is of interest

to understand when L and C have the same embeddings. One class of

counterexamples is shown for L being unknotted, while C is knotted.

Another class of counterexamples is created where L is equilateral and

simple, while C is self-intersecting. These counterexamples were dis-

covered using curve visualizing software and numerical algorithms that

produce general procedures to create more examples.

(a) Unknotted L with knotted C (b) Zoomed-in view of C

Figure 1. Unknotted L with knotted C

∗This author was partially supported by NSF grants CCF 0429477, CMMI 1053077 and
CNS 0923158, as well as by an IBM Faculty Award and IBM Doctoral Fellowships. All
statements here are the responsibility of the author, not of the National Science Foundation
nor of IBM.

116 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

(a) Equilateral, simple L with self-intersecting C (b) Zoomed-in self-intersection

Figure 2. Equilateral, simple L with self-intersecting C

1. Introduction

Computational topology lies properly within the broad scope of applied gen-
eral topology and depends upon a novel integration of the ‘pure mathematics’
of topology with the ‘applied mathematics’ of numerical analysis. Compu-
tational topology also blends general topology, geometric topology and knot
theory with computer visualization and graphics, as presented here. For the
computational cases considered here, ideas from general topology, geometric
topology and knot theory are complemented by numeric arguments in a novel
integration of the ‘pure’ field of topology with the ‘applied’ focus of numeri-
cal analysis. Additionally, aspects of computer visualization and graphics are
incorporated into the proofs. Much of this work was motivated by modeling
biological molecules, such as proteins, as knots for visualization synchronized
to simulations of the writhing of these molecules.

Attention is restricted to when C is closed, implying that L is also closed.
As C is created from L, it is natural to ask which topological characteristics
are shared by these two curves, particularly as the control polygon often serves
as an approximation to the Bézier curve in many practical applications. How-
ever, topological differences between a Bézier curve and its control polygon
can exist and it is natural to develop counterexamples to show these topologi-
cal differences. These counterexamples extend beyond related results, while we
introduce new computational methods to generate additional counterexamples.

In Section 2, we present a counterexample of Bézier curve and its control
polygon being homeomorphic, yet not ambient isotopic. To develop this coun-
terexample, we created and used a computer visualization tool to study topo-
logical relationships between a Bézier curve and its control polygon. We viewed
the images to motivate formal proofs, which also rely on numerical analysis and
geometric arguments.

In Section 3, we present numerical techniques to create a class of topological
counterexamples – where a Bézier curve and its control polygon are not even
homeomorphic, as the Bézier curve is self-intersecting while the control polygon
is simple. We exhibit the self-intersection by a numerical method, which finds

Computational Topology Counterexamples 117

the roots of a system of equations. We freely admit that these roots are not
determined with infinite precision, but such calculations on polynomials of
degree 6, as in these examples, typically elude precise calculation. We argue
that two primary values of our method for these approximated solutions are

(1) as a catalyst to alternative examples that may admit infinite precision
calculation and rigorous topological proofs, and

(2) as having specified digits of accuracy – typically crucial for acceptable
approximations in computational mathematics and computer graphics.

Using the visualization tool described in Section 4, we viewed many examples
where the Bézier curve was simple, while its control polygon was equilateral
and simple. It is well known that a Bézier curve can be self-intersecting even
when its control polygon is simple, but we conjectured that the added equilat-
eral hypothesis would imply that both curves were simple. While this visual
evidence was suggestive, we present a general numerical approach in Section 3
that supports a contrary interpretation. This example provides guidance for
designing appropriate approximation algorithms for computer graphics.

1.1. Mathematical Definitions. The definitions presented are restricted to
R

3, as sufficient for the purposes of this paper, but the interested reader can
find appropriate generalizations in published literature.

Definition 1.1. A knot [4] is a curve in R
3 which is homeomorphic to a circle.

A knot is often described by a knot diagram [12], which is a planar projection
of a knot. Self-intersections in the knot diagram correspond to crossings in
the knot, where each crossing has one arc that is an undercrossing and an
overcrossing, relative to the direction of projection.

Homeomorphism is an equivalence relation over point sets and does not
distinguish between different embeddings, while ambient isotopy is a stronger
equivalence relation which is fundamental for classification of knots.

Definition 1.2. Let X and Y be two subspaces of R3. A continuous function

H : R3 × [0, 1] → R
3

is an ambient isotopy between X and Y if H satisfies the following:

(1) H(·, 0) is the identity,
(2) H(X, 1) = Y , and
(3) ∀t ∈ [0, 1], H(·, t) is a homeomorphism from R

3 onto R
3.

The sets X and Y are then said to be ambient isotopic.

Definition 1.3. Denote C(t) as the parameterized Bézier curve of degree n
with control points Pm ∈ R

3, defined by

C(t) =

n
∑

i=0

Bi,n(t)Pi, t ∈ [0, 1]

where Bi,n(t) =

(

n
i

)

ti(1− t)n−i.

118 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

1.2. Related Literature. A Bézier curve and its control polygon may have
substantial topological differences. It is well known that a Bézier curve and its
control polygon are not necessarily homeomorphic [14]. Recently, it was shown
that there exists an unknotted Bézier curve with a knotted control polygon
[6]. A specific dual example has also been shown [16] of a knotted Bézier
curve with an unknotted control polygon. However, the methodology was a
visual construction without formal proof and is not easily generalized. Software,
Knot Spline Vis, developed by authors Marsh and Peters, was used to find
another example, where the methodology can more easily be generalized and
Knot Spline Vis is publicly available [13].

Much of the motivation for considering these counterexamples came from
applications in scientific visualization [9, 10, 11]. A primary focus was to es-
tablish tubular neighborhoods of knotted curves so that piecewise linear (PL)
approximations of those curves within those neighborhoods remained ambient
isotopic to the original curves. This was initially considered for approximations
used in producing static images of these curves, but it became readily apparent
that these same neighborhoods also provided bounds within which many per-
turbations of these models remained ambient isotopic under these movements.
That theory is being applied to dynamic visualizations of molecular simula-
tions, where the neighborhood boundaries permit convenient warnings as to an
impending self-intersection, as of possible interest to biologists and chemists
who are running the simulations.

Previous work [15] in knot visualization provides a rich set of data for PL
knots, where each edge is of the same length. The interface of Knot Spline Vis

was designed to import this equilateral PL knot data and then generate the
associated Bézier curves. This matured into an empirical study of dozens of
cases, where all examples examined yielded simple Bézier curves for these sim-
ple equilateral control polygons. This raised the question of whether the pres-
ence of equilateral edges in the control polygon might be a sufficient additional
hypothesis to ensure homeomorphic equivalence with the Bézier curve, as the
previously cited examples [14] did not have equilateral control polygons.

2. Unknotted L with knotted C

In order to produce a knotted Bézier curve with an unknotted control poly-
gon, we invoked Knot Spline Vis with an example (Figure 3) of an unknotted
Bézier curve, where the total curvature appeared to be larger than 4π. (The to-
tal curvature being larger than 4π is a necessary condition of knottedness.) We
experimented on this example by moving control points to construct a Bézier
curve that visually appeared to be knotted. We then moved control points to
unknot the control polygon while keeping the Bézier curve knotted. In the end
we obtained a Bézier curve and the control polygon (of degree 10) (Figure 1(a))
defined by the control points {P0, P1, · · · , P9, P0} listed below:

(−5.9, 4.7,−6.2), (10.3,−1.1, 8.9), (−2.6,−12.4,−6.3), (−10, 7,−0.3),

(1.9,−12,−0.6), (11.2, 7.5,−7.6), (−15.3,−1.7,−4.1), (−11.7, 20, 3.5),

(17.9,−1.1, 2.9), (2.9,−13.7, 4.8), (−5.9, 4.7,−6.2).

Computational Topology Counterexamples 119

(a) Unknotted C & The P (b) Zoomed-in View of C

Figure 3. Visual experiments

The 3D visualization offers only suggestive evidence that the above Bézier
curve is knotted while the control polygon is unknotted. We provide rigorous
mathematical proofs of these properties in Sections 2.1 and 2.2. Generally,
proving knottedness or unknottedness can be difficult [8], but is accessible for
the counterexample here.

2.1. Proofs of the Bézier curve being knotted. We prove that the Bézier
curve is a trefoil1. We orthogonally project the curve onto x-y plane. We
then shown that there are three self-intersections in the projection and these
intersections are alternating crossings in 3D. Since projections preserve self-
intersections, this curve can have no more than 3 self-intersections, but these
self-intersections in x-y plane are shown to have pre-images that are 3D cross-
ings, so the original curve has no self-intersections.

Since the 2D curve in Figure 4 has degree 10, we use a numerical method im-
plemented by MATLAB function ‘fminsearch’ to find the parameters where the
curve intersects with itself. We provide the numerical codes in Appendix A.1,
and we provide the data used to find these parameters in Appendix A.3. The
pairs of parameters (labeled in order as t1, . . . , t6) of the self-intersections are
listed below:

[t1 = 0.0306, t4 = 0.5573], [t2 = 0.1573, t5 = 0.9244], [t3 = 0.3731, t6 = 0.9493].

Next we prove that these 2D intersections are projections from three alter-
nating crossings in 3D. The above parameters are substituted into the Bézier
curve (Definition 1.3) to get pairs of points (numerical codes for this calculation

1A trefoil is a knot with three alternating crossings[12].

120 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

Figure 4. The 2D projection of the knot

are in Appendix A.2):

[C(t1) = (−2.0539, 2.8001,−2.6929), C(t4) = (−2.0530, 2.7987,−2.0143)],

[C(t2) = (0.4376,−2.5212,−0.0576), C(t5) = (−0.4364,−2.5206,−0.5547)],

[C(t3) = (−1.3613,−1.4239,−2.2944), C(t6) = (−1.3624,−1.4232,−1.9067)].

The alternating crossings follow from comparing the z-coordinates in each
pair. Precisely, according to the parameters given above, the tracing of the six
points in order is

C(t1), C(t2), C(t3), C(t4), C(t5), C(t6),

and the crossings at these points are

under, over, under, over, under, over.

2.2. Proof of the control polygon being unknotted. To prove that the
control polygon P = (P0, P1, · · · , P9, P0) is an unknot, it is necessary to show
that P is simple and unknotted. We directly tested each pair of segments
of P for non-self-intersection and those calculations can be repeated by the
interested reader. We prove unknottedness using a 3D push, as the obvious
generalization of a 2D function from low-dimensional geometric topology [5].
We restrict attention to a median push, as defined below. The full sequence of
5 median pushes is explicated, where the first 4 median pushes are equivalently
described by Reidemeister moves [12].

Computational Topology Counterexamples 121

(a) The initial control polygon (b) After the 1st push

(c) After the 2nd push (d) After the 3rd push

(e) After the 4th push (f) The unknot after these pushes

Figure 5. Pushes and PL curves in 3D

Definition 2.1. Suppose△Pj−1PjPj+1 is a triangle determined by non-collinear
vertices Pj−1, Pj and Pj+1 of P . Push the vertex Pj , along the corresponding
median of the triangle to the middle point of the side Pj−1Pj+1. We call this
function a median push.

We depict the sequence of pushes used in Figure 5, showing the 3D graphs
of the PL space curves after the median pushes. These graphs show, at each
step, which vertex is pushed and its image. For example, in Figure 5(a), the

122 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

vertex P3 is pushed to P ′

3 and the resultant polygon after this push is shown by
Figure 5(b). Figures 5(a) 5(b) 5(c) and 5(d) have corresponding Reidemeister
moves, as those pushes eliminate at least one crossing. Using the published
notation [12], Figure 5(a) depicts a Reidemeister move of Type 2b. Similarly,
Figure 5(b) depicts a Reidemeister move of Type 1b; Figure 5(c) has Type 2b
and Figure 5(d) has a move of Type 2b, followed by a move of Type 1b. The
final push to achieve Figure 5(f) does not correspond to any Reidemeister move
as no crossings are changed, but it is included to have a polygon with only five
edges, which necessarily must be the unknot [1].

We prove that P is unknotted by showing that P is ambient isotopic to
the unknotted PL curve shown in Figure 5(f). As a sufficient condition, we
show that the pushes do not cause intersections [2]. (We gained significant
intuition for specifying the sequence of pushes by visual verification with our
3D graphics software capabilities to translate, rotate and zoom the images.)
We now present the formal arguments.

Consider Figure 5(a), where P3 is pushed to P ′

3 (the middle point2 of
−−−→
P2P4).

We show that any segments other than
−−−→
P2P3 and

−−−→
P3P4 of P do not intersect

the triangle △P2P3P4 or the triangle interior.
We parameterize each segment by:

−−−−→
PiPi+1 : Pi + (Pi+1 − Pi)t, t ∈ [0, 1]

for i = 0, 1, · · · , 9 and let P10 = P0. Then the points given by

P3 + a(P2 − P3) + b(P4 − P3),

for a, b ≥ 0 and a + b ≤ 1 are on the △P2P3P4 and contained in its interior.
Hence Pi + (Pi+1 − Pi)t intersects △P2P3P4 or its interior if and only if

Pi + (Pi+1 − Pi)t = P3 + a(P2 − P3) + b(P4 − P3)(2.1)

has a solution for some t ∈ [0, 1] and a, b ≥ 0 and a+ b ≤ 1.
For each i = 0, 1, · · · , 9, we solve Equation 2.1 (a system of 3 linear equa-

tions) for a, b and t with the above constraints. Calculations show there is
no solution for each system, and hence Pi + (Pi+1 − Pi)t does not intersect
△P2P3P4 or its interior for each i = 0, 1, · · · , 9. Thus it follows that the push
does not cause any intersections.

Similar computations verify that the other pushes do not cause any inter-
sections, thus establishing the ambient isotopy.

3. Equilateral, simple L with self-intersecting C

We visualized many cases of simple, closed equilateral control polygons3 that
all appeared to have unknotted Bézier curves. Many of these control polygons
were nontrivial knots. Prompted by this visual evidence, we conjectured that
any simple, closed equilateral control produces a simple Bézier curve, where
some examples are shown in Figure 6.

2It is not necessary to push P3 to the middle point. Any point along
−−−→
P2P4 would suffice.

3Throughout this section, all control polygons are simple.

Computational Topology Counterexamples 123

We now present numerical evidence to the contrary. As noted in Section 1,
the degree 6 polynomials make precise computation difficult, so we do not
provide a completely formal proof, independent of numerical methods. A le-
gitimate concern is whether the numerical approximation produces coordinates
for a ‘near’ intersection, subject to the accuracy of the floating point compu-
tation. We cannot refute that possibility, but we argue that in the context of
graphical images, the level of approximation produced is often sufficient. In
particular, we have parameters in the code to adjust the number of digits of
accuracy. This level of user-defined precision is often accepted as sufficient for
visualization [9]. The user can then set the graphical resolution so that points
that are determined to be the same within some acceptable numerical tolerance
will also appear within the same pixel.

Figure 6. Unknotted Bézier curves with equilateral control polygons

3.1. Intuitive overview. We create many examples to test and retain only
those that satisfy all three criteria listed in Section 3.4. We begin the cre-
ation of a closed equilateral polygon by setting P0 = (0, 0, 0). We then take
{q0, q1, · · · , qn−1} (Equation 3.3) from the unit sphere so that

P1 = P0 + q0, P2 = P1 + q1, · · · , Pn = Pn−1 + qn−1.

We ensure that the polygon is closed in Section 3.4 item (3).
We consider a necessary and sufficient condition for a Bézier curve being self-

intersecting (Equation 3.2). Since we want the equilateral polygon to define a
Bézier curve that is self-intersecting, we not only select {q0, q1, · · · , qn−1} from
the unit sphere as above, but also select them such that Equation 3.2 is zero
for some parameters s and t. Consequently the set of control points generated

124 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

determines a closed equilateral control polygon and a self-intersecting Bézier
curve.

3.2. Necessary and sufficient condition for self-intersection. We rely
upon the following published equation [3] for necessary and sufficient conditions
for self-intersection of a Bézier curve

(3.1) S(s, t) =
1

n

C(1− s)− C(t)

(1− s)− t
,

with the domain D = {(s, t) : s + t < 1, s, t ≥ 0, (s, t) 6= (0, 0)}. A Bézier
curve defined by C(t) is self-intersecting if and only if there exist s and t in the
domain D such that S(s, t) = 0, , with an alternative formulation4 given by

S(s, t) =
1

n

n−1
∑

i=0

n−1−i
∑

j=0

(

n− 1− i

j

)

sn−1−i−j(1− s)j
i

∑

k=0

(

i

k

)

(1− t)i−ktkqj+k,

(3.2)

where

qi = Pi+1 − Pi for i = {0, 1, · · · , n− 1}.(3.3)

3.3. A representative counterexample generated. We present a single
numerical counterexample, noting that while only one counterexample is pre-
sented, the numerical algorithm implemented can be used to find many such
examples. We list six distinct control points (the seventh control point is equal
to the first control point) that determine an equilateral simple L and a self-
intersecting C (shown in Firgure 2), as generated by the algorithm described in
detail in Section 3.4.

(0, 0, 0), (0.0305, 0.0810, 0.9962), (−0.2074,−0.2671, 1.9030),

(−0.1792,−0.3402, 0.9063), (0.0189, 0.0782, 0.0185), (0.1557, 0.2329,−0.9600).

We verify that L is simple by considering all pairwise intersections of the
segments of this control polygon. The self-intersection of the Bézier curve
occurs at a point that is numerically approximated as

[s, t] = [0.2969, 0.0633]

where correspondingly,

S(s, t) = (−0.0003861,−0.000097, 0.0001462)≈ (0, 0, 0).

The error occurs because of numerical round off on s, t and the control points.

4One needs to write out the [3, Equation (6)] to obtain Equation 3.2.

Computational Topology Counterexamples 125

3.4. The numerical method for generating counterexamples. We pro-
vide the numerical codes and data used in Appendix B. Given a control poly-
gon, we can determine whether a self-intersection of the Bézier curve occurs
by determining whether S (Equation 3.2) has a root in D. We consider S as a
function S(s, t, q) where q = {qi}

n−1
i=0 , so that finding a self-intersecting Bézier

curve with an equilateral control polygon is equivalent to determining s, t and
q such that the following are satisfied:

(1) S(s, t, q) = 0 where s, t ∈ D;
(2) ||qi|| = r for each i ∈ {0, 1, · · · , n − 1}, where || · || is the Euclidean

norm;
(3)

∑n−1
i=0 qi =

∑n−1
i=0 Pi+1 − Pi = 0 since P needs to be closed.

We assume r = 1 without loss of generality since the value of r can be
adjusted by scaling. Throughout the provided codes, n is always the degree of
the Bézier curve. We give the code for function S in Appendix B.1, where [s, t]
is labeled as u and q as [a, b, c].

The function SF (Appendix B.2) takes parameters for s, t and q and outputs
a floating point value. It is designed to be zero if and only if the above three
conditions are satisfied simultaneously.

Precisely since q should be taken from the unit sphere, SF assigns a, b, c
values given by

a = sin(φ)cos(θ);

b = sin(φ)sin(θ);

c = cos(φ),

where φ and θ represent input parameters. In order to satisfy Condition (3)

above, qn−1 is set equal to −
∑n−2

i=0 qi. But in this way, ||qn−1|| may fail to
be equal to 1. So we include the function F (Appendix B.2) to determine
whether ||qn−1|| = 1. The function is designed to be F = ||qn−1|| − 1 such that
||qn−1|| = 1 if and only if F = 0.

Symbolically,

SF = ||S||+ ||F ||,(3.4)

where S is given by Equation 3.2 and F = ||qn−1||− 1. Having the above three
conditions satisfied simultaneously is equivalent to finding input values such
that SF = 0.

Since SF ≥ 0, the minimum of SF is 0. The function SFminimizer (Ap-
pendix B.3) uses fminsearch (a numerical method integrated in MATLAB)
to search for the minimum of SF , while returning this minimum and the cor-
responding values of s, t and q. The user supplied initial guesses for s, t and
q greatly influence the results, so we assign SFminimizer randomized initial
values M times so that we get M different minimums for different initial val-
ues. But no matter which initial values we use, as long as we can get “a”
minimum of 0, then we get the equilateral control polygon which determines a
self-intersecting Bézier curve.

126 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

The data of finding the counterexample of Section 3.3 is included in Appen-
dix B.4.

4. Visualizing Bézier curves & their control polygons

To study the knot types of a control polygon and its Bézier curve, a knot visu-
alization tool was developed, called Knot Spline Vis. The tool Knot Spline Vis

takes a PL control polygon as input and displays both the PL curve and the
associated Bézier curve. For these studies, the input was always restricted to
be a PL curve of known knot type. The functions of Knot Spline Vis were
designed to permit interactive studies of the topological relationships between
a Bézier curve and its control polygon. The intent is to use these examples to
stimulate mathematical conjectures as a prelude to formal proofs.

Some of the standard graphical manipulation capabilities provided are il-
lustrated in the following Figure 7 and 8, where the rotation capabilities have
been particularly useful to develop visual insights into the occurrence of self-
intersections and crossings as fundamental for the study of knots. An editing
window allows the user to change the coordinates of the control polygons, as
shown in Figure 9. The software is freely available for download at the site
www.cse.uconn.edu/∼tpeters.

Figure 7. Rotating

The control polygon is an initial PL approximation to its associated Bézier
curve. Subdivision algorithms [14] produce additional control points to further
refine the original control polygon, converging in distance to the Bézier curve.
Figure 10 illustrates performance of a standard subdivision technique, the de
Casteljau algorithm [7]. Users can specify a subdivision parameter. Figure 10
shows the case with parameter 1

2 .

Computational Topology Counterexamples 127

Figure 8. Scaling

(a) Initial display (b) Some vertices moved

Figure 9. Moving control points

Figure 10. Subdivision

128 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

5. Conclusions and Future Work

We use numerical algorithms and graphical software to generate counterex-
amples regarding the embeddings in R

3 for a Bézier curve and its control poly-
gon.

First, we present a class of counterexamples showing an unknotted control
polygon for a knotted Bézier curve and provide complete formal proofs of this
condition. We used a spline visualization tool, Knot Spline Vis for easy gen-
eration of many examples to gain intuitive understanding to formalize these
proofs. Secondly, we used Knot Spline Vis in formulating the conjecture that
any simple, closed equilateral control had a simple Bézier curve. We provide
contrary numerical evidence regarding this conjecture, as a useful guide for
many applications in computer graphics and scientific visualization.

This work also shows the importance of continuing investigation

• theoretically, into an infinite precision proof for a counterexample of the
simple, closed equilateral polygon conjecture, where these demands will
likely require further, substantive mathematical innovation and

• practically, into a user interface for Knot Spline Vis to permit interac-
tive 3D editing, as the current text driven interface is cumbersome.

6. Web Posting of Supplemental Materials

Appendices listed below are posted on this webpage:

http://www.math.uconn.edu/~jili/Supplemental-materials.pdf

Appendix A: Numerical codes for knottedness of C (Figure 1(a)):

• A.1 Codes for searching self-intersections in Figure 4;
• A.2 Codes for determining under or over crossings;
• A.3 Data for searching intersections in Figure 4.

Appendix B: Numerical codes for searching the Example of Figure 2(a):

• B.1 Codes for Equation 3.2;
• B.2 Codes for Equation 3.4;
• B.3 Codes for searching the roots of the system of Equations 3.2 and 3.4;
• B.4 Data for finding the example shown in Figure 2(a).

http://www.math.uconn.edu/~ jili/Supplemental-materials.pdf

Computational Topology Counterexamples 129

A. Code: knottedness of Bézier curve of Figure 1(a)

A.1. Code for self-intersections of Figure 4. %The function C2d(t) de-
fines the projection of the Bézier curve.
function [value] = C2d(t)
n=10;
P=zeros(2,11);
P(1,:)= [-5.9, 10.3, -2.6, -10, 1.9, 11.2, -15.3, -11.7, 17.9, 2.9, -5.9];
P(2,:)= [4.7, -1.1, -12.4, 7, -12, 7.5, -1.7, 20, -1.1, -13.7, 4.7];

sum=0;
for i=0:n
sum = sum+ nchoosek(n, i) ∗ ti ∗ (1 − t)(n− i) ∗ P (1, i+ 1);
end
v1 = sum;

sum=0;
for i=0:n
sum = sum+ nchoosek(n, i) ∗ ti ∗ (1 − t)(n− i) ∗ P (2, i+ 1);
end
v2 = sum;

value = [v1, v2];

% Use the function ‘fminsearch’ to find the minimums of fnS(x), the zero
minimums and parameters where the zeros occur are what we look for.

function [value] = fnS(x)
value = norm(C2d(x(1)) − C2d(x(2)), 2);

function [value] = Smin(s0,t0)
Max=optimset(‘MaxFunEvals’,1e+19);
comb=@(x)fnS(x);
u=[s0,t0];
[xval, fval] = fminsearch(comb, u,Max)

A.2. Code for determining crossings. %Below is the function of the Bézier
curve in 3D (Definition 1.3).
function [value] = C(t)
n=10;
P=zeros(3,11);
P(1,:)= [-5.9, 10.3, -2.6, -10, 1.9, 11.2, -15.3, -11.7, 17.9, 2.9, -5.9];
P(2,:)= [4.7, -1.1, -12.4, 7, -12, 7.5, -1.7, 20, -1.1, -13.7, 4.7];
P(3,:)= [-6.2, 8.9, -6.3, -0.3, -0.6, -7.6, -4.1, 3.5, 2.9, 4.8, -6.2];

sum=0;

130 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

for i=0:n
sum = sum+ nchoosek(n, i) ∗ ti ∗ (1 − t)(n− i) ∗ P (1, i+ 1);
end
v1 = sum;

sum=0;
for i=0:n
sum = sum+ nchoosek(n, i) ∗ ti ∗ (1 − t)(n− i) ∗ P (2, i+ 1);
end
v2 = sum;

sum=0;
for i=0:n
sum = sum+ nchoosek(n, i) ∗ ti ∗ (1 − t)(n− i) ∗ P (3, i+ 1);
end
v3 = sum;

value = [v1, v2, v3];

A.3. Data for searching intersections in Figure 4. % The Matlab com-
mands and corresponding results:
% The initial input (0.03, 0.55) is figured out by the observation and calcula-
tions on self-intersections in Figure 4. Similarly for the others below.
Smin(0.03,0.55)
xval = 0.0306 0.5573
fval = 2.9567e-04

Smin(0.15,0.92)
xval = 0.1573 0.9244
fval = 1.5848e-04

Smin(0.37,0.95)
xval = 0.3731 0.9493
fval = 1.4637e-04

B. Code: generating counterexamples like Figure 2(a)

B.1. Code for Equation 3.2. function [value] = S(u,a,b,c)
sum=0; subsum1=0; subsum2=0;
for i=0:n-1
for j=0:n-1-i
% The use of adding 1 to the vectors a, b and c is required by MATLAB.
for k=0:i subsum2 = subsum2+nchoosek(i, k) ∗ (1− u(2))(i−k) ∗ u(2)k ∗ a(j +
k + 1);
end
subsum1 = subsum1+ subsum2 ∗ nchoosek(n− 1− i, j) ∗ u(1)(n−1−i−j) ∗ (1−

Computational Topology Counterexamples 131

u(1))j;
end
sum = sum+ subsum1;
end
v1 = (1/n) ∗ sum;

sum=0; subsum1=0; subsum2=0;
for i=0:n-1
for j=0:n-1-i
for k=0: i
subsum2 = subsum2 + nchoosek(i, k) ∗ (1 − u(2))(i−k) ∗ u(2)k ∗ b(j + k + 1);
end
subsum1 = subsum1+ subsum2 ∗ nchoosek(n− 1− i, j) ∗ u(1)(n−1−i−j) ∗ (1−
u(1))j;
end
sum = sum+ subsum1;
end
v2 = (1/n) ∗ sum;

sum=0; subsum1=0; subsum2=0;
for i=0:n-1
for j=0:n-1-i
for k=0:i subsum2 = subsum2+ nchoosek(i, k) ∗ (1− u(2))(i−k) ∗ u(2)k ∗ c(j +
k + 1);
end
subsum1 = subsum1+ subsum2 ∗ nchoosek(n− 1− i, j) ∗ u(1)(n−1−i−j) ∗ (1−
u(1))j;
end
sum = sum+ subsum1;
end
v3 = (1/n) ∗ sum;
value = [v1, v2, v3];

B.2. Code for Equation 3.4. function [value] = SF(x,n)
q=zeros(3,n); p=zeros(3,n+1);
a=zeros(1,n);b=zeros(1,n);c=zeros(1,n);
alpha = zeros(1, 2 ∗ n− 2);
for i = 1 : 2 ∗ n− 2
alpha(i)=x(i);
end
for i=1:n-1
a(i) = sin(alpha(i)) ∗ cos(alpha(n− 1 + i));
b(i) = sin(alpha(i)) ∗ sin(alpha(n− 1 + i));
c(i) = cos(alpha(i));
q(:,i)=[a(i),b(i),c(i)];

132 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

end

a(n)=0; b(n)=0; c(n)=0;
for i=1:n-1
a(n)=a(n)-a(i); b(n)=b(n)-b(i); c(n)=c(n)-c(i);
q(:,n)=[a(n),b(n),c(n)];
end

u=zeros(1,2); u = [x(2 ∗ n− 1), x(2 ∗ n)];
value=abs(F(alpha,n))+norm(S(u,a,b,c),2);

for i=1:n
for j=1:i;
p(:,i+1)=p(:,i+1)+q(:,j);
end
end
p

function [value]=F(alpha,n)
for i=1:n-1
a(i) = sin(alpha(i))∗cos(alpha(n−1+i)); b(i) = sin(alpha(i))∗sin(alpha(n−
1 + i)); c(i) = cos(alpha(i));
end

a(n)=0; b(n)=0; c(n)=0;
for i=1:n-1
a(n)=a(n)-a(i); b(n)=b(n)-b(i); c(n)=c(n)-c(i);
end
value = abs(a(n)2 + b(n)2 + c(n)2 − 1);

B.3. Codes for solving the system of Equations 3.2 and 3.4. function
[value] = SFminimizer(n,M)
Max=optimset(‘MaxFunEvals’ ,1e+9);
comb=@(x)SF(x,n);
xval=zeros(2*n,M);
fval=zeros(1,M);

for i=1:M
phi=unifrnd(0,pi,1,n-1); theta=unifrnd(0,2*pi,1,n-1);
s0=unifrnd(0,1); t0=unifrnd(0,1-s0);
x0=[phi,theta,s0,t0];
[xval(:, i), fval(i)] = fminsearch(comb, x0,Max);
%make sure s+ t = xval(2 ∗ n− 1, i) + xval(2 ∗ n, i) < 1 so that s, t ∈ D.
if xval(2 ∗ n− 1, i) + xval(2 ∗ n, i) > 1 or xval(2 ∗ n− 1, i) + xval(2 ∗ n, i) = 1

Computational Topology Counterexamples 133

fval(i)=1;
else
end
end

%Display the minimums and corresponding s, t and q.
xval fval
%Returns the optimal one.
[C, I] = min(fval);
value=[C,I];

B.4. Data for finding the example shown in Figure 2(a). The counterex-
ample (Section 3.3) uses the second column below for the input parameters.
SFminimizer(6,10)
xval =
Columns 1 through 10
2.1907 0.0867 1.0279 2.4529 0.8294 1.3029 1.0958 0.8502 1.2136 0.3308
2.1572 0.4353 1.9303 0.3841 -0.2788 0.3006 -0.2769 2.8797 3.0782 3.1699
0.0079 3.2225 3.2107 1.8739 3.1482 3.6489 1.3900 0.5959 0.1228 1.8107
0.5496 2.6633 0.2000 1.1955 0.5784 2.0316 1.6273 2.0583 3.1341 1.3276
1.8511 2.9336 1.0424 2.6615 2.3439 1.2207 2.4580 4.3850 0.1877 -0.1146
5.2200 1.2107 7.0598 3.4826 0.3696 0.5633 5.1432 4.2546 3.5523 5.5103
2.7090 4.1128 4.1941 2.3445 2.4291 2.0589 0.4295 2.9467 1.0576 5.9281
0.1954 2.0119 2.2644 7.0575 2.1168 2.3027 1.9744 -0.2264 2.5206 2.4902
0.5312 7.4240 2.2923 5.1205 1.2132 4.0211 3.4493 1.6729 1.7930 5.7145
1.3429 0.8465 1.4447 4.4661 4.0120 1.8860 0.0947 3.9222 5.1409 1.2114
0.5200 0.2969 0.7942 0.7334 0.2149 0.6042 1.3269 0.9360 0.1185 0.0320
0.0054 0.0633 0.2813 0.2543 0.6229 0.4588 0.0165 0.1667 0.5815 0.5970

fval =
Columns 1 through 7
0.0000 0.0000 1.0000 0.2180 0.0001 1.0000 1.0000
Columns 8 through 10
1.0000 0.0001 0.0000

% The corresponding function values of S and F are given:
Svalue = 1.0e− 03∗
-0.3861 -0.0970 0.1462

Fvalue =2.2329e− 05

134 J. Li, T. J. Peters, D. Marsh and K. E. Jordan

References

[1] C .C. Adams, The Knot Book: An Elementary Introduction To The Mathematical The-

ory Of Knots, American Mathematical Society, 2004.
[2] J. W. Alexander and G. B. Briggs, On types of knotted curves Annals of Mathematics

28 (1926-1927), 562–586.
[3] L. E. Andersson, T. J. Peters and N. F. Stewart, Selfintersection of composite curves

and surfaces, CAGD 15 (1998), 507–527.
[4] M. A. Armstrong, Basic Topology, Springer, New York, 1983.
[5] R. H. Bing, The Geometric Topology of 3-Manifolds, American Mathematical Society,

Providence, RI, 1983.
[6] J. Bisceglio, T. J. Peters, J. A. Roulier and C. H. Sequin, Unknots with highly knotted

control polygons, CAGD 28, no. 3 (2011), 212–214.
[7] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press,

San Diego, CA, 1990.
[8] J. Hass, J. C. Lagarias and N. Pippenger, The computational complexity of knot and

link problems, Journal of the ACM, 46, no, 2 (1999), 185–221.
[9] K. E. Jordan, R. M. Kirby, C. Silva and T. J. Peters, Through a new looking glass*:

Mathematically precise visualization, SIAM News 43, no. 5 (2010), 1–3.
[10] K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters and A. C. Russell, Modeling time

and topology for animation and visualization with examples on parametric geometry,

Theoretical Computer Science 405 (2008), 41–49.
[11] K. E. Jordan, L. E. Miller, T. J. Peters and A. C. Russell, Geometric topology and

visualizing 1-manifolds, In V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors,
Topology-based Methods in Visualization, pages 1 – 12, New York, 2011. Springer.

[12] C. Livingston, Knot Theory, volume 24 of Carus Mathematical Monographs, Mathemat-
ical Association of America, Washington, DC, 1993.

[13] T. J. Peters and D. Marsh, Personal home page of T. J. Peters.

http://www.cse.uconn.edu/.
[14] L. Piegl and W. Tiller, The NURBS Book, Springer, New York, 2nd edition, 1997.
[15] R. Scharein, The knotplot site, http://www.knotplot.com/.
[16] C. H. Sequin, Spline knots and their control polygons with differing knottedness,

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-152.html .

(Received November 2011 – Accepted May 2012)

J. Li (ji.li@uconn.edu)
Department of Mathematics, University of Connecticut, Storrs, CT, USA.

T. J. Peters (tpeters@cse.uconn.edu)
Department of Computer Science and Engineering, University of Connecticut,
Storrs, CT, USA.

D. Marsh (david.the.marsh@gmail.com)
Pratt and Whitney, East Hartford, CT, USA.

K. E. Jordan (kjordan@us.ibm.com)
IBM T.J. Watson Research, Cambridge Research Center, Cambridge, MA,
USA.

http://www.cse.uconn.edu/
http://www.knotplot.com/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-152.html

	Computational Topology Counterexamples with [5pt]3D Visualization of Bézier Curves. By J. Li, T. J. Peters, D. Marsh and K. E. Jordan

