

Closed ideals in the functionally countable subalgebra of C(X)

Amir Veisi

Faculty of Petroleum and Gas, Yasouj University, Gachsaran, Iran (aveisi@yu.ac.ir)

Communicated by A. Tamariz-Mascarúa

Abstract

In this paper, closed ideals in $C_c(X)$, the functionally countable subalgebra of C(X), with the m_c -topology are studied. We show that if Xis a CUC-space, then $C_c^*(X)$ with the uniform norm-topology is a Banach algebra. Closed ideals in $C_c(X)$ as a modified countable analogue of closed ideals in C(X) with the m-topology, are characterized. For a zero-dimensional space X, we show that a proper ideal in $C_c(X)$ is closed if and only if it is an intersection of maximal ideals of $C_c(X)$. It is also shown that every ideal in $C_c(X)$ with the m_c -topology is closed if and only if X is a P-space if and only if every ideal in C(X) with the m-topology is closed. Also, for a strongly zero-dimensional space X, it is proved that every properly closed ideal in $C_c^*(X)$ is an intersection of maximal ideals of $C_c^*(X)$ if and only if X is pseudocompact if and only if every properly closed ideal in $C^*(X)$ is an intersection of maximal ideals of $C^*(X)$. Finally, we show that if X is a P-space, then the family of e_c -ultrafilters and z_c -ultrafilter coincide.

2020 MSC: 54C30; 54C40; 13C11.

KEYWORDS: zero-dimensional space; functionally countable subalgebra; m-topology; closed ideal; e_c -filter; e_c -ideal; P-space.

1. INTRODUCTION

In what follows X stands for an infinite completely regular Hausdorff topological space (i.e., infinite Tychonoff space) and C(X) as usual denotes the ring of all real-valued continuous functions on X. $C^*(X)$ designates the subring of C(X) containing all those members which are bounded over X. For

Received 30 June 2021 - Accepted 09 October 2021

each $f \in C(X)$, the zero-set of f, denoted by Z(f), is the set of zeros of fand $X \setminus Z(f)$ is the cozero-set of f and the set of all zero-sets in X is denoted by Z(X). An ideal I in C(X) is called a z-ideal if $f \in I$, $g \in C(X)$ and $Z(f) \subseteq Z(g)$, then $g \in I$. The space βX is the Stone-Čech compactification of X and for any $p \in \beta X$, the maximal ideal M^p of C(X) is the set of all $f \in C(X)$ for which $p \in \operatorname{cl}_{\beta X} Z(f)$. Moreover, M^p is fixed if and only if $p \in X$ (in which case, we put $M^p = M_p = \{f \in C(X) : p \in Z(f)\}$). Whenever $\frac{C(X)}{M^p} \cong \mathbb{R}$, then M^p is called real, else hyper-real, see [5, Chapter 8]. We recall that a zero-dimensional space is a Hausdorff space with a base consisting of clopen (closed-open) sets. A Tychonoff space X is called strongly zero-dimensional if for every finite cover $\{U_i\}_{i=1}^k$ of X by cozero-sets there exists a finite refinement $\{V_i\}_{i=1}^m$ of mutually disjoint open sets. A Tychonoff space X is strongly zero-dimensional if and only if βX is zero-dimensional, see [2].

The subring of C(X) consisting of those functions with countable (resp. finite) image, which is denoted by $C_c(X)$ (resp. $C^F(X)$) is an \mathbb{R} -subalgebra of C(X). The subring $C_c^*(X)$ of $C_c(X)$ consists of bounded elements of $C_c(X)$. So $C_c^*(X) = C^*(X) \cap C_c(X)$. The rings $C_c(X)$ and $C^F(X)$ are introduced and investigated in [3] and more studied in [1], [4], [9], [10] and [12]. A topological space X is called *countably pseudocompact*, briefly, *c-pseudocompact* if $C_c(X) = C_c^*(X)$. A nonempty subfamily \mathcal{F} of $Z_c(X) := \{Z(f) : f \in C_c(X)\}$ is called a z_c -filter if it is a filter on X. For an ideal I in $C_c(X)$ and a z_c filter \mathcal{F} , we define $Z_c[I] = \{Z(f) : f \in I\}, \ \cap Z_c[I] = \cap \{Z(f) : f \in I\}$ and $Z_c^{-1}[\mathcal{F}] = \{f \in C_c(X) : Z(f) \in \mathcal{F}\}$. It is observed that $\mathcal{F} = Z_c[Z_c^{-1}[\mathcal{F}]]$. Also, $Z_c[I]$ is a z_c -filter on X and $Z_c^{-1}[Z_c[I]] \supseteq I$. If the equality holds, then I is called a z_c -ideal. This means that if $f \in I$, $g \in C_c(X)$ and $Z(f) \subseteq Z(g)$, then $q \in I$. So maximal ideals in $C_c(X)$ are z_c -ideals. In the same way, for an ideal I of $C_c^*(X)$ and a z_c -filter \mathcal{F} on X, $E_c(I)$ is an e_c -filter and $E_c^{-1}(\mathcal{F})$ is an e_c ideal. The counterpart notions are $E_c^{-1}(E_c(I)) \supseteq I$ and $E_c(E_c^{-1}(\mathcal{F})) = \mathcal{F}$, see [14]. By $\beta_0 X$, we mean the Banaschewski compactification of a zerodimensional space X. If βX is zero-dimensional, then $\beta X = \beta_0 X$, see [13, Section 4.7] for more details. According to [1, Theorems 4.2, 4.8], for any $p \in \beta_0 X$, the maximal ideal M^p_c of $C_c(X)$ is the set of all $f \in C_c(X)$ for which $p \in cl_{\beta_0 X}Z(f)$, or equivalently, it is the set of all $f \in C_c(X)$ for which $\pi_p \in \mathrm{cl}_{\beta X}Z(f)$. Moreover, M_c^p is fixed if and only if $p \in X$ (in which case, we put $M_c^p = M_{cp} = \{f \in C_c(X) : p \in Z(f)\}$. Let S be a subring of C(X) and a topological space. An ideal I of S is called a *closed ideal* if $I = cl_S I$, briefly, I = clI. The paper is organized as follows. In Section 2, we introduce the m_c -topology on $C_c(X)$ and derive some corollaries on the ideals of $C_c(X)$ and $C_c^*(X)$. We show that if X is a CUC-space, then $C_c^*(X)$ with the uniform-norm topology is a Banach algebra. It is shown that an ideal in $C_c(X)$ is a z-ideal if and only if it is a z_c -ideal. In [5], closed ideals in C(X) with the *m*-topology are characterized. In Section 3, the countable analogue of this characterization is given. We show that a proper ideal in $C_c(X)$ is closed if and only if it is an intersection of maximal ideals in $C_c(X)$. It is also shown that every ideal

in $C_c(X)$ is closed if and only if X is a P-space if and only if every ideal in C(X) is closed. For a strongly zero-dimensional space X, we prove that every properly closed ideal in $C_c^*(X)$ is an intersection of maximal ideals of $C_c^*(X)$ if and only if X is pseudocompact if and only if every properly closed ideal in $C^*(X)$ is an intersection of maximal ideals of $C^*(X)$. Finally, we show that if X is a P-space, then the family of e_c -ultrafilters and z_c -ultrafilter coincide.

2. Some properties of ideals in $C_c(X)$

The *m*-topology on C(X) was first introduced and studied by Hewitt [8], the generalizing work of E. H. Moore. In his article, he demonstrated that certain classes of topological spaces X can be characterized by topological properties of C(X) with the *m*-topology. For example, he showed that X is pseudocompact if and only if C(X) with the *m*-topology is first countable. Several authors have investigated the topological properties of X via properties of C(X), for more information, one can refer to [6] and [11]. The *m*-topology on C(X) is defined by taking the sets of the form

$$B(f, u) = \{ g \in C(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X \},\$$

as a base for the neighborhood system at f, for each $f \in C(X)$ and each positive unit u of C(X). The m_c -topology (in brief, m_c) on $C_c(X)$ is determined by considering the sets of the form

$$B(f, u) = \{ g \in C_c(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X \},\$$

as a base for the neighborhood system at f, for each $f \in C_c(X)$ and each positive unit u of $C_c(X)$. The uniform topology, or the u_c -topology (in brief, u_c) on $C_c(X)$ is defined by taking the sets of the form

 $B(f,\varepsilon) = \{g \in C_c(X) : |f(x) - g(x)| < \varepsilon \text{ for all } x \in X\},\$

as a base for the neighborhood system at f, for each $f \in C_c(X)$ and each $\varepsilon > 0$. Equivalently, a base at f is given by all sets

 $B(f, u) = \{ g \in C_c(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in X \},\$

where u is a positive unit of $C_c^*(X)$. We observe that $u_c \subseteq m_c$. It is shown in [15] that $u_c = m_c$ if and only if X is countably pseudocompact. The u_c topology turns $C_c(X)$ into a metric space with $d(f,g) = ||f-g|| = \sup\{|f(x) - g(x)| : x \in X\}$. Also, the m_c -topology is contained in the relative m-topology. We remind a well-known result that due to Rudin, Pelczynski and Semadeni which asserts that a compact Hausdorff space X is functionally countable (i.e., $C(X) = C_c(X)$) if and only if X is scattered. So if X is a compact scattered space or a countable space, then $C(X) = C_c(X)$, and thus the m_c -topology and the m-topology coincide.

Proposition 2.1. Let I be an ideal in $C_c(X)$ (resp. $C_c^*(X)$) and the topology on $C_c(X)$ be the m_c -topology. Then:

- (i) clI is an ideal in $C_c(X)$ (resp. $C_c^*(X)$) and hence I is contained in a closed ideal.
- (ii) If I is a proper ideal, then clI is also a proper ideal and hence there is no proper dense ideal in $C_c(X)$ (resp. $C_c^*(X)$).

Proof. We provide the proof for which case I is an ideal in $C_c(X)$. In the same way, the proof holds for the ideal I in $C_c^*(X)$. (i). Clearly, the result holds if $I = C_c(X)$. Suppose that $I \subsetneqq C_c(X)$. Let $f, g \in \operatorname{cl} I$, $h \in C_c(X)$ and u be a positive unit of $C_c(X)$. Then for some $f' \in B(f, \frac{u}{2}) \cap I$, and $g' \in B(g, \frac{u}{2}) \cap I$, we have $f' + g' \in B(f + g, u) \cap I$. To show that $fh \in \operatorname{cl} I$, we consider the positive unit

$$u_1 = \frac{u}{(|h|+1)(u+1)} \in C_c(X).$$

Therefore, for some $f_1 \in B(f, u_1) \cap I$ we have that $|fh - f_1h| < u_1|h| < u$. So $f_1h \in B(fh, u) \cap I$. Moreover, if $f \in clI$, then also $-f \in clI$. Thus, clI contains both f + g and fh. So clI is ideal. (ii). Suppose that I is a proper ideal in $C_c(X)$ and $clI = C_c(X)$. Consider the constant function $1 \in clI$ and $0 < \varepsilon < 1$. Hence, the nonempty set $B(1, \varepsilon) \cap I$ contains a nonzero element of $C_c(X)$, f say. Since $1 - \varepsilon < f(x) < 1 + \varepsilon$ for each $x \in X$, we have $Z(f) = \emptyset$, i.e., f is a unit of $C_c(X)$, which is impossible (because $f \in I$). Thus, $clI \subsetneq C_c(X)$, and we are done.

The next result is now immediate.

Corollary 2.2. Any maximal ideal in $C_c(X)$ (resp. $C_c^*(X)$) and hence any intersection of maximal ideals in $C_c(X)$ (resp. $C_c^*(X)$) is closed.

Definition 2.3. An ideal I in a commutative ring with unity R is called a *z*-*ideal* in R if for each $a \in I$, we have $M_a \subseteq I$, here M_a is the intersection of all maximal ideals in R containing a.

Evidently, each maximal ideal in R is a z-ideal. This notion of z-ideal is consistent with the notion of z-ideals in C(X), see [5, 4A(5)].

Proposition 2.4. Let X be zero-dimensional and I be an ideal in $C_c^*(X)$. Then I is a z-ideal if and only if $g \in I$ whenever $Z(f^\beta) \subseteq Z(g^\beta)$ with $f \in I$ and $g \in C_c^*(X)$, where f^β is the extension of f to βX .

Proof. (\Rightarrow) : Let $f \in I$, $g \in C_c^*(X)$ and $Z(f^\beta) \subseteq Z(g^\beta)$ and let M_f be the intersection of all the maximal ideals in $C_c^*(X)$ containing f. By the assumption, $M_f \subseteq I$. Let M be a maximal ideal in $C_c^*(X)$ containing f. According to [9, Corollary 2.11], M has a form of $M_c^{*p} = \{h \in C_c^*(X) : h^\beta(p) = 0\}$, for some $p \in \beta X$. Now, $Z(f^\beta) \subseteq Z(g^\beta)$ implies that $g \in M$. Hence, $g \in I$.

 (\Leftarrow) : Let $f \in I$ and $g \in M_f$. Then $f \in M_c^{*p}$ implies that $g \in M_c^{*p}$, i.e., $Z(f^{\beta}) \subseteq Z(g^{\beta})$. Therefore, by the hypothesis, $g \in I$.

Lemma 2.5. Let X be zero-dimensional and I be an ideal in $C_c(X)$. Then I is a z-ideal if and only if it is a z_c -ideal.

Proof. (\Rightarrow) : Let I be a z-ideal in $C_c(X)$, $f \in I$ and $Z(f) \subseteq Z(g)$ with $g \in C_c(X)$. We have to show that $g \in I$. Since I is a z-ideal, we have $M_f \subseteq I$, where M_f is the intersection of all the maximal ideals in $C_c(X)$ containing f. It suffices to show that $g \in M_f$. So let M_c^p $(p \in \beta_0 X)$ be any maximal ideal in $C_c(X)$ which contains f, we have to show that $g \in M_c^p$ (see [1, Theorem

© AGT, UPV, 2022

4.2]). Indeed $f \in M_c^p$ implies that $p \in cl_{\beta_0 X}Z(f)$ which further implies that $p \in cl_{\beta_0 X}Z(g)$, by the assumption, $Z(f) \subseteq Z(g)$. Hence, $g \in M_c^p$. Thus, I becomes a z_c -ideal in $C_c(X)$.

(⇐) : Let *I* be a z_c -ideal in $C_c(X)$ and $f \in I$. We must show $M_f \subseteq I$. Let $g \in M_f$. Then $f \in M_c^p$ gives $g \in M_c^p$, where $p \in \beta_0 X$. Equivalently, $cl_{\beta_0 X}Z(f) \subseteq cl_{\beta_0 X}Z(g)$. So $Z(f) = cl_{\beta_0 X}Z(f) \cap X \subseteq cl_{\beta_0 X}Z(g) \cap X = Z(g)$. Now, the assumption yields that $g \in I$.

Proposition 2.6. If I is a closed ideal in $C_c(X)$, then I is a z_c -ideal.

Proof. Suppose that $Z(f) \subseteq Z(g)$, $f \in I$ and $g \in C_c(X)$. To show that $g \in I$, we show that $g \in clI$ because I = clI. Let $u \in C_c(X)$ be a positive unit and let us define a function $h: X \to \mathbb{R}$ as follows:

$$h(x) = \begin{cases} \frac{g(x) - \frac{u(x)}{2}}{f(x)} & \text{where } g(x) \ge \frac{u(x)}{2}, \\ 0 & \text{where } |g(x)| \le \frac{u(x)}{2}, \\ \frac{g(x) + \frac{u(x)}{2}}{f(x)} & \text{where } g(x) \le -\frac{u(x)}{2}. \end{cases}$$

From the continuity of h on the three closed sets $(g - \frac{u}{2})^{-1}([0,\infty))$, $(g + \frac{u}{2})^{-1}([0,\infty)) \cap (g - \frac{u}{2})^{-1}((-\infty,0])$, and $(g + \frac{u}{2})^{-1}((-\infty,0])$, which their union is X, we infer that $h \in C(X)$. Moreover, since the ranges of g, u and f are countable, the range of h is also countable, i.e., $h \in C_c(X)$. Thus, $fh \in I$. Furthermore, it is easy to see that |g(x) - f(x)h(x)| < u(x) for every $x \in X$, i.e., $fh \in B(g, u) \cap I$ and thus $g \in clI$, which completes the proof.

The next example shows that the converse of the above proposition is not true in general.

Example 2.7. Consider the zero-dimensional space $X = \mathbb{Q} \times \mathbb{Q}$, $p = (0,0) \in X$, and put $O_p = \{f \in C(X) : p \in \operatorname{int}_X Z(f)\}$ (note, $C_c(X) = C(X)$ because X is countable). Recall that O_p is a z_c -ideal. We now claim that O_p is not a closed ideal in C(X). To see this, consider $f(x, y) = \frac{|x| + |y|}{1 + |x| + |y|} \in C(X)$ and let u be a fixed positive unit of C(X). Define a function g by

$$g(x,y) = \begin{cases} 0 & \text{where } f(x,y) \le \frac{u(x,y)}{2}, \\ f(x,y) - \frac{u(x,y)}{2} & \text{where } f(x,y) \ge \frac{u(x,y)}{2}. \end{cases}$$

Obviously, $g \in C(X)$. Let $G = \{(x, y) \in X : f(x, y) < \frac{u(x, y)}{2}\}$. Then $p \in G \subseteq Z(g)$ and therefore $g \in O_p$, in fact, $g \in B(f, u) \cap O_p$. It follows that $f \in cl_{C(X)}O_p$. On the other hand, the set $Z(f) = \{p\}$ is not open in X. Hence, $f \in cl_{C(X)}O_p \setminus O_p$. i.e., O_p is not a closed ideal in C(X).

A Banach algebra B is an algebra that is a Banach space with a norm that satisfies $||xy|| \leq ||x|| ||y||$ for all $x, y \in B$, and there exists a unit element $e \in B$ such that ex = xe = x, ||e|| = 1.

In [7, Definition 2.2], a topological space X is called a *countably uniform* closed-space, briefly, a CUC-space, if whenever $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of functions of $C_c(X)$ and $f_n \to f$ uniformly, then f belongs to $C_c(X)$.

Theorem 2.8. If X is a CUC-space, then $C_c^*(X)$ with the supremum-norm topology is a Banach algebra.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence of functions in $C^*_c(X)$. Given $\varepsilon > 0$, we can find a natural number N such that $||f_n - f_m|| \leq \varepsilon$ for every m, n > N. Thus, $|f_n(x) - f_m(x)| \leq \varepsilon$ for all $x \in X$ and all m, n > N. Let $x \in X$ be fixed and a_x be the limit of the numerical sequence $\{f_n(x)\}_{n\in\mathbb{N}}$ in \mathbb{R} (note, \mathbb{R} is a Banach space). Now, define $f: X \to \mathbb{R}$ by $f(x) = a_x$. Let n be fixed, then $|f_n(x) - \lim_{m \to \infty} f_m(x)| \le \varepsilon$ for each $x \in X$ and each m > N. So $||f_n - f|| \le \varepsilon$. Since n is arbitrary, we get $f_n \to f$ in the norm, uniformly. Consequently, $f \in C(X)$. Furthermore, our assumption implies that $f \in C_c(X)$. Moreover, $||f|| \leq ||f - f_n|| + ||f_n||$ gives f is bounded. Hence, $C_c^*(X)$ is a Banach space. The proof is completed by the fact that $||fg|| \le ||f|| ||g||$ for all $f, g \in C_c^*(X)$. \Box

3. CLOSED IDEALS IN $C_c(X)$ AND $C_c^*(X)$ (WITH THE m_c -TOPOLOGY)

We need the next statement which is the counterpart of [5, 1D(1)] for $C_c(X)$.

Proposition 3.1. If $f, g \in C_c(X)$ and Z(f) is a neighborhood of Z(g), then f = gh for some $h \in C_c(X)$.

Proposition 3.2. Let X be a zero-dimensional space, $f \in C_c(\beta_0 X)$ and let f_0 be the restriction of f on X. Then $int_{\beta_0 X}Z(f) \subseteq cl_{\beta_0 X}Z(f_0) \subseteq Z(f)$.

Proof. Let $p \in int_{\beta_0 X} Z(f)$ and V be an open set in $\beta_0 X$ containing p. Since X is dense in $\beta_0 X$, we have $\emptyset \neq V \cap \operatorname{int}_{\beta_0 X} Z(f) \cap X \subseteq V \cap Z(f_0)$. So $p \in cl_{\beta_0 X} Z(f_0)$. For the second inclusion, since $Z(f_0) \subseteq Z(f)$, we have that $\operatorname{cl}_{\beta_0 X} Z(f_0) \subseteq \operatorname{cl}_{\beta_0 X} Z(f) = Z(f).$

Corollary 3.3. Let X be zero-dimensional and $p \in \beta_0 X$. Then

- (i) $\bigcap_{f \in M_c^p} cl_{\beta_0 X} Z(f) = \{p\}.$ (ii) If $p \in X$, then $\bigcap_{f \in M_{cp}} Z(f) = \{p\}$, i.e., M_{cp} is fixed.

Proof. (i). Recall that $f \in M_c^p$ if and only if $p \in cl_{\beta_0 X} Z(f)$ (see [1, Theorem 4.2]). Therefore, $p \in \bigcap_{f \in M^p_c} \operatorname{cl}_{\beta_0 X} Z(f)$. Now, we claim that the latter intersection is the singleton set $\{p\}$. On the contrary, suppose that this set contains an element $q \in \beta_0 X$ distinct from p. Since $\beta_0 X$ is zero-dimensional, by [3, Proposition 4.4], there exists $g \in C_c(\beta_0 X)$ such that $p \in int_{\beta_0 X} Z(g)$ and g(q) = 1. Let g_0 be the restriction of g on X. Then by Proposition 3.2, $cl_{\beta_0 X} Z(g_0)$ contains p but not q. This means that $g_0 \in M^p_c \setminus M^q_c$ which is a contradiction, so (i) holds. (ii). Clearly, $\bigcap_{f \in M_{cp}} Z(f) = \bigcap_{f \in M_{cp}} \operatorname{cl}_{\beta_0 X} Z(f) \cap X = \{p\}.$

In a similar way to Proposition 3.2 and Corollary 3.3, we get:

Proposition 3.4. For a Tychonoff space X and $f \in C^*(X)$, we have that $int_{\beta X}Z(f^{\beta}) \subseteq cl_{\beta X}Z(f) \subseteq Z(f^{\beta})$, where f^{β} is the extension of f to βX . Moreover, if $p \in \beta X$, then $\bigcap_{f \in M^p} cl_{\beta X} Z(f) = \{p\}$. In particular, if $p \in X$, then $\bigcap_{f \in M_p} Z(f) = \{p\}$, i.e., M_p is fixed.

(c) AGT, UPV, 2022

Closed ideals in the functionally countable subalgebra of ${\cal C}(X)$

Proposition 3.5. Let X be zero-dimensional, $p \in \beta_0 X$ and π_p be its corresponding point of βX in characterizing of maximal ideals in $C_c(X)$. Then $M_c^p \cap C_c^*(X) \subseteq M^{*\pi_p} \cap C_c^*(X)$. Particularly, if X is strongly zero-dimensional, then $M_c^p \cap C_c^*(X) \subseteq M^{*p} \cap C_c^*(X)$.

Proof. In view of [1, Theorems 4.2, 4.8], we have

 $M_{c}^{p} = \{ f \in C_{c}(X) : p \in cl_{\beta_{0}X}Z(f) \} = \{ f \in C_{c}(X) : \pi_{p} \in cl_{\beta X}Z(f) \}.$

Let $f \in M_c^p \cap C_c^*(X)$. Then $\pi_p \in \operatorname{cl}_{\beta X} Z(f)$ and hence $f^{\beta}(\pi_p) = 0$, by Proposition 3.4. Therefore, $f \in M^{*\pi_p} \cap C_c^*(X)$. The second part follows from the assumption, i.e., $\beta_0 X = \beta X$ and so $\pi_p = p$.

Remark 3.6. Replacing T with $\beta_0 X$ in [1, Proposition 3.2] implies that for any two zero-sets Z_1 and Z_2 in $Z_c(X)$, we get $cl_{\beta_0 X}(Z_1 \cap Z_2) = cl_{\beta_0 X}Z_1 \cap cl_{\beta_0 X}Z_2$.

Remark 3.7. ([1, Remark 4.12]) If X is zero-dimensional and $f, g \in C_c(X)$, then $\operatorname{cl}_{\beta_0 X} Z(f)$ is a neighborhood of $\operatorname{cl}_{\beta_0 X} Z(g)$ if and only if there exists $h \in C_c(X)$ such that $Z(g) \subseteq \operatorname{coz}(h) \subseteq Z(f)$.

Proposition 3.8. Let X be zero-dimensional and I a proper ideal in $C_c(X)$ and let $V_c(I) = \{p \in \beta_0 X : M_c^p \supseteq I\}$. Then:

- (i) $V_c(I) = \bigcap_{g \in I} cl_{\beta_0 X} Z(g).$
- (ii) If $f \in C_c(X)$ and $cl_{\beta_0 X}Z(f)$ is a neighborhood of $V_c(I)$, then $f \in I$.

Proof. (i). This is easily obtained from the fact that $g \in M_c^p$ if and only if $p \in cl_{\beta_0 X} Z(g)$. (ii). Suppose that

$$V_{c}(I) = \bigcap_{g \in I} \mathrm{cl}_{\beta_{0}X} Z(g) \subseteq \mathrm{int}_{\beta_{0}X} \mathrm{cl}_{\beta_{0}X} Z(f).$$

Then we have $\bigcup_{g \in I} (\beta_0 X \setminus cl_{\beta_0 X} Z(g)) \supseteq \beta_0 X \setminus int_{\beta_0 X} cl_{\beta_0 X} Z(f)$. Hence, the collection

$$\mathcal{C} = \{ \operatorname{int}_{\beta_0 X} \operatorname{cl}_{\beta_0 X} Z(f), \, \beta_0 X \setminus \operatorname{cl}_{\beta_0 X} Z(g) : g \in I \}$$

is an open cover for the compact set $\beta_0 X$. Therefore, there is a finite number of elements of I; g_1, g_2, \ldots, g_n say, such that

$$\beta_0 X = \operatorname{int}_{\beta_0 X} \operatorname{cl}_{\beta_0 X} Z(f) \cup \left(\beta_0 X \setminus \operatorname{int}_{\beta_0 X} \operatorname{cl}_{\beta_0 X} Z(f)\right)$$
$$= \operatorname{int}_{\beta_0 X} \operatorname{cl}_{\beta_0 X} Z(f) \cup \left(\bigcup_{i=1}^n (\beta_0 X \setminus \operatorname{cl}_{\beta_0 X} Z(g_i))\right).$$

Now, we have that

$$\left(\bigcap_{i=1}^{n} \mathrm{cl}_{\beta_{0}X} Z(g_{i})\right) \cap \left(\beta_{0}X \setminus \mathrm{int}_{\beta_{0}X} \mathrm{cl}_{\beta_{0}X} Z(f)\right) = \emptyset.$$

Thus, $\bigcap_{i=1}^{n} \mathrm{cl}_{\beta_0 X} Z(g_i) \subseteq \mathrm{int}_{\beta_0 X} \mathrm{cl}_{\beta_0 X} Z(f)$. Since *I* is a proper ideal, the element $g = \sum_{i=1}^{n} g_i^2$ of *I* is not a unit of $C_c(X)$ and hence $Z(g) = \bigcap_{i=1}^{n} Z(g_i) \neq \emptyset$. From Remark 3.6 we conclude that

$$\operatorname{cl}_{\beta_0 X} Z(g) = \operatorname{cl}_{\beta_0 X} \left(\bigcap_{i=1}^n Z(g_i) \right) = \bigcap_{i=1}^n \operatorname{cl}_{\beta_0 X} Z(g_i) \subseteq \operatorname{int}_{\beta_0 X} \operatorname{cl}_{\beta_0 X} Z(f).$$

© AGT, UPV, 2022

Appl. Gen. Topol. 23, no. 1 85

This leads us $cl_{\beta_0 X}Z(f)$ is a neighborhood of $cl_{\beta_0 X}Z(g)$. In view of Remark 3.7, there exists $h \in C_c(X)$ such that $Z(g) \subseteq coz(h) \subseteq Z(f)$. So Z(f) is a neighborhood of Z(g). By Proposition 3.1, we get $f \in I$.

Lemma 3.9. Let X be zero-dimensional and $g \in C_c(X)$. Then for any neighborhood B(g, u) of g in the m_c -topology, there exists some $f_u \in B(g, u)$ such that $cl_{\beta_0 X}Z(f_u)$ is a neighborhood of $cl_{\beta_0 X}Z(g)$.

Proof. If $cl_{\beta_0 X}Z(g)$ is an open set in $\beta_0 X$, then we set $f_u = g$. In general, we define a function $f_u : X \to \mathbb{R}$ by

$$f_u(x) = \begin{cases} g(x) - \frac{u(x)}{2} & \text{where } g(x) \ge \frac{u(x)}{2}, \\ 0 & \text{where } |g(x)| \le \frac{u(x)}{2}, \\ g(x) + \frac{u(x)}{2} & \text{where } g(x) \le -\frac{u(x)}{2}. \end{cases}$$

It is clear that $f_u \in C(X)$ and further since the range of g and u is countable, we get $f_u \in C_c(X)$. Moreover, $f_u \in B(g, u)$. To establish the conclusion, consider the function h below

$$h(x) = \begin{cases} (g(x) + \frac{u(x)}{2})(g(x) - \frac{u(x)}{2}) & \text{where } |g(x)| \le \frac{u(x)}{2}, \\ 0 & \text{where } |g(x)| \ge \frac{u(x)}{2}. \end{cases}$$

We observe that $h \in C_c(X)$. Furthermore, $Z(g) \subseteq \operatorname{coz}(h) \subseteq Z(f_u)$. Now, Remark 3.7 implies that $\operatorname{cl}_{\beta_0 X} Z(f_u)$ is a neighborhood of $\operatorname{cl}_{\beta_0 X} Z(g)$, and we are through.

Theorem 3.10. Let X be zero-dimensional and I a proper ideal in $C_c(X)$ and let $V_c(I)$ be the same as the set in Proposition 3.8 $(V_c(I) = \bigcap_{g \in I} cl_{\beta_0 X} Z(g))$. Let

$$J = \{ f \in C_c(X) : cl_{\beta_0 X} Z(f) \supseteq V_c(I) \}, and \bar{I} = \cap \{ M_c^p : M_c^p \supseteq I \}.$$

Then:

- (i) I is a closed ideal in $C_c(X)$ containing I.
- (ii) $J = \overline{I}$, in other words, J is the kernel of the hull of I in the structure space of $C_c(X)$.
- (iii) $V_c(I) = V_c(\overline{I}).$
- (iv) $clI = \overline{I}$.

Proof. (i). It follows from Corollary 2.2. (ii). Let $f \in J$ and M_c^p $(p \in \beta_0 X)$ be a maximal ideal in $C_c(X)$ containing I. Then

(3.1)
$$V_c(I) \supseteq V_c(M_c^p)$$
 and so $cl_{\beta_0 X} Z(f) \supseteq V_c(I) \supseteq V_c(M_c^p) = \{p\}$

(note, the last equality follows from Corollary 3.3). Therefore, $f \in M_c^p$ and thus $f \in \overline{I}$, i.e., $J \subseteq \overline{I}$. For the reverse inclusion, we show that if $f \notin J$, then $f \notin \overline{I}$. Since $f \notin J$, there exists $q \in \beta_0 X$ such that $q \in V_c(I) \setminus \operatorname{cl}_{\beta_0 X} Z(f)$. Therefore, $g \in M_c^q$ for every $g \in I$ and hence $I \subseteq M_c^q$. But $f \notin M_c^q$. Thus, M_c^q is a maximal ideal containing I but not f. This yields that $f \notin \overline{I}$. (iii). Using (ii) and the definition of J, we have $V_c(\overline{I}) = V_c(J) \supseteq V_c(I)$. On the other hand, the inclusion $I \subseteq \overline{I}$ implies that $V_c(\overline{I}) \subseteq V_c(I)$. So (iii) holds.

© AGT, UPV, 2022

(iv). By (i), $\operatorname{cl} I \subseteq \overline{I}$. Now, suppose that $g \in \overline{I}$ and u is a positive unit of $C_c(X)$. We claim that $B(g, u) \cap I \neq \emptyset$. According to Lemma 3.9, there exists $f_u \in C_c(X)$ such that $f_u \in B(g, u)$, and $\operatorname{cl}_{\beta_0 X} Z(f_u)$ is a neighborhood of $\operatorname{cl}_{\beta_0 X} Z(g)$. Now, it remains to show that $f_u \in I$. From (iii), we infer that $V_c(I) = V_c(\overline{I}) \subseteq \operatorname{cl}_{\beta_0 X} Z(g) \subseteq \operatorname{int}_{\beta_0 X} \operatorname{cl}_{\beta_0 X} Z(f_u)$. Proposition 3.8(ii) now yields that $f_u \in I$. Therefore, $f_u \in B(g, u) \cap I$ and so $g \in \operatorname{cl} I$, i.e., $\overline{I} \subseteq \operatorname{cl} I$.

It is known that a proper ideal in C(X) with the *m*-topology is closed if and only if it is an intersection of maximal ideals in C(X) (see [5, 7Q(2)]). The next theorem involves the countable analogue characterization of closed ideals in $C_c(X)$. Using Theorem 3.10(iv) and Corollary 2.2, we obtain:

Theorem 3.11. Let X be zero-dimensional and the topology on $C_c(X)$ be the m_c -topology. Then a proper ideal in $C_c(X)$ is closed if and only if it is an intersection of maximal ideals of $C_c(X)$.

Theorem 3.12. Let X be zero-dimensional and the topology on $C_c(X)$ (resp. C(X)) be the m_c -topology (resp. the m-topology). Then the following statements are equivalent.

- (i) Every ideal in C(X) is closed.
- (ii) X is a P-space.
- (iii) Every ideal in $C_c(X)$ is closed.
- (iv) Every prime ideal in $C_c(X)$ is closed.

Proof. (i) \Leftrightarrow (ii). It follows from [5, 4J(9), 7Q(2)].

(ii) \Rightarrow (iii). By [3, Proposition 5.3], X is a *CP*-space. Now, the result is obtained by [3, Theorem 5.8(7)] and Corollary 2.2.

(iii) \Rightarrow (iv). It is evident.

(iv) \Rightarrow (ii). According to [3, Corollary 5.7], it is enough to show that X is a CP-space. Let P be a prime ideal in $C_c(X)$, then by [1, Lemma 4.11(4)], P is contained in a unique maximal ideal M_c^p of $C_c(X)$, where $p \in \beta_0 X$. Now, by the assumption and Theorem 3.11, we get $P = M_c^p$, i.e., X is a CP-space. \Box

Theorem 3.13. Let X be strongly zero-dimensional and the topology on $C_c^*(X)$ (resp. $C^*(X)$) be the m_c -topology (resp. the m-topology). Then the following statements are equivalent.

- (i) Every properly closed ideal in C^{*}_c(X) is an intersection of maximal ideals of C^{*}_c(X).
- (ii) X is pseudocompact.
- (iii) Every properly closed ideal in $C^*(X)$ is an intersection of maximal ideals of $C^*(X)$.

Proof. A maximal ideal in $C_c^*(X)$ is of the form $M_c^{*p} = \{f \in C_c^*(X) : f^\beta(p) = 0\}$, where $p \in \beta X$. Also, $M_c^{*p} = M^{*p} \cap C_c^*(X)$, see [9, Corollaries 2.10, 2.11].

(i) \Rightarrow (ii). Suppose that X is not pseudocompact, so $C_c^*(X) \subsetneq C_c(X)$, by [9, Theorem 6.3]. Hence, $C_c(X)$ contains an unbounded element, f say. So for some $p \in \beta X$ and the maximal ideal M_c^p of $C_c(X)$, we have $|M_c^p(f)|$ is infinitely

large ([9, Proposition 2.4]). In other words, M_c^p is hyper-real, i.e., $\mathbb{R} \subsetneq \frac{C_c(X)}{M_c^p}$. Hence, by [9, Corollary 2.13], $M_c^p \cap C_c^*(X)$ is not a maximal ideal in $C_c^*(X)$. Using Proposition 3.5, we infer that

(3.2)
$$M_c^p \cap C_c^*(X) \subsetneqq M^{*p} \cap C_c^*(X).$$

Furthermore, since the maximal ideal M_c^p is closed in $C_c(X)$ (Corollary 2.2), the ideal $M_c^p \cap C_c^*(X)$ is also closed in $C_c^*(X)$. We now claim that the latter closed ideal cannot be an intersection of maximal ideals of $C_c^*(X)$. Otherwise,

(3.3)
$$M_c^p \cap C_c^*(X) = \bigcap_{q \in A \subseteq \beta X} \left(M^{*q} \cap C_c^*(X) \right),$$

for a subset A of βX . Notice that by (3.2), $A \neq \emptyset$ since $p \in A$. Now, we claim that $A = \{p\}$. On the contrary, suppose that A contains an element q distinct from p. We can take $f \in C_c(\beta X)$ such that Z(f) is a neighborhood of p and f(q) = 1 (note, by the assumption, βX is zero-dimensional). Let f_0 be the restriction of f on X. Then the compactness of βX gives f and hence f_0 are bounded, i.e., $f_0 \in C_c^*(X)$. By density of X in βX , we get $f = f_0^\beta$, where f_0^β is the extension of f_0 to βX . Due to Proposition 3.2, we infer that $p \in cl_{\beta X}Z(f_0)$, since $p \in int_{\beta X}Z(f)$. Hence, $f_0 \in M_c^p \cap C_c^*(X)$. On the other hand, since $q \notin Z(f)$, we have that $f_0 \notin M^{*q}$. Therefore, $f_0 \in M_c^p \cap C_c^*(X) \setminus (M^{*q} \cap C_c^*(X))$, which contradicts the equation in (3.3). So $A = \{p\}$ and hence $M_c^p \cap C_c^*(X) = M^{*p} \cap C_c^*(X)$. But this also contradicts (3.2). Thus, if X is not pseudocompact, then there exists a closed ideal in $C_c^*(X)$ which is not an intersection of maximal ideals of $C_c^*(X)$, and we are done.

(ii) \Rightarrow (i). Since X is pseudocompact, $C(X) = C^*(X)$ gives $C_c(X) = C_c^*(X)$. Now, it follows from Theorem 3.11.

(ii) \Leftrightarrow (iii). It follows from [5, 7Q(3)].

We end the article with some results on e_c -filters on X and e_c -ideals in $C_c^*(X)$, for more details, see [14, Section 2]. Let $p \in \beta X$ and f^{β} be the extension of $f \in C^*(X)$ to βX . Let us recall that

$$M_c^{*p} = \{ f \in C_c^*(X) : f^\beta(p) = 0 \} = M^{*p} \cap C_c^*(X), \text{ and } O_c^{*p} = O_c^p \cap C_c^*(X),$$

where

$$M^{*p} = \{ f \in C^*(X) : f^{\beta}(p) = 0 \}, \text{ and } O^p_c = \{ f \in C_c(X) : p \in \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} Z(f) \}.$$

Lemma 3.14. Let X be strongly zero-dimensional and $p \in \beta X$. Then

$$E_c(M_c^{*p}) = Z_c[O_c^p] = Z_c[O_c^{*p}] = E_c(O_c^{*p}).$$

Proof. By the hypothesis, $\beta X = \beta_0 X$. To get the result, we show the following chain of inclusions holds.

$$(3.4) E_c(M_c^{*p}) \subseteq Z_c[O_c^p] \subseteq Z_c[O_c^{*p}] \subseteq E_c(O_c^{*p}) \subseteq E_c(M_c^{*p}).$$

To establish the first inclusion, let $E_{\varepsilon}^{c}(f) := \{x \in X : |f(x)| \leq \varepsilon\} \in E_{c}(M_{c}^{*p}),$ where $f \in M_{c}^{*p}$ and $\varepsilon > 0$. Then $f^{\beta}(p) = 0$. Notice that $E_{\varepsilon}^{c}(f) = Z((|f| - \varepsilon) \lor 0)$

© AGT, UPV, 2022

Appl. Gen. Topol. 23, no. 1 88

and

(3.5)
$$\operatorname{cl}_{\beta X} Z((|f| - \varepsilon) \lor 0) = \operatorname{cl}_{\beta X} E_{\varepsilon}^{c}(f) = \{ q \in \beta X : |f^{\beta}(q)| \le \varepsilon \}.$$

Hence, $p \in \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} Z((|f| - \varepsilon) \vee 0)$, in other words, $(|f| - \varepsilon) \vee 0 \in O_c^p$. Here, we are going to show the last equality in (3.5). Let $q \in \beta X$ such that $|f^{\beta}(q)| \leq \varepsilon$. Since X is dense in βX , there exists a net $(x_{\lambda})_{\lambda \in \Lambda} \subseteq X$ converging to q and so $f(x_{\lambda}) = f^{\beta}(x_{\lambda}) \to f^{\beta}(q)$. Moreover, $|f(x_{\lambda})| \to |f^{\beta}(q)|$. Now, let V be an open set in βX containing q. Then for some $\lambda_0 \in \Lambda$ and each $\lambda \geq \lambda_0$, we have $x_{\lambda} \in V$. Furthermore, $|f^{\beta}(q)| \leq \varepsilon$ yields that $|f(x_{\lambda})| \leq \varepsilon$. Hence, $V \cap E_{\varepsilon}^{c}(f) \neq \emptyset$, i.e., $q \in \operatorname{cl}_{\beta X} E_{\varepsilon}^{c}(f)$.

The second inclusion in (3.4) follows from the fact that $Z(f) = Z(\frac{f}{1+|f|})$, where $f \in O_c^p$ (and thus $\frac{f}{1+|f|} \in O_c^{*p}$). To verify the third inclusion, we let $f \in O_c^{*p}$ and show that $Z(f) \in E_c(O_c^{*p})$. Since p does not belong to the closed set $F := \beta X \setminus \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} Z(f)$ and βX is zero-dimensional, by [3, Proposition 4.4], there is some $g \in C_c(\beta X) = C_c^*(\beta X)$ such that $p \in \operatorname{int}_{\beta X} Z(g)$ and $g(F) = \{1\}$. Let g_0 be the restriction of g on X. Then by Proposition 3.2, $p \in \operatorname{int}_{\beta X} \operatorname{cl}_{\beta X} Z(g_0)$. So $g_0 \in O_c^{*p}$ and hence $E_{\varepsilon}^c(g_0) \in E_c(O_c^{*p})$ for all $\varepsilon > 0$. Let $0 < \varepsilon < 1$ be fixed. Since X is dense in βX , the open set $\{q \in \beta X : |g(q)| < \varepsilon\}$ intersects X nontrivially (since it contains p). Therefore,

$$\emptyset \neq \{q \in \beta X : |g(q)| \le \varepsilon\} \cap X = \{x \in X : |g_0(x)| \le \varepsilon\}$$
$$= E_{\varepsilon}^c(g_0) \subseteq (\beta X \setminus F) \cap X \subseteq Z(f).$$

Now, since the z_c -filter (in fact, the e_c -filter) $E_c(O_c^{*p})$ contains $E_{\varepsilon}^c(g_0)$ and $E_{\varepsilon}^c(g_0) \subseteq Z(f)$, we infer that $Z(f) \in E_c(O_c^{*p})$, and we are done.

Finally, the last inclusion in (3.4) follows from the inclusion $O_c^{*p} \subseteq M_c^{*p}$ and the fact that E_c preserves the order, see [14, Corollary 2.1].

Theorem 3.15. Let X be a P-space and \mathcal{F} , an e_c -filter on X. Then \mathcal{F} is an e_c -ultrafilter if and only if it is a z_c -ultrafilter.

Proof. (\Rightarrow) : By [5, 4K(7), 6M(1), 16O], every *P*-space is strongly zero- dimensional (see also [15, Proposition 2.12]). By [5, 7L], we have $O^p = M^p$ for every $p \in \beta X$. Therefore, $O_c^p = O^p \cap C_c(X) = M^p \cap C_c(X) = M_c^p$ (note, $\beta X = \beta_0 X$). Let \mathcal{F} be an e_c -ultrafilter on X. Then $E_c^{-1}(\mathcal{F})$ is a maximal ideal in $C_c^*(X)$, see [14, Proposition 2.14]. Therefore, $E_c^{-1}(\mathcal{F}) = M_c^{*p}$ for some $p \in \beta X$. By Lemma 3.14, we have

$$\mathcal{F} = E_c(E_c^{-1}(\mathcal{F})) = E_c(M_c^{*p}) = Z_c[O_c^p] = Z_c[M_c^p].$$

Since M_c^p is a maximal ideal in $C_c(X)$, \mathcal{F} is a z_c -ultrafilter. (\Leftarrow) : Suppose that \mathcal{F} is a z_c -ultrafilter. Then $Z_c^{-1}[\mathcal{F}]$ is a maximal ideal in $C_c(X)$. So $Z_c^{-1}[\mathcal{F}] = M_c^p$ for some $p \in \beta X$. Therefore,

$$F = Z_c[Z_c^{-1}[\mathcal{F}]] = Z_c[M_c^p] = E_c(M_c^{*p}).$$

Since M_c^{*p} is a maximal ideal in $C_c^*(X)$, \mathcal{F} is an e_c -ultrafilter.

Corollary 3.16. For a strongly zero-dimensional space X and $p \in \beta X$, M_c^{*p} is the only e_c -ideal in $C_c^*(X)$ containing O_c^{*p} .

© AGT, UPV, 2022

Appl. Gen. Topol. 23, no. 1 89

Proof. Let J be an e_c -ideal in $C_c^*(X)$ which contains O_c^{*p} . Then $E_c^{-1}(E_c(O_c^{*p})) \subseteq E_c^{-1}(E_c(J)) = J$. By Lemma 3.14, $E_c(M_c^{*p}) = E_c(O_c^{*p})$ and therefore

$$M_c^{*p} = E_c^{-1}(E_c(M_c^{*p})) = E_c^{-1}(E_c(O_c^{*p})) \subseteq J.$$

So $M_c^{*p} = J$, and we are through.

ACKNOWLEDGEMENTS. The author is grateful to the referee for useful comments and recommendations towards the improvement of the paper.

References

- F. Azarpanah, O. A. S. Karamzadeh, Z. Keshtkar and A. R. Olfati, On maximal ideals of C_c(X) and uniformity its localizations, Rocky Mountain Journal of Mathematics 48, no. 2 (2018), 345–382.
- [2] R. Engelking, General Topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.
- [3] M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69.
- [4] M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, C(X) versus its functionally countable subalgebra, The Bulletin of the Iranian Mathematical Society 45, no. 1 (2019), 173–187.
- [5] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin/Heidelberg/New York, 1976.
- [6] J. Gómez-Pérez and W. W. McGovern, The *m*-topology on C_m(X) revisited, Topology Appl. 153 (2006), 1838–1848.
- [7] A. Hayati, M. Namdari and M. Paimann, On countably uniform closed spaces, Quaestiones Mathematicae 42, no. 5 (2019), 593–604.
- [8] E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948), 45–99.
- [9] O. A. S. Karamzadeh and Z. Keshtkar, On c-realcompact spaces, Quaestiones Mathematicae 41, no. 8 (2018), 1135–1167.
- [10] O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16, no. 2 (2015), 183–207.
- [11] G. D. Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, Topology Appl. 86 (1998), 105–122.
- [12] M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012), 561–571.
- [13] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, 1988.
- [14] A. Veisi, e_c -Filters and e_c -ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol. 20, no. 2 (2019), 395–405.
- [15] A. Veisi, On the m_c -topology on the functionally countable subalgebra of C(X), Journal of Algebraic Systems 9, no. 2 (2022), 335–345.
- [16] A. Veisi and A. Delbaznasab, Metric spaces related to Abelian groups, Appl. Gen. Topol. 22, no. 1 (2021), 169–181.