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Abstract

A ballean (or coarse space) is a set endowed with a coarse structure.
A ballean X is called normal if any two asymptotically disjoint subsets
of X are asymptotically separated. We say that a ballean X is ultra-
normal (extremely normal) if any two unbounded subsets of X are not
asymptotically disjoint (every unbounded subset of X is large). Ev-
ery maximal ballean is extremely normal and every extremely normal
ballean is ultranormal, but the converse statements do not hold. A
normal ballean is ultranormal if and only if the Higson′s corona of X
is a singleton. A discrete ballean X is ultranormal if and only if X

is maximal. We construct a series of concrete balleans with extremal
properties.
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1. Introduction

Let X be a set. A family E of subsets of X ×X is called a coarse structure if

• each E ∈ E contains the diagonal △X , △X = {(x, x) : x ∈ X};

• if E, E′ ∈ E then E ◦ E′ ∈ E and E−1 ∈ E , where E ◦ E′ = {(x, y) :
∃z((x, z) ∈ E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};

• if E ∈ E and △X ⊆ E′ ⊆ E then E′ ∈ E ;

• for any x, y ∈ X , there exists E ∈ E such that (x, y) ∈ E.
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A subset E ′ ⊆ E is called a base for E if, for every E ∈ E , there exists
E′ ∈ E ′ such that E ⊆ E′. For x ∈ X , A ⊆ X and E ∈ E , we denote
E[x] = {y ∈ X : (x, y) ∈ E}, E[A] = ∪a∈A E[a] and say that E[x] and E[A]
are balls of radius E around x and A.

The pair (X, E) is called a coarse space [14] or a ballean [10], [12].
Each subset Y ⊆ X defines the subballean (Y, EY ), where EY is the restriction

of E to Y × Y . A subset Y is called bounded if Y ⊆ E[x] for some x ∈ X and
E ∈ E .

Given a ballean (X, E), a subset Y of X is called

• large if there exists E ∈ E such that X = E[A];

• small if (X \A) ∩ L is large for each large subset L;

• thick if, for every E ∈ E , there exists a ∈ A such that E[a] ⊆ A.

Every metric d on a set X defines the metric ballean (X, Ed), where Ed has
the base {{(x, y) : d(x, y) ≤ r} : r ∈ R

+}. A ballean (X, E) is called metrizable
if there exists a metric d on X such that E = Ed. A ballean (X, E) is metrizable
if and only if E has a countable base [12, Theorem 2.1.1]. Let (X, E) be a
ballean. A subset U of X is called an asymptotic neighbourhood of a subset
Y ⊆ X if, for every E ∈ E , E[Y ] \ U is bounded.

Two subsets Y, Z of X are called

• asymptotically disjoint if, for every E ∈ E , E[Y ] ∩ E[Z] is bounded;

• asymptotically separated if Y, Z have disjoint asymptotic neighbour-
hoods.

A ballean (X, E) is called normal [7] if any two asymptotically disjoint sub-
sets are asymptotically separated. Every ballean (X, E) with linearly ordered
base of E , in particular, every metrizable ballean is normal [7, Proposition 1.1].

A function f : X −→ R is called slowly oscillating if, for any E ∈ E and
ε > 0, there exists a bounded subset B of X such that diam f(E[x]) < ε for
each x ∈ X B. By [7, Theorem 2.2], a ballean (X, E) is normal if and only if,
for any two disjoint and asymptotically disjoint subsets Y, Z of X , there exists
a slowly oscillating function f : X −→ [0, 1] such that f |Y = 0 and f |Z = 1.

We say that an unbounded ballean (X, E) is

• ultranormal [1] if any two unbounded subsets of X are not asympto-
tically disjoint;

• extremely normal if any unbounded subset of X is large.

An unbounded ballean (X, E), is called maximal if X is bounded in any
stronger coarse structure. By [13], every unbounded subset of a maximal bal-
lean is large and every small subset is bounded. Hence, every maximal ballean
is extremely normal.
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A family B of subsets of a set X , closed under finite unions and subsets,
is called a bornology if ∪B = X . For every ballean X , the family BX of all
bounded subsets of X is a bornology.

A ballean (X, E) is called discrete (or pseudodiscrete [12], or thin [5]) if, for
every E ∈ E , there exists B ∈ BX such that E[x] = {x} for each x ∈ X\B.
Every bornology B on a set X defines the discrete ballean (X, {EB : B ∈ B}),
where EB[x] = B if x ∈ B and EB[x] = {x} if x ∈ X\B. It follows that
every discrete ballean X is uniquely determined by its bornology BX , see [12,
Theorem 3.2.1]. Every discrete ballean is normal [12, Example 4.2.2].

For a ballean X, the following conditions are equivalent: X is discrete, every
function f : X −→ {0, 1} is slowly oscillating, every unbounded subset of X is
thick, see [12, Theorem 3.3.1] and [3, Theorem 2.2].

An unbounded discrete ballean is called ultradiscrete if the family {X\B :
B ∈ BX} is an ultrafilter on X . Every ultradiscrete ballean is maximal [12,
Example 10.1.2]. Thus, we have got

ultradiscrete =⇒ maximal =⇒ extremely normal =⇒ ultranormal

and no one arrow can be reversed, see Section 3.

2. Characterizations

Let (X, E) be an unbounded ballean. We endow X with the discrete topol-
ogy, identify the Stone-Čech compactification βX of X with the set of all
ultrafilters on X and denote X♯ = {p ∈ βX : P is unbounded for each P ∈ p}.
Given any p, q ∈ X♯, we write p ‖ q if there exists E ∈ E such that E[Q] ∈ p for
each Q ∈ q. By [7, Lemma 4.1], ‖ is an equivalence relation on X♯. We denote
by ∼ the minimal (by inclusion) closed (in X♯ ×X♯) equivalence on X♯ such
that ‖⊆∼. The compact Hausdorff space X♯/ ∼ is called the corona of (X, E),
it is denoted by ν(X, E). If every ball {y ∈ X : d(x, y) ≤ r} in the metric space
(X, d) is compact then ν(X, Ed) is the Higson’s corona of (X, d), see [8] and
[14].

We say that a function f : X −→ R is constant at infinity if there exists
c ∈ R such that, for each ε > 0, the set {x ∈ X : |f(x) − c| > ε} is bounded.
We say that f is almost constant if f |X\B =const for some B ∈ BX . If the
bornology BX is closed under countable unions then every function, constant
at infinity, is almost constant.

If f is constant at infinity then f is slowly oscillating. We denote so(X, E)
the set of all bounded slowly oscillating functions onX . For a bounded function
f : X −→ R, fβ denotes the extension of f to βX .

Theorem 2.1. For an unbounded normal ballean (X, E), the following condi-
tions are equivalent:

(1) every function f ∈ so(X, E) is constant at infinity;
(2) ν(X, E) is a singleton;
(3) (X, E) is ultranormal.
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Proof. (3) =⇒ (1). We assume that a function f ∈ so (X, E) is not constant at
infinity. Then there exists distinct a, b ∈ R and p, q ∈ X♯ such that fβ(p) = a,

fβ(q) = b. We put ε = |a−b|
4 and choose P ∈ p, Q ∈ q such that f(P ) ⊂

(a − ε, a + ε), f(Q) ⊂ (b − ε, b + ε). Given an arbitrary E ∈ E , we take
B ∈ BX such that diam f(E[x]) < ε for each x ∈ X \ B. It follows that
E[P \B] ∩E[Q \B] = ∅ so P and Q are asymptotically disjoint and we get a
contradiction to (3).

(1) =⇒ (2). Let p, q ∈ X♯. By Proposition 8.1.4 from [12], p ∼ q if and only
if fβ(p) = fβ(q) for every f ∈ so (X, E).

(2) =⇒ (3). We assume that (X, E) is not ultranormal and choose two
disjoint and asymptotically disjoint unbounded subsets A,B of X . We chose
p, q ∈ X♯ such that A ∈ p, B ∈ q. Since X is normal, there exists f ∈ so (X, E)
such that f |A= 0, f |B= 1. Then fβ(p) 6= fβ(q) and | ν(X, E) |> 1 by
Proposition 8.1.4 from [12]. �

An unbounded ballean X is called irresolvable [11] if X can not be parti-
tioned into two large subsets.

Theorem 2.2. For an unbounded discrete ballean (X, E), the following condi-
tions are equivalent:

(1) (X, E) is ultradiscrete;
(2) (X, E) is extremely normal;
(3) (X, E) is ultranormal;
(4) (X, E) is maximal and irresolvable.

Proof. (1) =⇒ (2). We denote by p the ultrafilter {X\B : B ∈ BX}. If A is an
unbounded subset of X then A ∈ p so X\A is bounded and A is large.

(2) =⇒ (3). Let A,C be unbounded subsets of X . Since A is large, there
exists E ∈ E such that E[A] = X so C ⊆ E[A] and A,C are not asymptotically
disjoint.

(3) =⇒ (1). If (X, E) is not ultradiscrete then there exist two disjoint un-
bounded subsetsA,C ofX . Since (X, E) is discrete, A and C are asymptotically
disjoint.

(1) =⇒ (4). This is Theorem 10.4.5 from [12]. �

Let B be a bornology on a setX . Following [1], we say that a coarse structure
E is compatible with B if B is the bornology of all bounded subsets of (X, E).

Each bornology B on X defines two coarse structures ⇓ B and ⇑ B, the
smallest and the largest coarse structures on X compatible with B. Clearly,
⇓ B is the discrete coarse structure defined by B, in particular, (X,⇓ B) is
normal.

The coarse structure ⇑ B consists of all entourages E ⊆ X × X such that
E = E−1 and E[B] ∈ B for each B ∈ B. But in contrast to ⇓ B, the coarse
structure ⇑ B needs not to be normal [2, Theorem 12].
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If a ballean (X, E) is maximal then ⇑ BX = E . It follows that every maximal
ballean (X, E) is uniquely determined by the bornology of bounded subsets: if
(X, E ′) is maximal and B(X,E) = B(X,E′) then E = E ′.

Proposition 2.3. Let (X, E) be an extremely normal ballean and let E ′ be
coarse structure on X such that E ⊆ E ′ and (X, E ′) is maximal. Then B(X,E) =
B(X,E′) and E ′ = ⇑ B(X,E).

Proof. We assume the contrary and pick A ∈ B(X,E′) \ B(X,E). Since (X, E) is
extremely normal, A is large in (X, E). Hence, A is large in (X, E ′) so (X, E ′)
is bounded and we get a contradiction to maximality of (X, E ′). �

Following [2], we say that a ballean (X, E) is relatively maximal if E =
⇑ B(X,E).

We recall that two ultrafilters p, q ∈ βX are incomparable if, for every f :
X −→ X , we have fβ(p) 6= q, fβ(q) 6= p.

Proposition 2.4. Let (X, E) be an unbounded discrete ballean such that any
two distinct utrafilters in X♯ are incomparable. Then (X, E) is relatively max-
imal.

Proof. We suppose the contrary and choose a coarse structure E ′ on X such
that E ⊂ E ′ and B(X,E) = B(X,E′). Then there exists E′ ∈ E ′ such that the set
Y = {y ∈ X : |E′(y)| > 1} is unbounded in (X, E ′). For each y ∈ Y , we pick
f(y) ∈ E′(y), f(y) 6= y and extend f to X by f(x) = x for each x ∈ X \Y . We
take an arbitrary ultrafilter p ∈ (X, E)♯ such that Y ∈ p. By the assumption,
f(P ) is bounded in (X, E) for some P ∈ p, P ⊆ Y . Then (E′)−1[f(P )] must
be bounded in (X, E) and we get a contradiction with the choice of p. �

3. Constructions

Given a family F of subsets of X × X , we denote by 〈F〉 the intersections
of all coarse structures, containing each F ∪ △X , F ∈ F and say that 〈F〉 is
generated by F. It is easy to see that 〈F〉 has a base of subsets of the form
E0 ◦ E1 ◦ . . . ◦ En, where

Fi ∈ {(F ∪△X) ∪ (F ∪△X)−1 : F ∈ F} ∪ {(x, y) ∪△X : x, y ∈ X}, n < ω.

If E1 and E2 are coarse structures, we write E1
∨
E2 in place of 〈E1 ∪ E2〉 . For

lattices of coarse structures, see [11].

Proposition 3.1. Let (X, E) be an unbounded discrete ballean and let p, q be
distinct ultrafilters from X♯. If (X, E) is relatively maximal then fβ(p) 6= q
for each f : X −→ X such that, for every B ∈ B(X,E), f(B) ∈ B(X,E) and

f−1(B) ∈ B(X,E).
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Proof. We assume the contrary and choose f such that fβ(p) = q. We put
F = {(x, f(x)) : x ∈ X} and denote by E ′ the coarse structure generated by E
and F . Since E is discrete and E′ is not discrete, we have E ⊂ E ′.

We take x ∈ X and E1, . . . , En ∈ E ∪ {F ∪△X , F−1 ∪△X}. Applying an
induction by n and the assumptions f(B) ∈ B(X,E), f−1(B) ∈ B(X,E) for each
B ∈ B(X,E), we conclude that E1 ◦ . . .◦En[x] ∈ B(X,E). Hence, B(X,E) = B(X,E)′

and we get a contradiction to relative maximality of (X, E). �

Proposition 3.2. Every unbounded subballean of maximal (extremely normal,
ultranormal) ballean is maximal (extremely normal, ultranormal).

Proof. We prove only the first statement, the second and third are evident.
Let (X, E) be a maximal ballean, Y be an unbounded subset of X . We

assume that (Y, EY ) is not maximal and choose a coarse structure E ′ on Y such
that E |Y ⊂ E ′ and (Y, E ′) is not bounded. We put F = 〈E ∪ E ′〉. Since (X, E) is
maximal and E ⊂ F, (X,F) must be bounded. On the other hand, each bounded
subsetB of (Y, E ′) is bounded in (X, E) because otherwise B is large in (X, E) so
B is large in (Y, EY ). Now let x ∈ X , and E1, . . . , En ∈ E∪{E′∪△X : E′ ∈ E ′}.
On induction by n, we see that E1 ◦ . . . ◦ En[x] is bounded in (X, E). Hence
(X,F) is not bounded and we get a contradiction. �

Proposition 3.3. Let E , E ′ be coarse structures on a set X such that E ⊆ E ′ .
Then the following statements hold:

(1) if (X, E) is extremely normal then (X, E ′ is extremely normal;
(2) if (X, E) is ultranormal and B(X,E) = B(X,E′) then (X, E ′) is ultranormal.

Proof. (1) Let A be a subset of X . If A is unbounded in (X, E ′) then A is
unbounded in (X, E). If A is large in (X, E) then A is large in (X, E ′).

(2) We assume that some unbounded subsets A,B of (X, E ′) are asymp-
totically disjoint in (X, E). Then E′(A)\B ∈ B(X,E′) for each E′ ∈ E ′. Since
E ⊆ E ′ and B(X,E) = B(X,E′), we have E(A)\B ∈ B(X,E′) for each E ∈ E so
A,B are asymptotically disjoint in (X, E). �

Example 3.4. For every infinite regular cardinal κ, we construct a coarse
structure Mκ on κ such that (κ,Mκ) is maximal and B(κ,Mκ) = [κ]<κ. We
denote by F the family of all coverings of κ defined by the rule: P ∈ F if and only
if, for each P ∈ P and x ∈ κ, |P | < κ and | ∪ {P ′ : x ∈ P ′, P ′ ∈ P}| < κ. Then
Mκ is defined by the base {MP : P ∈ F}, where MP = {(x, y) : x ∈ P, y ∈ P
for some P ∈ P}. For general construction of coarse structures by means of
coverings, see [9] or [12, Section 7.5]. Clearly, B(κ,Mκ) = [κ]<κ and (κ,Mκ) is
maximal [12, Example 10.2.1].

Let G be a group and let X be a G-space with the action G × X −→ X ,
(g, x) 7−→ gx. A bornology I on G is called a group bornology if, for any
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A,B ∈ I, we have AB ∈ I, A−1 ∈ I. Every group bornology I on G defines
a coarse structure EI on X with the base {EA : A ∈ I, e ∈ A}, where e is the
identity of G, EA = {(x, y) : y ∈ Ax}. Moreover, every coarse structure on X
can be defined in this way [6].

Example 3.5. We define a coarse structure E on ω such that the ballean (ω, E)
is extremely normal but (ω, E) is not maximal. Let Sω denotes the group of all
permutations of ω, I = [Sω]

<ω, E = EI . We show that every infinite subset
A of ω is large. We partition A and ω into two infinite subset A = A1 ∪ A2,
W = W1 ∪W2 and choose two permutations f1, f2 of ω so that

f1(A1) = W1, f1(W1) = A1, f1(x) = x for each x ∈ ω \ (A1 ∪W1),

f2(A2) = W2, f2(W2) = A2, f2(x) = x for each x ∈ ω \ (A2 ∪W2)

Then we put F = {f1, f2, id}, where id is the identity permutation. Clearly,
EF [A] = ω so E is extremely normal. To see that (ω, E) is not maximal, we
note that E ⊆ Mω and choose a partition P = {Pn : n ∈ ω} of ω such that
|Pn| = n. Then, for each n ∈ N, there exist x ∈ ω such that MP [x] = n. For
each H ∈ [Sω]

<ω and x ∈ ω, we have |EH [x]| ≤ |H |. Hence, E ⊂ M<ω.

Example 3.6. Let κ be a cardinal, κ > ω. We construct two coarse structures
E , E ′ on κ such that E ⊂ E ′, (κ, E) is ultranormal but not extremely normal,
(κ, E ′) is extremely normal but not maximal. Let Sκ denotes the group of all
permutations κ, I = [Sκ]

<ω, E = EI . Clearly, B(κ,E) = [κ]<ω. Let A,B be infi-
nite subsets of κ. We take countable subset A′ ⊆ A, B′ ⊆ B and use argument
from Example 3.5 to choose F = {f1, f2, id} so that B′ ⊆ EF [A

′]. It follows
that A,B are not asymptotically disjoint in (κ, E) so (κ, E) is ultranormal. If
A is a countable subset of κ then |EH [A]| = ω for each H ∈ [Sκ]

<ω so (κ, E) is
not extremely normal.

We denote by F the discrete coarse structure on κ defined by the bornology
[κ]<κ and put E ′ = F ∨ E . If A is an unbounded subset of E ′ then |A| = κ.
Applying the arguments from Example 3.5, we see that (κ, E ′) is extremely
normal. The ballean (κ, E ′) is not maximal because E ′ ⊂ F ∨ EJ , where J =
[Sκ]

≤ω.

4. Comments

1. Let (X, E) be a ballean, A and B be subsets of X . Following [9], we write
AδB if and only if there exists E ∈ E such that A ⊆ E[B], B ⊆ E[A].

Let E , E ′ be coarse structures on a set X such that B(X,E) = B(X,E′). If E
and E ′ have linearly ordered bases and either so(X, E) = so(X, E ′) or δ(X,E) =
δ(X,E′) then E = E ′, see [4, Theorem 2.1] and [3, Theorem 4.2].

We take the coarse structures E and Mω on ω from Example 3.5. By
Theorem 2.1, so(ω, E) = so(ω,Mω). Since B(ω,E) = B(ω,Mω)= [ω]<ω and
(ω, E), (ω,Mω) are extremely normal, we have δ(ω,E) = δ(ω,Mω). By the con-
struction, E 6= Mω.
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In this connection we remind Question 7.5.1 from [12]: does δ(X,E) = δ(X,E′)

imply so(X, E) = so(X, E ′) and give the affirmative answer to this question.
Clearly, δ(X,E) = δ(X,E′) implies B(X,E) = B(X,E′). Assume that there exists

f ∈ so(X, E) \ so(X, E ′). Then there exist ε > 0 and E′ ∈ E ′ such that, for
each B ∈ B(X,E′), one can find yB, zB ∈ X \ B such that (yB , zB) ∈ E′ but
|f(yB) − f(zB)| > ε We put Y = {yB : B ∈ B(X,E′)} and choose a function
h : X −→ X such that (y, h(y)) ∈ E′, |f(y) − f(h(y))| > ε for each y ∈ Y .
Let p ∈ X♯ and Y ∈ p, q be an ultrafilter with the base {h(P ) : P ∈ p}. Then
|fβ(p)− fβ(q)| ≥ ε and there exists P ′ ∈ p such that |f(x)− f(y)| > ε

2 for all
x ∈ P ′, y ∈ h(P ′). Since f ∈ so(X, E), P ′ and h(P ′) are not close in (X, E)
but P ′, h(P ′) are close in (X, E ′) .

2. Every group G has the natural finitary coarse structure Efin with the
base {EF : F ∈ [G]<ω , e ∈ F}, where EF = {(x, y) : y ∈ Fx}. Let G be an
uncountable abelian group. By [4, Corollary 3.2], (G, Efin) is not normal but
every function f ∈ so(G, Efin) is constant at infinity. This example shows that
the assumption of normality in Theorem 2.1 can not be omitted.

3. Example 3.6 shows that Proposition 2.3 does not hold for ultranormal
ballean in place of extremely normal. Indeed, (κ, E) is ultranormal, B(κ,E) =
[κ]<ω, E ⊂ E ′, B(κ,E′) = [κ]<κ. We take a maximal coarse structure E ′′ such
that E ′ ⊂ E ′′. Then E ⊂ E ′′. and B(κ,E) 6= B(κ,E′′).

4. Following [1], we say that a ballean (X, E) has bounded growth if there
is a mapping f : X −→ BX such that

• ∪x∈Bf(x) ∈ BX for each B ∈ BX ;

• for each E ∈ E , there exists C ∈ BX such that E[x] ⊆ f(x) for each
x ∈ X \ C.

Clearly, every discrete ballean has bounded growth (f(x) = {x}). Let us take
the maximal ballean (ω,Mω) from Example 3.4. Since each ball in (ω,Mω) is
finite, one can use the diagonal process to show that (ω,Mω) is not of bounded
growth.
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