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Mid-infrared spectroscopy for the estimation of some soil properties
Espectroscopia de infrarrojo medio para la estimación de algunas propiedades del suelo
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ABSTRACT RESUMEN

Techniques such as mid-infrared (MIR) spectroscopy can be 
used to identify the classes and properties of soils with high 
precision. In the present study, 312 soil samples of different 
orders, which were representative of Colombian agricultural 
zones, were studied, including Inceptisols and Vertisols of the 
Sinú valley (Cordoba), Andisols of the Eastern Andes Moun-
tain range (Cundinamarca), and Oxisols of the Eastern plains 
of Colombia (Meta), with the aim of evaluating the ability of 
mid-infrared spectroscopy to estimate soil properties such 
as organic carbon, Ca, Mg, Na, K, P, Al, and pH. The results 
obtained through the analysis of the curves led to the obser-
vation that the greatest number of properties are reflected in 
the spectral region between 400 and 850 cm-1. In the analysis 
through infrared MIR spectroscopy, the spectrum for the 
three soils were manifested in similar spectral regions, but 
with different levels of reflectance, mainly due to the content 
of MO. In the descriptive analysis, the observed values showed 
a behavior similar to the values predicted with the models 
for those properties with representative spectral models. The 
majority of the properties did not show a normal distribution 
and the coefficients of variation were very high.

Técnicas como la espectroscopia en el infrarrojo medio (MIR) 
pueden ser utilizadas para identificar las clases y propiedades de 
suelos con gran precisión. En el presente estudio se analizaron 
312 muestras de suelos de diferentes órdenes, representativos 
de zonas agrícolas de Colombia, entre los que se encuentran 
Inceptisoles y Vertisoles del valle del Sinú (Córdoba), Andi-
soles de la cordillera oriental (Cundinamarca) y Oxisoles de 
la altillanura Colombiana (Meta), con el objetivo de evaluar 
la capacidad de la espectroscopía de infrarrojo medio para la 
estimación de propiedades del suelos como carbono orgánico, 
Ca, Mg, Na, K, P, Al y pH. Los resultados obtenidos en el análi-
sis de las curvas, permiten observar que el mayor número de 
atributos están reflejados en la región espectral comprendida 
entre 400 y 850 cm-1. En el análisis obtenido por medio de 
la espectroscopia MIR, las tres clases de suelos presentaron 
regiones similares del espectro, pero con diferentes niveles de 
reflectancia, debido principalmente a los contenidos de MO. 
En el análisis descriptivo, los valores observados presentaron 
un comportamiento similar a los valores predichos a partir de 
los modelos, para aquellas propiedades con modelos espectrales 
representativos. La mayoría de las propiedades no presentaron 
una distribución normal y los coeficientes de variación fueron 
muy altos. 
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Introduction   

Across time, man has used different methods of soil evalu-
ation and quantification of the elements found in soil. This 
has been done through field evaluations and laboratory 
analysis in order to know and evaluate the quality of the 
soil, a procedure that in most cases is expensive and lengthy 
and requires a large amount of investment (Ge et al., 2011). 
Furthermore, the use of chemical reactives for laboratory 
analyses generates residues, which cause environmental 
contamination (Zornoza et al., 2008) because some of the 

consumables used are corrosive, toxic, and flammable and 
they even represent biological and infectious risks for living 
beings (Viscarra-Rossel et al., 2006). 

Diffuse ref lectance spectroscopy is a method that can 
be used to support or replace conventional methods of 
soil analysis. This technique has undergone a great deal 
of development during the last two decades, overcoming 
some limitations and acquiring a greater diversity of robust 
statistical methodologies that are able to more precisely 
relate the variability of the spectrum to the variability of 
the characteristics of the soil.

http://dx.doi.org/10.15446/agron.colomb.v33n1.49245
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Soil spectroscopy is fast and convenient, less expensive, 
non-destructive, simple, and, on occasion, more precise 
than conventional analysis, intensified with the use of other 
techniques, such as multivariate statistics and geostatistics 
(Tittonell et al., 2008). The techniques involved in the use 
of soil spectroscopy can be adjusted for use by research-
ers, technicians, and farmers, thus supplying an adequate 
alternative for the study of the spatial variability of soil 
properties, as well as the characteristics and development 
of crops.

At present, infrared (IR) spectroscopy can be summarized 
as spectra, which, afterwards, are interrelated by means 
of calibration models on the basis of the behavior of the 
properties of interest in samples and with the obtained data 
and a mathematical model is established, which is used for 
the prediction of the properties of the samples that were 
not used for the calibration of the model (Cobo et al., 2010). 
This is a non-destructive, quick technique. Only one spec-
trum allows for the simultaneous establishment of multiple 
physical properties of crops and biochemical properties of 
soils (Cozzolino and Morón, 2006). It is also less expensive 
than conventional laboratory analyses, especially when it is 
necessary to analyze a large number of samples (Viscarra-
Rossel et al., 2006; Camacho-Tamayo et al., 2014). The IR 
technique has the additional advantage of being able to use 
the spectral information as a measure of the integration of 
the soil quality and, therefore, can be used as a tool for the 
evaluation of the conditions of the soil.

Spectroscopy in the mid-infrared (MIR) region is one of the 
most important analytical techniques available for gather-
ing information about qualitative and quantitative aspects 
of analytes in real time (Fuentes et al., 2008). The range of 
the wavelength is between 400 and 4,000 cm-1, equivalent 
to a wavelength of 2.5 to 25 nm. This range is especially 
important because it provides direct information about 
the constituents of a sample, as well as its characteristic 
molecular structure (Etzion et al., 2004). Although NIR 
is most commonly used, MIR spectroscopy is becoming 
more common, due to the specificity of the absorption 
bands in this spectral range (Du et al., 2008). Linker et al. 
(2006) showed that mid-infrared spectroscopy can be used 
for identifying the types of agricultural soils associated 
with characteristic elements of a soil (for example, calcium 
carbonate minerals, clay, and organic components). Such 
identification of the soil types is aimed toward a significant 
improvement in the determination of the nitrate bases in 
the soil (Linker et al., 2006). 

Different studies have shown how MIR sensor data models 
outperform those using vis-NIR. This may be explained 

by the fact that the fundamental molecular vibrations of 
soil components occur in the MIR range, while only their 
overtones and combinations are detected in the vis-NIR 
range (Viscarra-Rossel et al., 2006). The MIR multivariate 
calibrations are consequently more robust, which makes 
sense because the organic carbon and clay minerals are the 
principal constituents of soils and have well-defined ab-
sorption regions, particularly in the MIR range. The present 
research aimed to evaluate the potential of mid-infrared 
reflectance (MIR) spectroscopy for the determination of 
organic carbon, Ca, Mg, Na, K, P and Al in samples of 
agricultural soils of various zones in Colombia.

Materials and methods

Sampling and laboratory analysis. From 312 soil samples 
of different orders were analyzed, which were representa-
tive of the agricultural zones of Colombia, comprising 62 
Inceptisols and Vertisols from the Sinú Valley (Córdoba), 
90 Andisols from the Eastern Andes Moun-tain range (Sil-
vania, Cundinamarca) and 160 Oxisols from the Eastern 
Plains of Colombia plain (Puerto López, Meta), taken from 
the first 20 cm. Before obtaining the spectral responses of 
the soil samples, they were dried at a temperature of 35ºC 
until they reached equilibrium moisture and then they 
were sifted using a 2 mm mesh, to analyze the fine frac-
tion of the soil.

In the soil samples, the organic carbon was determined 
through the wet extraction method (Walkley and Black 
+ volumetry), the Ca, Mg, Na and K contents were deter-
mined through extraction with ammonium acetate and 
analyzed by atomic absorption spectrophotometry, the 
phosphorus was determined through Bray II extraction, 
and the Al was determined through extraction with a neu-
tral solution of NaCl. The spectral responses were acquired 
by means of a Prestige 21 (Shimadzu Corporation, Kyoto, 
Japan) sensor, which covered a range between 2.5 and 25 
µm (500 to 4,000 cm-1) in the mid-infrared (MIR) range. 
Three readings were carried out for each soil sample and 
each point of the spectral response was the result of 128 
scans, using as a pattern potassium bromide (KBr).

Calibration and validation of the models. The calibration 
of the models was carried out by means of partial least 
squares regression (PLSR) (Jöreskog and Wold, 1982), a 
procedure that is widely used in chemometrics and that 
represents a better approach to quantitative models among 
the variables of prediction (X) and response (Y), exhibit-
ing a higher degree of performance than multiple linear 
regression (MLR). For this, 260 samples were considered, 



101Bonett, Camacho-Tamayo, and Ramírez-López: Mid-infrared spectroscopy for the estimation of some soil properties

leaving 52 samples for validation. The formation of each 
group was carried out using the conditioned Latin hyper-
cube sampling (cLHS) method (Minasny and McBratney, 
2006), which consists of selecting initial values for generat-
ing a model and stratifying the range of each of the entry 
data of the model in order to guarantee that initial values 
of each range of entry data are selected. The models were 
constructed with ParLeS software, developed by Viscarra-
Rossel (2008). The selection of the best model was done 
according to the value of the residual prediction deviation 
(RPD), the coefficient of determination (R2), and the root-
mean-square error (RMSE).

Descriptive analysis. Once the models were constructed, 
descriptive analysis was carried out for each property, for 
the data observed in the laboratory as well as that predicted 
from spectral models, in order to establish the similarity 
between them as well as the behavior and tendency of the 
data. The parameters calculated for the properties were 
mean, median, coefficient of variation (CV), minimum 
and maximum, standard deviation, skewness, and kurtosis. 
For the CV, the classification given by Pimentel-Gomes 
and García (2002), who considered a low variability less 
than 10%, CV between 10 and 30% medium variability, 
CV between 30 and 60% high variability, and greater than 
60% very high variability. The normality was also verified 
by means of a Kolmogorov-Smirnov test.

Results and discussion

Analysis of the spectral responses. In the spectral curves 
of the analyzed soils, there were differences between the 
spectra (Fig. 1). On analyzing the spectra by type of soil, 
a greater expression in the spectral region of 466 cm-1 and 
70% reflectance was observed. According to Madari et 
al. (2006), this region corresponds to the expression of 
primary minerals such as Nontronite, Moscovite, and CH 
groups. On observing the spectra for each soil, bands were 
observed, where greater expression of some properties was 
exhibited. It can be inferred that, for the Inceptisols and 
Vertisols, the spectral region of greatest relevance was 
between 500 and 700 cm-1, with a reflectance of 63%. Ac-
cording to McDowell et al. (2012), the region of the spectral 
signature of soils is found between 600 and 1500 cm-1, where 
the greatest characteristics of the fundamental vibrations 
of silicate minerals in the soil are exhibited. The Oxisols 
as well as the Inceptisols and Vertisols showed their maxi-
mum expression in the spectral region of 466 to 680 cm-1 
and 69% reflectance. In the Oxisols of Meta, the spectral 
characteristics caused by iron oxides had great particu-
larity, since they caused an increase in the reflectance for 

short wavelengths and a diminishing of the reflectance 
for slightly longer wavelengths (McDowell et al., 2012). In 
general, highly weathered soils exhibit greater reflectance, 
while darker soils, generally with a greater organic matter 
content, exhibit smaller reflectance values (Demattê et al., 
2012; Camacho-Tamayo et al., 2014).

FIGURE 1. Spectra of some soils from Colombia.

There is a strong relationship between degrees of soil weath-
ering and spectral information. The Oxisols, developed 
from sediments, showed the highest reflectance intensities, 
with ascending spectral curves in the 900-1,400 cm-1 wave 
number region, contrary to the clay soils from volcanic 
residue in Andisols. Using the descriptive aspects of the 
spectra, it is possible to detect the influence of the pres-
ence of 1:1 minerals (kaolinite and gibbsite), 2:1 minerals, 
iron oxides (hematite and goethite) and organic matter 
in Andisols and Vertisols, components that predominant 
these soils (Malagón, 2003).

Calibration and validation of the models. The models of 
calibration and validation showed the prediction potential 
of MIR, which varies with the soil property to be evaluated 
and is indicated by the fit of the different models and the 
coefficient of determination (Cobo et al., 2010). According 
to Minasny et al. (2009), for agricultural applications, val-
ues of RPD greater than 2 indicate that the models provide 
precise predictions, values of RPD between 1.4 and 2 are 
considered to be reasonably representative, and values less 
than 1.4 indicate poor predictive value. The soil property 
of best behavior was CO, with excellent values of RPD ≥ 
4.14/3.26 and R2 of 0.94/0.91, results similar to those re-
ported by Mouazen et al. (2010), followed by Ca with RPD  
≥ 3.22/2.32 and R2 0.90/0.81, an excellent value according 
to Conzen (2003), who indicated that an R2 close to one (1) 
indicates the construction of good models (Tab. 1).
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TABLE 1. Calibration and validation results to predict some soil proper-
ties.

Property 
Calibration Validation

R2 RMSE RPD R2 RMSE RPD

Al 0.77 0.26 2.04 0.70 1.35 1.38

Ca 0.90 1.52 3.22 0.81 2.01 2.32

CO 0.94 0.45 4.14 0.91 0.68 3.26

K 0.64 0.22 1.66 0.79 0.16 2.16

Mg 0.88 1.28 2.84 0.74 1.41 1.92

Na 0.62 0.09 1.61 0.62 0.07 1.59

P 0.36 6.71 1.25 0.57 6.36 1.51

pH 0.86 0.19 2.61 0.70 0.24 1.64

The pH, Al, Mg, K, and Na exhibited an acceptable behav-
ior. These values coincided with those reported by Cobo 
et al. (2010). The soil property where the models showed 
poor predictions was P, with values of RPD 1.25/1.51 and 
R2 0.36/0.57, parameters of models that indicate a poor 
prediction of this property, a result similar to that found 
by Cobo et al. (2010).

In the crossed validation of the observed and predicted 
data, it was verified that the best R2 was for CO with 0.95, 
followed by Ca with 0.94, pH with 0.91, Al with 0.89, and 
Mg with 0.89 (Fig. 2), the latter cations being of great impor-
tance because they are dominant at the interchange sites. 
These results show that CO, Ca, Al, Mg and pH enjoy good 
prediction, in contrast to the properties P, K, and Na, which 
showed an R2 of 0.43, 0.74, and 0.69, respectively, being the 
lower values. Similar results were reported by Minasny et 
al. (2009), Reeves et al. (2001), McCarty et al. (2010), and 

McDowel et al. (2012). The soil properties with models of 
low predictive value such as Na and P can be attributed to 
low concentrations, at which the element is found in the 
soil, and for K, which also showed unreliable results, it 
is generally due to the fact that they are affected by their 
high mobility in the soil solution, which easily varies their 
content, providing less certain prediction results; neverthe-
less, similar results  were reported by Cobo et al. (2010) in 
another soil class. Other causes of low representative mod-
els for these properties include the absence of sensitivity 
in routine analyses that are employed in laboratories and 
errors in the execution of routines (Cantarella et al., 2006).

Descriptive analysis. The Al presented contents that varied 
from 0.10 to 5.40 cmolc kg-1 with a mean lower than 1.2 
cmolc kg-1 (Tab. 2). This value is similar to that reported 
by Casierra-Posada and Aguilar-Avendaño (2007) for the 
concentration of Al3+ in a soil solution when a pH less than 
5.0 was exhibited, where Al was found in the range of 0.1 
to 1.0 cmolc kg-1. With these contents, this property is the 
principal limiting factor for agricultural production and 
should be taken into account for the management of soils 
in the production of crops (Camacho-Tamayo et al., 2010).

The Ca and Mg exhibited maximum contents of 24 and 
17 cmolc kg-1 and minimum contnents of 0.2 and 0.07 
cmolc kg-1, respectively. It can be affirmed that, of the ana-
lyzed properties, the soils exhibited the highest contents of 
Ca and Mg (Martins et al., 2011). Habitually, these contents 
in the soil depend on the materials of origin, the degree 
of weathering, and the lixiviation process and, thus, their 
contents can vary widely in soils. It is of note that Ca and 
Mg are better expressed in soil solutions when the pH is 

TABLE 2. Descriptive analysis of the observed (Obs) and predicted (Pred) properties from the spectral models.

Property Units Mean Median CV Minimum Maximum Skewness Kurtois

AlObs cmolc kg-1 1.19 1.26 59.10 0.10 5.40 1.88 9.91
AlPred cmolc kg-1 1.16 1.31 45.82 -0.19 2.66 -0.41 -0.43
CaObs cmolc kg-1 3.91 0.70 132.06 0.20 24.00 1.55 1.59
CaPred cmolc kg-1 3.94 1.54 125.93 -1.78 22.75 1.32 0.99
COObs % 2.73 1.74 70.72 0.17 8.50 1.19 0.12
COPred % 2.72 1.78 68.60 -0.31 7.44 0.97 -0.54
KObs cmolc kg-1 0.31 0.09 122.75 0.03 1.90 1.82 3.30
KPred cmolc kg-1 0.31 0.12 98.20 -0.04 0.92 0.59 -1.33
MgObs cmolc kg-1 1.94 0.19 185.02 0.07 17.50 2.40 4.99
MgPred cmolc kg-1 1.87 0.60 177.35 -3.82 16.04 2.21 4.19
NaObs cmolc kg-1 0.12 0.07 115.04 0.01 0.91 3.00 10.35
NaPred cmolc kg-1 0.12 0.08 99.26 -0.03 0.61 2.08 3.34
PObs mg kg-1 7.80 4.20 110.20 0.60 46.30 2.54 6.48
PPred mg kg-1 7.72 5.69 70.94 -2.85 23.38 0.87 -0.25
pHObs 5.11 4.90 9.87 4.21 7.07 1.05 0.98
pHPred 5.10 4.91 9.22 4.01 6.56 0.66 -0.41
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FIGURE 2. Correlation between the predicted and measured values of the soil properties.

above neutrality, in soils that are moderately alkaline or 
alkaline. The coefficients of variation for the Ca and Mg 
were high and did not show a normal distribution (P>0.05).

The CO contents varied from 0.17 to 8.5%, with a very high 
coefficient of variation. It can be said that the low contents 
of this attribute belonged to the Oxisols and Inceptisols and 
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the high ones to the Andisols. According to Carvajal et al. 
(2009), variations of CO are exhibited depending on the 
altitude, even with the same land use. The mean of the CO 
had a value of 2.73%. According to this, it can be said that 
the CO contents in various Colombian soils are of medium 
values. The total CO is an indicator of the effect of differ-
ent productive systems on the organic fraction of the soil 
and is used to evaluate the changes in MO associated with 
the labor systems, use, and productive capacity of the soils 
(Martínez et al., 2008), because of which it is inferred that, 
in Colombia, the soils are being exploited with agricultural 
activities that, little by little, are causing the organic layer 
of the soil to deteriorate.

The K varied its content from 0.03 to 1.9 cmolc kg-1. The 
availability of this nutrient can change, depending on vari-
ous factors, including the moisture of the soil (Roldán et al., 
2004). It is to be expected that, in Colombia, because of its 
location in the Tropical Zone, the climate will be tropical 
and have uniform climactic conditions, but the inclusion 
of mountain ranges in the topography results in a variety 
of climates that influence the formation of soils, where 
the highly weathered one, such as  Oxisols, contrast with 
the young soils, such as  Inceptisols and  Vertisols, which 
are found closer to sea level and are derived from volcanic 
materials, in those that the contents of clay and of K are 
generally high (Mengel and Kirkby, 2000). This diversifies 
the availability of certain properties of the soil, which is re-
flected in the high coefficients of variation, which, like the 
former properties, are high. The asymmetry and kurtosis 
in the predicted K were closer to zero and the K-S test did 
not exhibit normal distribution (P>0.05).

The Na had a minimum of 0.01 and a maximum of 0.91 
cmolc kg-1, with a median of 0.07 cmolc kg-1. These contents 
are adequate for soils of agricultural production. Excess Na 
is one of the principal factors that affect plant growth. Ac-
cording to Muñoz et al. (2000), saline sodium soils exhibit 
an interchangeable concentration of sodium of 15% and a 
pH between 8.5 and 10.0, a situation in which the majority 
of crops begin to have problems in their development. In 
Colombia, there are zones where the soils are affected by 
excess Na (Laegdsmand et al., 2005) and, in the worst cases, 
there is incrustation caused by dispersion in kaolinitic soils 
under conditions of exposure to erosion (Summa et al., 
2006). Otero et al. (2002) recommended special handling 
for these soils, above all for dispersion, which should be 
analyzed by ranges of indicators of electric conductivity 
and the relation of the activity of Na+ (Ca2+) -0.5, keeping 
in mind the particularities of the ionic species.

The P presented contents from 0.6 to 46.0 mg kg-1, with a 
mean of 7.8 mg kg-1 and high values for the coefficient of 
variation. These results are similar to those reported by 
Martins et al. (2011). As previously discussed, the principal 
chemical limitation in the expression of P is directly related 
to the pH and the content of allophane, which can be pres-
ent in Andean soils and which, having an acidic tendency, 
can fix or immobilize up to 90% of the phosphorus that 
exists in the soil solution (Alcalá et al., 2002). On the other 
hand, according to IGAC (1988), in approximately 85% of 
the national territory, the soils have pH values below 5.5 
and 57.6% have a pH > 5, in which case there are no great 
limitations on agricultural activity. It should be emphasized 
that the analyzed samples came from zones dedicated to 
farming and the corrections, performed over time, have 
changed the conditions of the soil. The coefficient of varia-
tion was low and the skewness and kurtosis were close to 
zero in the values of the measurements and estimations. 
This is similar to what Garzón et al. (2010) and Peña et al. 
(2009) reported for Colombian soils.

Conclusions

With the analysis through infrared MIR spectroscopy, 
the properties of the soils were manifested in similar 
spectral regions, but with different levels of reflectance. 
This difference was notable principally in the spectrum of 
the Andisols, where the spectral peaks were the lowest, a 
fact attributable to the compounds of MO, which tend to 
darken the soil, absorbing the infrared light, principally in 
the regions between 400 - 700 and 900 - 1,300 cm-1. On the 
other hand, the results of this paper show that, through the 
technique of mid-infrared (MIR) reflectance spectroscopy, 
a great quantity of samples can be processed, whose spectral 
responses provide information about various parameters 
in only one spectrum. In the present case, CO and Ca were 
those with the best prediction results, with R2 0.94 and 0.90, 
respectively, and RPD ≥ 3. 

The quantification of the soil properties using this method 
allowed for a high degree of confidence in the measure-
ments, although it could be adversely affected when the 
contents are low or show a small degree of variability. 
This quantification, with the calibration and validation 
of models, is less wasteful and faster and generates less 
environmental impacts, over conventional methods. This 
technique can partially replace conventional laboratory 
methods since it requires them to prepare models and 
feedback from these in time. Moreover, further studies 
are needed that include alternative methods of quantifica-
tion of soil properties in the laboratory, which may permit 
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an improvement of models of calibration and validation, 
especially for those properties whose models were not 
representative.
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