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Production animals enjoying good health and well-being are more productive and have a higher output quality. 
Several technical solutions have been used to monitor the animals’ welfare: those based on computer vision pro-
vide cost-efficient and scalable options. In this work, we performed a continuous two-month image acquisition of 
cows in front of an automatic milking station and divided the data into ten different classes related to the most im-
portant activities appearing in the images. The data consisted of almost 19 hours of video, equivalent to more than 
1.7 million still images. Based on these imaged, we then implemented a convolutional neural network classifier to 
recognize the cows’ behavior. The network was tested using cross-validation methodology and achieved an 86% 
precision rate and 85% recall rate in the classification. The data and the Python program code used in this study are 
made available. An image data set that directly resembles the harsh conditions inside a barn and can be used for 
deep learning purposes has not been previously made available.
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Introduction

Farm animals enjoying good health and well-being are more productive with higher quality yield (Wegner et al. 
1976, Berckmans 2014), and the importance of understanding these phenomena has grown as the farm sizes have 
grown. It is no longer possible for a farmer to follow individual animals; instead, decision making is based more 
on obtaining averages from certain indicators for the whole herd. Nonetheless, care is shown for each animal in-
dividually and measurements are made for individual animals to aggregate herd averages.

Several technical solutions have been used to monitor animal welfare, including the use of digital video camer-
as (Porto et al. 2015, Ardo et al. 2017, Ter-Sarkisov et al. 2017), depth sensor cameras (Nasirahmadi et al. 2017), 
sound (Schirmann et al. 2009); three-dimensional accelerometers (Müller et al. 2003, Steeneveld and Hogeveen 
2015, Gardenier et al. 2018, Shen et al. 2020); and infrared thermography (de Sousa et al. 2018, Cuthbertson et 
al. 2019, Xudong et al. 2020, Anagnostopoulos et al. 2021). Computer vision approaches employing video cam-
eras are scalable and low-cost solutions (Banhazi and Tscharke 2016) and have been successfully used to monitor 
physiological and behavioral parameters related to pre-slaughter stress (Jorquera-Chavez et al. 2019); to detect 
hoof disease (Gu et al. 2017); to track gait and identify lameness (Gardenier et al. 2018, Jiang et al. 2019a, Kang 
et al. 2022), to analyze health problems through calculating body condition scores (Zin et al. 2018b, Huang et al. 
2019), body structure (Jiang et al. 2019 b, Liu et al. 2020) and faecal monitoring (Atkinson et al. 2020); and to de-
tect aggressive behaviors (Chen et al. 2019). One often used computer vision method is to segment instances to 
recognize and track individual cows (Guzhva et al. 2018, Ter-Sarkisov et al. 2018, Zin et al. 2018a, Qiao et al. 2019, 
Shao et al. 2019, Li et al. 2021). 

In computer vision applications, deep learning approaches using Convolutional Neural Networks (CNN) are able 
to achieve state-of-the-art results using only the image data, thus requiring little domain knowledge. Previously 
trained networks can be transferred from one context to another to increase the information learned by the net-
work (Chollet 2017). Furthermore, after the initial training phase, the CNNs are computationally light to deploy 
or embed within applications.

Using commercially available security camera, we performed continuous, two-month image acquisition of cows in 
front of an Automatic Milking Station (AMS) inside a teaching barn in Mustiala, Tammela, Finland. The chosen area 
serves a specific purpose, milking, and hence, cows are motivated to visit the spot several times per day. From the 
acquired images, a set of 1 700 000 were classified into 10 scenes that were based on cow-actions available in the 
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set and following the guidelines defined in (Boissy et al. 2007, OIE 2019). The Terrestrial Code (OIE 2019), derived 
by the World Organisation for Animal Health (OIE), is the main international standard for animal welfare and de-
fines several measurables to monitor the impact of design and management in animal welfare. One of the main 
measurables with respect to dairy cattle is their behavior, including aggressions between animals, decreased feed 
intake, and altered locomotor behavior and posture. Another measurable is related to the human-animal relation-
ship, such as aggressiveness during handling or keeping excessive distance. Moreover, Boissy et al. (2007) point out 
the importance of assessing positive emotions: exploration, grooming, and friendly interactions among animals.

To demonstrate a monitoring system for behavioral actions, our aim was to detect cow behavior in a constrained 
area using a VGG-based CNN using the acquired image data classified into suitable action categories. Our results 
show the potential of this approach along with several features that need to be considered in applications. The 
developed CNN developed was tested using Cross-Validation methodology (Faceli et al. 2011), and it achieved an 
86% precision rate and an 85% recall rate in the classification task. We have shared the data set used in this article 
– equivalent to almost 19 hours of video – along with the Python program code to implement the full data software 
pipeline and the CNNin Benitez Pereira et al. (2020), licensed with the Creative Commons 4.0 Attribute license. 

Materials and methods
Data acquisition

For the video data acquisition, we used a commercial security dome camera (VIO-D30, Blaupunkt GmbH, Ingress 
Protection class IP67). It provides a 100° wide-angle view. The camera captures video when movement is detect-
ed and, on average, the video files are about four minutes in duration and include 15 videos per hour. The native 
video format is an H.264-encoded, 25 frames per second, 1920-by-1080 DAV-format file.

We initially installed the camera on 22 September 2019 and placed it 3.3 m above ground level and 3.3 m left of 
the front left corner of the AMS housing seen in Figure 1a. To increase variety in the training data set, we changed 
the camera position 1.0 m further left of AMS and rotated it 3.4° horizontally towards AMS and 1.7° vertically up-
wards on October 25, 2019. Figure 1b shows an overview of the setting and the region of interest of this study.

 

Videos chosen for labeling
Two periods of video footage were labeled, the first for the initial camera position from 22 September to 18  
October 2019, and the second for altered camera position from 27 October to 20 November 2019. Starting from 
the beginning of the period, ten videos from every second day were labeled for both periods. For the first period, 
the labeled videos were the last video of the hours 03, 06, 08, 10, 11, 13, 14, 15, 17, and 19, and for the second 
period they were the last video of the hours 03, 08, 09, 10, 12, 13, 14, 15, 17, and 19. Exact staring times of the 
labeled videos are provided in the supplementary material. The videos were chosen with no a priori information 
on the days (nor are any major events known afterwards), and they consist of one video from around the sunrise 
and sunset, multiple videos rather equispaced throughout the day, and one video from the middle of the night, 

Fig. 1. Overview of the camera installation (a) and (b) region of interest perimeter marked with the red-dotted 
line. AMS was located in the red housing on the left of region of interest and the region of interest includes the 
part of AMS accessible to cows. Note that the original image captured by the camera was rotated 180° and, 
hence, the date label is upside down in the images.

a) b)
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where the camera had a poor signal (hence only one night video per day). With this design, we intended to cov-
er a reasonable amount of time while still keeping the data set and labeling process feasible. In total, 280 videos 
were labeled with the average duration of four minutes and nine seconds.

For the labeling and analysis of the video, the native DAV format was converted to MP4 using the FFmpeg library. 
Some DAV to MP4 conversions failed for no apparent reason. We experienced eight such conversion failures, 
tracked them, and substituted video from the same hour, but from the next day. Substituted videos are listed in 
the supplementary material.

Classes used for labeling
The classes consist of one for humans in the image, three for cow-to-cow interactions, two for the number of 
queuing cows, two for cow activities, and two for no cows in the image. Each frame of the videos was treated as 
a single image and assigned to one of those classes. Abnormal or undefined situations were assigned to an unde-
fined class (number -1). The defined classes are not mutually exclusive, so if the same scene included two classes 
(example: one cow is drinking water while a frontal interaction is happening), we adopted a priority scale: just 
the situation with a higher priority (lower number class) was saved. An overview of the classes in their order of 
priority is given in Table 1.

 

The undefined and human classes were prioritized the most because of their importance for further analysis: un-
defined images were naturally omitted from the CNN training; correct human class prediction is important when 
considering that the behavior of the cows is different when humans are present. The undefined class was used 
when the image was very noisy or otherwise there was doubt about the correct class. The human class was as-
signed when at least 30% of a human body was visible in the image based on the subjective estimate of the labeler. 

Interactions between cows were divided into three categories: frontal, lateral, and vertical interactions. In frontal 
interactions, two cows were interacting and facing each other, as shown schematically in Figure 2a. Frontal inter-
action does not have to be mutual, only that both of the cows were considered to be are able to react to the ap-
proaching interaction before it happens. In lateral interaction, a cow is pushing, kicking, or heading into another 
cow, whether reciprocally or not. Four schematic situations are shown in Figure 2b. In vertical interaction, a cow 
has positioned any of its body parts over another cow. In practice, the body parts that can be positioned over an-
other cow are the head and torso, thus vertical interaction includes mounting behavior. The schematics of verti-
cal interactions are shown in Figure 2c.

A crowded situation was assigned when there were more than five cows entirely inside the area next to the AMS. 
That area is delimited by considering the scope of the data set (cow behavior near AMS) and is defined as the area 
inside the dashed perimeter in Figure 1b. 

Drinking was only assigned if the cow was actively engaged in drinking. It is very common that the cow just stays 
near the water drinker, or just licks the metallic part of it, and these situations were not included in this class. 

Table 1. The classes used in labeling in their order of priority decreasing from top to bottom

code name brief description

-1 undefined Undefined situation or doubt about the correct class due to too much noise

0 human There are human(s) in the image.

1 interaction frontal Head on head or neck

2 interaction lateral Head or body touching the other cow’s head or body

3 interaction vertical Head or other body part over body or head

4 crowded More than five cows in the interest area

5 drinking A cow is drinking water.

6 curiosity Putting head inside the AMS housing.

7 queue At least one cow is waiting outside the milking station.

8 low visibility Night or twilight

9 normal Nothing, laying down, peeing, etc.
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Curiosity was assigned when a cow had its head at least partially in the opening near the entrance of the AMS. 
This action was considered a natural exploring of the environment (a relevant indicator of positive affective states 
according to Boissy et al (2007), especially since the milking reward feed is kept within the housing. A queue rep-
resented a situation in which at least one cow was waiting outside the milking station. The queue could vary in 
size and organization, with the only constraint being that the cows needed to be facing the milking station. That 
is, it involved a scene where some cow was near the milking station; however, cow apparently just walking by the 
station was not included under this class. This class is subjective and dependent on the personal interpretation 
of the person doing the annotation, so a more precise task would require additional labeling and/or redefinition 
of the classes.

 

Low visibility and normal are both situations defined mainly by the absence of the actions described above. Low 
visibility is used during the night, when the lights of the barn are dimmed and the video footage is almost com-
pletely blank. These images are labeled in this class. For most of applications, these images can probably just be 
discarded, but we decided to keep them for completeness. A normal situation is the complement of all the other 
classes and could be interpreted as a binary classification with cases in which something was happening versus 
when nothing was happening.

Labeling process
The videos were annotated so that each frame was considered a single image and assigned to exactly one class. 
We developed Python software that takes the MP4 video, plays the video (with options to rewind, advance, and 
pause the video), and saves a label correspondent to each frame of the video. Label input is given by the user 
pressing a corresponding key. Idea was based on a tool developed by (van den Berg et al. 2011).

The assigned classes were written as text files in JSON (JavaScript Object Notation) format. We will refer to the 
JSON class files as pointer tables. Each line of the pointer table contains a class label for one frame in a triplet: 
(video file name, frame number in the video, assigned class). For example, (1569103140, 1, 8) would be the first 
frame of video 1569103140.mp4 assigned to class 8, low visibility. To ensure the reproducibility of the results, we 
stored a pre-shuffled pointer table, which was used in our experiments.

A thousand images required approximately one minute to label, including all the tasks involved in the annotation 
process. The videos occupy 40.7 GB stored in mp4 format, while the labels occupy 82.9 MB stored in plain text file.

Fig. 2. Schematic examples of interaction classes: (a) frontal, (b) lateral, and (c) vertical

a) frontal interac�on b) lateral interac�on

c) ver�cal interac�on
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CNN architecture and training

To accomplish the classification task, we used a CNN that was implemented using Python and Keras. The choice 
of network was based on a heuristic altering the VGG (Simonyan and Zisserman 2014) architecture with per-
formance evaluated using the cross-validation methodology. The VGG architecture was originally developed to  
perform image classification and object localization among 1000 classes. Compared to other previously published 
architectures using large receptive fields (size of convolution filter), for instance 11-by-11 with stride 4 in (Kriz-
hevsky et al. 2012), the VGG used very small (3-by-3) receptive fields with stride 1 and a higher number of layers, 
that is to say, it is a deeper neural network. A filter size of 3-by-3 is the smallest size at which the notion of left/
right, up/down, and center can be captured, making the decision function more discriminative. Other often used 
networks in precision farming include ResNet, DenseNet, Inception V3, and MobileNet, but no significant differ-
ence beforehand has been demonstrated (Mahmud et al. 2021).

We found the best performance with the architecture shown in Figure 3. It consists of seven convolutional lay-
ers with the ReLu activation function (Chollet 2017) and different numbers of filters. Each convolutional layer is 
followed by a pooling layer to reduce the dimension. The final classifier is implemented with two fully connected 
layers with the ReLu activation function, each one regularized with a 20% dropout rate (random drop of neurons 
from the neural network during training, helping to prevent overfitting (Srivastava et al. 2014). The last layer is 
a fully connected layer with a softmax activation function (Chollet 2017), used to produce a probability distribu-
tion as output, and it has ten output neurons constituting the probabilities that an image belongs to any of the 
classes. In total, the architecture has 20 layers and the Python implementation is provided alongside the data set 
in the supplementary material.

 
The loss function chosen for our purposes was categorical cross-entropy loss because of the multiclass classification 
nature of the problem. The system was optimized with the Adam algorithm and evaluated with the accuracy metric. 

We trained two CNNs: one with a subset of 100 000 images randomly sampled directly from the labeled data and 
one with 49 900 sampled such that each class is represented with an equal number of randomly included images. 
The lowest number of images occurred in the class vertical interaction, which thus defined the number 4990 im-
ages for each of the ten classes. These CNNs are later referred to as unbalanced and balanced experiments, re-
spectively. The exact images are listed in the data set (Benitez Pereira et al. 2020).

Fig. 3. Architecture of the CNN used in this article, consisting of seven convolutional and max-pooling layer pairs and three 
pooling layers

Input frame, size 256x256x1 

2D convolution, 64 activation maps of size 256x256 

Max pooling, reduce the 64 activation maps to size 128x128 

2D convolution, 64 activation maps of size 128x128 

Max pooling, reduce the 64 activation maps to size 64x64 

2D convolution, 128 activation maps of size 64x64 

Max pooling, reduce the 128 activation maps to size 32x32 

2D convolution, 256 activation maps of size 32x32 

Max pooling, reduce the 256 activation maps to size 16x16 

2D convolution, 256 activation maps of size 16x16 

Max pooling, reduce the 256 activation maps to size 8x8 

2D convolution, 512 activation maps of size 8x8 

Max pooling, reduce the 512 activation maps to size 4x4 

2D convolution, 512 activation maps of size 4x4 

Max pooling, reduce the 512 activation maps to size 2x2 

Fully connected, 2048 neurons with 20% of dropout 

Fully connected, 512 neurons with 20% of dropout 

Fully connected, 10 neurons (softmax activation) 
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The CNNs were trained with images average down-scaled to a 256-by-256 resolution and converted to grayscale 
by averaging the intensities of the three channels. The full data set was shuffled once and recorded in shuffled 
tables, which are provided in the supplementary material for reproducibility. In the unbalanced experiment, we 
used 80 000 (80%) images for training, 10 000 (10%) for validation, and 10 000 (10%) for testing. In the balanced 
experiment, the number of images were 24 950 (50%) for training, 12 475 (25%) for validation, and 12 475 (25%) 
for testing. The network was trained for 25 epochs in unbalanced experiment and 27 in balanced experiment.

Before using the images to train the network, we augmented them by applying random geometrical transforma-
tions using the library Albumentations (Buslaev et al. 2020). This made it possible to have more variation in the 
data (thus, yielding with less bias towards over-fitting); for instance, all the data was collected during fall, which 
is not enough to represent the changes in daylight throughout the year in Finland, and therefore it is beneficial 
to augment the data by varying the exposure. The applied augmentations are summarized in Table 2, which also 
shows the range of the augmentation adjust parameter. The value of the adjust parameter is chosen randomly 
from a uniform distribution within the given range, and it defines the intensity of the augmentation. Each type of 
augmentation has 50% change of appearance.

 

We chose ranges of the adjust parameter that would be within reasonable limits considering the environment. For 
example, excessive rotation and shifting were avoided. Also, shifting, scaling, and rotation preserve the boundary 
of the interest area (defined in Figure 1 (b)) to be included in the augmented image. Contrast, gamma, and bright-
ness adjust parameter ranges were chosen so that even the most augmented image might represent a possible 
image from the camera. The chosen range of the rotation parameter was a little higher than the modification done 
in the middle of the experiment (3.4°). In case of semantic segmentation, we suggest the reader to see Qiao et al. 
(2020) on advanced augmentation of contour label which were not used in this work though.

To validate the trained network, we used cross-validation methodology (Russell and Norvig 2010). Cross-valida-
tion methodology divides the data into three independent data sets, from which one is used for training, one to 
validate the training, and one to test the eventual result. The prediction results of the network from the test set 
were numerically evaluated using precision, recall and F1-score metrics separately for each class. Precision and 
recall are defined as

 
and 

where true positives are the correct classifications of the evaluated class, false positives the false classifications to 
the evaluated class, and false negatives the wrong classifications of the evaluated class to another class. F1-score 
is computed for each class based on their precision and recall as      
             
             
                  . 

 
One additional evaluation metric is the Top-3 accuracy, which considers the prediction right when one of the three 
most confidently predicted classes is equal to the true label, instead of only the most confident one.

Table 2. Training set augmentation transformations and ranges

transformation range

contrast 0% – 30%

gamma 0% – 30%

brightness 0% – 50%

shift 0% – 5%

scale 0% – 5%

rotate 0° – 10°

precision =  
#true positives

#true positives + #false positives
 

 

recall =  
#true positives

#true positives + #false negatives
 

 

F1-score =  
2 ⋅ precision ⋅ recall
precision + recall

. 
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Software and hardware used

All computations were performed at an HP Z4 G4 workstation with a NVIDIA® Quadro® P2000 (5 GB GDDR5 dedi-
cated) graphics processing unit, 16 GB DDR4-2400 random access memory, and an Intel® Core™ i7-7820X proces-
sor. The software used included Python (version 3.6.9), Keras (version 2.2.4) with backend TensorFlow (version 
1.14.0), Keras-vis toolkit (version 0.4.1), Albumentations image augmentation library (version 0.4.2) (Buslaev et 
al. 2020), and opencv-python (version 3.4.2.17) computer vision library (Bradski 2000).

 
Ethical statement

During the research, the cows were cared for according to the effective laws and regulations in Finland. We did 
not intervene with animals. Persons were informed with signs upon entering the acquisition area about the re-
search data acquisition project. The protocol for disconnecting the acquisition of images while visiting the area 
was given in the signs. Any data including persons have not been published.

Results
Labeled data set

The data set consisted of 280 videos, with a mean duration of 249 seconds (4 minutes and 9 seconds) and a stand-
ard deviation of 78 seconds, equivalent to 1 700 660 valid frames (labeled with a class other than -1). Most of 
the labels, 40.7%, belong to the queue class, while just 0.3% belong to the interaction vertical class, as shown in 
Figure 4. The relatively large percentage for the queue class is natural given that the monitored region was pri-
marily constructed for entering the AMS. Figure 5 shows one sample frame for each class labeled in this data set. 

The mean number of classes per video was 3.78, with a standard deviation of 1.68. Of all the videos, 61.1% con-
tain at least one interaction event (classes 1, 2, or 3), and 9.6% contain at least one human image. Figure 6 illus-
trates the temporal distribution of the classes on a video (30 September 2019, video from hour 08), and Figure 7 
illustrates daily distribution (12 October 2019).

 
We conducted a small test to see if the classification of images agreed between two persons. The test was done 
once for data on a single day, and it resulted in 87.7% agreement in the labeled classes. To avoid any discrepan-
cies, all data in the supplementary, published set was labeled by the same person.

Fig. 4. Distribution of classes throughout the entire data set
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Fig. 5. Sample image of each class

a) frontal interac�on b) lateral interac�on 

c) ver�cal interac�on d) crowded 

e) drinking f) curiosity 

g) queue h) low visibility 

i) normal 

Fig. 6. Temporal distribution of the classes in a sample video (30 September 2019, video from hour 08)

Class
09:03:0009:02:3009:02:0009:01:30

Time
09:01:0009:00:3009:00:0008:59:30

2

3

4

5

6

7
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Classification experiments with CNNs

Based on the cross-validation evaluation, the CNN in unbalanced experiment achieved an 86% precision rate and 
an 85% recall rate (mean over all classes, weighted by the number of examples in each class) and the CNN in bal-
anced experiment achieved a 78% precision rate and 79% recall rate. Table 3 shows the precision, recall, F1-score, 
and support (number of samples in this class) for each class, as well as their weighted average (mean over all class-
es, weighted by the number of examples in each class) and the overall accuracy. Figure 8 illustrates these results 
in the form of a confusion matrix, while Figure 9 shows the last eight epochs of training, where the final preci-
sion rate was reached and further training shows no improvement. The classes that where most benefited by the  
balanced experiment were the ones with little representation in the unbalanced experiment (the interaction class-
es and the human class), but a considerable amount of errors still happen between the classes interaction frontal 
and interaction vertical, presumably because the two situations are visually similar.

 

The different forms of evaluating the model allow for different interpretations (Faceli et al. 2011) and compari-
son with other works. For our application, the F1-score weighted average is the most important metric because 
it balances precision and recall while taking into consideration the uneven distribution of the classes in the un-
balanced experiment.

Fig. 7. Temporal distribution of the classes on a typical day (12 October 2019)

Class

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
1
2
3
4
5
6
7
8
9

Time

Table 3. Model evaluations

unbalanced experiment balanced experiment

class precision recall F1 support precision recall F1 support

human 91% 50% 65% 224 84% 90% 87% 1252

interaction 
frontal 100% 27% 43% 147 83% 75% 78% 1290

interaction 
lateral 79% 28% 42% 510 66% 57% 61% 1264

interaction 
vertical 100% 9% 16% 23 90% 98% 94% 1267

crowded 86% 96% 91% 1455 68% 83% 75% 1210

drink 82% 74% 78% 869 74% 82% 78% 1237

curiosity 99% 31% 47% 5817 70% 73% 71% 1298

queue 81% 97% 88% 4160 55% 37% 44% 1120

low 
visibility 100% 100% 100% 1005 99% 100% 99% 1195

normal 92% 95% 94% 1020 89% 91% 90% 1231

accuracy 85% 10 000 79% 12 464

weighted 
average 86% 85% 83% 10 000 78% 79% 78% 12 464
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While Top-3 metric is not common, it makes sense in our application, where one situation can be very subtle but 
still of interest. With this metric, the CNN of unbalanced experiment has a Top-3 accuracy of 97% and the CNN in 
balanced experiment 95%.

Fig. 8. Confusion matrices for the (a) unbalanced and (b) balanced experiments
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CNN’s heatmap activation
A wide array of techniques exists for visualizing and interpreting CNNs (Chollet 2017). As pointed out by (Selvara-
ju et al. 2019) these visualizations are important because “in order to build trust in intelligent systems and move 
towards their meaningful integration into our everyday lives, it is clear that we must build ‘transparent’ models 
that have the ability to explain why they predict what they predict”.

Fig. 10. Images (a) and (b) are from video 1569153540.mp4 frame 6229, classes curiosity and drink, 
respectively. Image (c) is from video 1569146340 frame 489, class interaction lateral. Note that the 
alignment between the heatmap and image is not perfect.
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In this study, we present heatmaps of class activation based on the Grad-CAM technique (Selvaraju et al. 2019), 
which shows what parts of the image are important to a given class. To generate meaningful visualizations, we 
applied the Grad-CAM technique to videos different than the ones the network was trained with, and the penul-
timate convolutional layer (conv2d_6) was used to generate the visualizations. We used the Keras-vis tool kit, and 
as recommended in its documentation, we changed the last layer’s activation function from softmax to linear. 
Three selected results obtained from the unbalanced experiment are shown in Figure 10 where it is possible to 
see that the network correctly identifies the position of the objects of interest for the given class: the curious ex-
ploration happening in the top left corner (Fig. 10a), the cow drinking water in the top right corner (Fig. 10b), and 
two cows interacting in the center of the image (Fig. 10c). However, it also has strong activation in other regions, 
for instance the false recognition near the cow that is not drinking water in Figure 10b. 

Discussion

In this study, we have presented an approach aiming to enable long-term analysis of the behavior of cows in real 
time in their living environment. We deployed a commercially available security camera that was IP-classified and 
suitable for the harsh environment of the barn. Also, data transferring was implemented with readily available 
cloud services. 

Our results demonstrate the potential of deep learning in classifying the actions of cows. However, during the 
project we also identified many pitfalls of this robust, but rather simplistic, approach. No prior works using such 
a wide number of scenes existed, and hence, we chose to use supervised learning to have better a understanding 
of the results. In our experimental setup, we decided to limit our study to only a small portion of the barn usually 
having 50 to 60 cows engaged in milking. This is the only section of the barn where AMS-related events could oc-
cur, which was the motivation behind the collection of the data set.

The labeling process was found efficient because of the developed software and relatively slow pace of events, 
and hence, allows easy future extensions and enhancements to the provided data. The pipeline we developed 
to record, store, retrieve, convert, and annotate videos can easily be adapted to another context: another barn, 
other behaviors, other animals, and so forth. All the codes necessary to reproduce this pipeline are available in 
the supplementary material. 

Regarding the choice of classes, only a few scenes could not be assigned to any of these classes and mainly only 
due to difficulties in human interpretation. More critically, we note that future approaches should not prioritize 
the actions present in the scene, but rather be designed to allow more for flexible analyses of the scenes. For ex-
ample, drinking and interactions often took place simultaneously but in different parts of the image. The image 
could be either multi-classified or analyzed in sections. We considered the human class top priority both because 
we assume that cows act differently when human are present and also due to privacy reasons. It should also be 
noted that in the area covered in this study, the monitoring of standing-lying behavior or eating patterns was not 
meaningful, which, nonetheless, are important indicators of a cow’s well-being. Thus, extending the camera setup 
to either cover the whole barn or at least several other well-chosen regions is required.

The deep learning approach we used provided a good fit in terms of accuracy and was feasible in training speed. 
When analyzing the errors in the predictions, we found that often the scene predicted with the second highest 
probability would have been the correct. Furthermore, the activation maps are visually quite sufficient. However, 
the networks did not provide good generalizations outside the time span used to train it. This suggests that the 
network memorized the training data and closely identical, consecutive frames were present in the training, vali-
dation, and test sets.

Previously, aggression has been detected with an accuracy rate of 98% and a recall rate of 98% (Chen et al. 2019); 
interaction or non-interaction with an accuracy rate of approximately 60% and a recall rate of 100% (Ardo et al. 
2017); feeding or non-feeding with an accuracy rate of 92% and a recall rate of 88% (Porto et al. 2015), accuracy 
rate of 97% (Achour et al. 2020) or 99.4% in a pig study (Alameer et al. 2020); and mounting or non-mounting with 
an accuracy rate of 91% and a recall rate of 95% (Li et al. 2019). Compared with such prior works, we aimed for 
a broader set of monitored events in the barn and experimented with two different camera positions and longer 
data acquisition times, yielding illumination changes. Similar work to ours is reported by Wu et al. (2021), where 
classification of five different single cow behavioral actions were studied. However, the complexity increases when 
interactions are studied, as in our work reported in this article. Also, Tsai et al. (2020) studied drinking behavior via 
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monitoring cow head from above of the throughs. Their approach yielded F1 score of 0.987 and true positive rate 
of the cow head 0.983, which, however, are not directly compared to our results as we labeled the scene “drink-
ing” only when the cow was engaged in water intake and not just in the vicinity of the through.

In our analyses the temporal domain had excess of data and might benefit from aggregating the sequential frames. 
For example, studies of pigs by Chen et al. (2020a and 2020b) used one-second episodes and Yang et al. (2019) 
thirty-second episodes for analysis instead of individual frames. Aggregating frames would both solve the memo-
rizing issue and enable analysis of dynamic events when used together with suitable CNN structures such as long-
short-term-memory (see Chen et al. 2020a). With the single frame approach, no distinction was made in the speed 
of interactions, which we see as a drawback. Dynamic representation of data should include information on the 
intensity of the events and their directions. In different barn scenarios, such need has already been recognized 
and started by Guo et al. (2019) to recognize mounting and by Fuentes et al. (2020) who used 15 different behav-
ioral actions of cows – either individual, in a group or pairwise. Their classes are mainly different from our case, 
thus supplementing each other depending on the data acquisition position within the barn. 

Dynamic data representation could also be combined with the above suggested sectioning of the image domain, 
which would revert the wider scenery towards simultaneous binary analysis, or at least analysis of fewer classes 
in the whole image. Certain events, like drinking, curiosity and queuing are only possible on certain positions of 
the image domain. The difference in prediction performance of unbalanced and balanced experiments, where 
there was a trade-off between accuracy and less bias, might as well be interpreted to suggest implementation of 
multiclass detection as a bundle of independent CNNs, each detecting only whether an event is present of not.

Availability and variety of data is seen critical for further development of monitoring applications which are sug-
gested to include multiple camera views and be based on standardized data (Li et al. 2021b, Bao and Xie 2022), 
In this work, we have demonstrated an approach to multiclass scene recognition of cows from video data of their 
every-day environment and behavior. The provided work and data serve further research as a pre-labeled and 
pre-trained piece adaptable to new situations. 
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