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Abstract 

Modelling the solubility of compounds in the “beyond Rule of 5” (bRo5) chemical space is in its infancy and 
to date only a few studies have been reported in the literature. Based on our own results, and those 
already published, we conclude that consideration of conformational flexibility and chameleon like 
behaviour is important, but quantitative models that account for these properties remain to be developed. 
Inclusion of 3D information appears to be somewhat less important than for cell permeability and 
extremely challenging due to the difficulties of accurate conformational sampling in the bRo5 space. 
Currently, methods for modelling of solubility will have to be tailored to the set of investigated 
compounds. 

©2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Solubility, and solubility in the bRo5 chemical space 

Aqueous solubility plays a crucial role in filtering lead compounds and drug candidates in early stages of 

drug discovery and development [1]. Although dependent on the research program, GSK on the basis of 

the General Solubility Equation (GSE, see below) recently suggested that solubility is satisfactory (high) 

when >200 μM, while 30–200 μM was considered as intermediate and <30 μM as poor [2].  

Application of in silico methods is one of the most appealing strategies to overcome solubility issues in 

drug discovery projects [3]. However, predicting solubility is not an easy task mainly because of the high 

uncertainty affecting the experimental data [4], with typical interlaboratory measurement reproducibilities 

of 0.6 log S units (with S in mol/L) [5]. The main approaches for prediction of solubility have recently been 

reviewed by Bergström and Larsson [6] and Abramov et al. [7]. In summary, solubility can be predicted 

using either of two methods: Quantitative Structure Property Relationships (QSPR), which includes the 

GSE, and physics-based methods based on modelling of the thermodynamic cycle. The GSE, physics-based 
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methods and a few QSPRs build on the three key steps taken when a molecule transitions from the 

crystalline state into an aqueous solution [6], i.e. a) dissociation from the crystal lattice [main descriptor: 

the melting point (MP)], b) preparation of a solvent cavity for incorporation of the molecule [main 

descriptor: the molecular weight (MW)] and c) insertion of the molecule in the solvent cavity and 

interactions with water [main descriptor: the logarithm of the partition coefficient between octanol and 

water (log P)]. In general, higher values for each of these three descriptors result in lower solubilities, but 

they are not by themselves providing perfect explanations of the individual steps in the solubilization 

process. For example, cavity formation could be better described by the molecular volume, which in turn is 

closely correlated to molecular weight. It was recently demonstrated that the solid-state contribution is 

the limiting factor in the accuracy and predictive power of models of solubility [8]. Therefore, if the 

solubility of a series of compounds is mainly controlled by their crystal packing, it is difficult to obtain an 

accurate prediction [3]. In such situations the application of a quantum mechanical (QM)-based 

thermodynamic cycle approach has been suggested [7]. However, if the solubility of a compound is mainly 

governed by lipophilicity, it is easier to predict its solubility with good accuracy. 

Drug discovery for difficult-to-drug targets often results in ligands that are large, highly lipophilic and 

semi-flexible compounds, i.e. compounds residing in the “beyond rule of 5” (bRo5) chemical space [9]. 

Development of such compounds is associated with high pharmacokinetic risks, low solubility being one of 

them [10]. In addition to the aforementioned difficulties, additional issues in the prediction of solubility are 

encountered when dealing with bRo5 compounds. First, the low amount of experimental data available in 

the public domain limits the generation of models. Second, many drugs in this space display chameleon-

like behaviour (i.e. they adapt their properties to the environment) which originates from their semi-

flexibility and results in dynamic formation of intra-molecular hydrogen bonds (IMHBs) [11] and/or 

shielding of polar surface area [12,13]. This introduces an additional level of complexity that should be 

taken into account in any modelling procedure. 

To provide an update about the current status of solubility modelling in the bRo5 chemical space we 

first review the few bRo5 solubility models described in the literature. Then we report some computational 

strategies we applied to model the solubility of a dataset of ten bRo5 drugs and drug candidates, and to a 

second larger dataset of natural product inspired macrocycles. Lastly, we have summarized some key 

findings and attempted to set up preliminary guidelines for how to obtain reliable solubility models for 

drug discovery in the bRo5 chemical space. 

Recent developments 

We recently investigated the solubility of a structurally diverse set of 11 drugs residing far into the bRo5 

chemical space [12]. The selected drugs consisted of erythronolides and rifamycin antibacterial agents, as 

well as HIV-1 and HCV NS3/4A protease inhibitors. As determined by X-ray crystallography each drug 

populated >2 different conformations (RMSD >1.4 Å). Due to the difficulties in predicting the relevant 

conformational space for bRo5 drugs [14], these experimentally determined conformations were used to 

assess the impact of using 3D descriptors when modelling solubility. Solubility determined at pH 7.4, where 

seven of the drugs were ionized, was used in the solubility models, i.e. S (solubility at a given pH where the 

molecules can be fully or partially ionized) and not S0 (solubility of the neutral species) was used. We found 

that aqueous solubility was explained to some extent by the 2D descriptor of polarity, i.e. TPSA (r2 = 0.53), 

but that the correlation improved substantially when descriptors calculated from the 3D structures of the 

drugs [15] were used. The best model was based on the conformation of each drug that had the maximum 
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molecular 3D PSA (Max M 3D-PSA, r
2
 = 0.83), while use of solvent accessible 3D PSA provided inferior 

models. The positive slopes of the correlations support, as expected, that the larger the PSA, the more 

soluble the drug. Notably, only a small difference in the quality of the regression model was obtained when 

the minimum molecular 3D-PSA was used instead of the Max M 3D-PSA. This finding, together with the 

observation that use of solvent accessible 3D PSA provided inferior models, suggests that the overall 

polarity of the molecule, originating from sampling of multiple aqueous conformations, is the most 

predictive for solubility. Solubility was also very well modelled by experimental lipophilicity (i.e. log D7.4) 

since the correlation between log S and log D7.4 had r
2
= 0.82. However, the relationship between solubility 

and calculated lipophilicity was not sought. 

Very recently Avdeef and Kansy investigated to what extent the solubilities of small, Ro5-compliant 

molecules can be used to predict the intrinsic aqueous solubility of large molecules in the bRo5 chemical 

space [16]. Three solubility models published for Ro5 compliant molecules [4] were used to predict the 

solubility of a set of 31 bRo5 compounds, for which carefully curated log S0 values have been reported. The 

GSE and the Abraham Solvation Equation failed to predict the solubility of the larger compounds in bRo5 

space, whereas the Random Forest Regression (RFR) method provided better results. The three methods 

differ in the applied algorithm, but also in the number of descriptors. Three were used in the GSE, five or 

six in the Abraham Solvation Equation and about 200 in RFR. Notably, 3D structural information was not 

used, but the authors suggest that the use of 3D descriptors (e.g. lipophilicity) could significantly improve 

predictions, since flexibility and conformational preferences can be expected to be more important for big 

than for small molecules. 

Cyclic peptides are useful model systems for mapping solubility in the bRo5 chemical space, and also of 

major interest as leads on drug discovery projects. Qualitative structure-solubility relationships have been 

reported for cyclic peptides, but to the best of our ability we have not found any specific quantitative 

models. For instance, Lokey and co-workers reported that small variations in the side chains of synthetic 

analogues of the cyclic peptide natural product sanguinamide A had a large effect on their aqueous 

solubility [17]. Interestingly, in depth studies of three of the cyclic peptides revealed that the one that 

displayed conformational flexibility had chameleon-like behaviour resulting in high solubility and cell 

permeability, where two rigid analogues had low solubility but retained the high permeability. Another 

paper from the same group further exemplified the importance of conformational flexibility and 

chameleon-like behaviour for conveying high solubility and permeability of cyclic peptides from the 

phepropeptin and epiphepropeptin series [18]. Overall, these studies suggest that flexibility and 

conformational preferences should be included in the prediction of the solubility of cyclic peptides, but a 

more general approach on how to do this in practice still remains to be described. 

Solubility models for a small set of bRo5 drugs 

We investigated additional methods to model solubility for 10 of the 11 drugs studied earlier by us 

(rifampicin was excluded because of its zwitterionic nature) [12]. As lipophilicity is one of the three major 

determinants of solubility according to the GSE, and as the size of these 10 drugs does not show a large 

variation (MW 671-837 Da), we focused the modelling on log P and log D calculated by different methods 

(Figure 1, all data are in Table S1). MlogP, the 2D lipophilicity descriptor implemented in the Lipinski’s Ro5, 

provided a moderate correlation with log S (Figure 1A). As expected, significantly better correlations were 

obtained with log D7.4 calculated by MoKa (www.moldiscovery.com) and log D7.5 from VolSurf+ (VS+, 

www.moldiscovery.com), highlighting the importance of incorporating the charge of the drug in the 
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models (Figures 1B and 1C). It is worth to note that inclusion of 3D structural information [log D7.5 (VS+)] 

did not significantly improve the statistical significance of the regression model found with 2D log D 

[log D7.4 (MoKa)] for this set of bRo5 drugs. 

 

Figure 1. Solubility models for a dataset of 10 drugs in bRo5 space. Experimentally determined solubility at pH 
7.4 (log S) and its correlation to (a) MlogP, implemented in the Ro5, (b) log D7.4 calculated in MoKa, (c) log D7.5 

calculated using VolSurf+, and (d) log S7.5 calculated using VolSurf+. 

VolSurf+ also allows calculation of log S0 and log S at different pH values. We predicted log S7.5 (VS+) 

based on 3D descriptors derived from an average conformation produced by the software from the SMILES 

code of each of the 10 drugs. However, the correlation between log S7.5 (VS+) and the experimentally 

determined solubility (Figure 1D) was of lower quality than those obtained with log D descriptors (Figures 

1B and 1C).  

Besides VolSurf+ some other in silico tools apply 2D models to the prediction of solubility from SMILES 

codes. Most if not all of them have been set-up using datasets of small molecules having solubility values 

curated at different levels of quality. Nevertheless, considering the free availability and user-friendly 

interfaces we decided to evaluate them in the bRo5 chemical space. The SMILES codes of the 10 drugs 

were therefore submitted to admetSAR (http://lmmd.ecust.edu.cn/admetsar2/), ADMETLab 

(http://admet.scbdd.com/calcpre/index/), pKCSM (http://biosig.unimelb.edu.au/pkcsm) and Marvin 

Sketch (https://chemaxon.com/products/marvin). Notably, only log S calculated with Marvin Sketch 

provided a good linear relationship with the experimental data (r2=0.81 with log S, 0.59 with log S0; all the 

data are in Table S2). However, the slope and the intercept were significantly different from 1 and 0 (0.42 

and -2.61, respectively) and thus the predicted values are not close to the experimental ones. 

A solubility classification model for a set of structurally complex macrocycles 

Previously, some of us determined the aqueous solubility, lipophilicity (log D) and permeability across 

Caco-2 cell monolayers for a set of 200 non-peptidic, de novo–designed macrocycles, the structures of 

which were inspired by natural products [19]. In-depth analysis of this dataset revealed that stereo- and 
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regiochemistry can have a large influence on passive permeability and cellular efflux, whereas their impact 

on solubility appeared to be lower. Moreover, an appropriate conformational flexibility was concluded to 

be a highly desirable property that may provide compounds in bRo5 space with chameleonic properties 

that allow them to display both high aqueous solubility and high cell permeability. However, as structure-

solubility relationships were not investigated for this set of macrocycles we now selected a subset 

consisting of 65 of the macrocycles for more detailed studies. The macrocycles in this set were selected by 

having no or very low efflux across Caco-2 cells (ER <2), i.e. by possessing one important property 

favourable for development of drugs in bRo5 space. The solubility distribution of the subset suggested that 

a classification rather than a regression strategy should be applied (Figure 2), and the threshold to 

distinguish soluble (47) from poorly soluble (18) compounds was fixed at 50 M. This is a slightly more 

liberal cut-off than that proposed by GSK (30 M) to distinguish compounds having poor from those having 

intermediate solubility [2]. 

 

 

 

 

 

Figure 2. Distribution of the aqueous solubility 
for the de-novo designed macrocycles. 

 

 

In contrast to the 10 bRo5 drugs discussed above, descriptors for lipophilicity (log P or log D) failed to 

provide models for solubility for this set of de novo-designed macrocycles (data not shown) and therefore 

more complex methods were investigated. The CORINA (https://www.mn-am.com/online_demos/-

corina_demo) conformer of the charged and neutral forms of the selected macrocycles was obtained and 

conformational sampling was performed for both forms using OMEGA (https://www.eyesopen.com/-

omega). Then descriptors were calculated for (1) the 2D structure (which provided the 2D dataset), (2) the 

CORINA conformer (named 3D) and (3) the minimum energy conformer from OMEGA (named MEC). A 

pool of 2D descriptors were calculated for the first (2D) dataset, while both 2D and 3D descriptors were 

calculated for the 3D and MEC datasets. Random Forest (RF) classification models were built for data 

matrixes using WEKA v3.8 (https://www.cs.waikato.ac.nz/ml/weka/) and their quality was evaluated using 

the Matthews Correlation Coefficient (MCC), which takes into account true positives and negatives and 

returns a value between -1 and +1. A perfect prediction is characterized by a coefficient of +1, a random 

prediction by 0, while a completely incorrect prediction has an MCC of -1. In general, models having MCC 

values greater than 0.4 are considered to be predictive. 

All models for this set of macrocycles were of good or high quality (Table 1, Leave-5-Out crossvalidation 

was used), but those obtained for the charged species, (MCC: 0.84 – 1.00) were superior to those for the 

neutral species (MCC = 0.43 – 0.92). This finding agrees well with the fact that most macrocycles in the 

dataset are predicted to be positively charged at pH 7.4. Notably, the best model (MCC = 1) was obtained 

for the charged forms using only 2D descriptors, while slightly inferior models were obtained when 3D 

descriptors were incorporated. The classification models were further assessed using an internal test set 

obtained by splitting the dataset into a training (50 macrocycles) and a test set (15 macrocycles). Again, the 
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2D-based RF model performed better than the models that included 3D information from conformational 

sampling (MCC = 0.71, Table S3). Eleven descriptors were found to have a high impact on the RF 

classification models, among which those describing lipophilicity, charge and surface area descriptors are 

the most important (Table S4). 

Table 1. Summary of solubility classification models for the DOS macrocyclic dataset (Five-fold cross 
validation, #descriptors = number of descriptors of the model; TP = true positives, FN = false 
negatives; TN = true negatives; FP = false positives, MCC = Matthews Correlation Coefficient) 

 Dataset #descriptors TP FN TN FP MCC 

N
e

u
tr

al
 2D 3 39 8 11 7 0.43 

3D 12 46 1 17 1 0.92 

MEC 3 46 1 16 2 0.88 

C
h

ar
ge

d
 2D 11 47 0 18 0 1.00 

3D 5 46 0 18 1 0.96 

MEC 10 46 1 15 3 0.84 

General considerations on solubility in the bRo5 chemical space 

The previous sections clearly support that different bRo5 datasets can require different strategies for 

modelling of their solubility. For instance, the solubility of the 10 drugs in bRo5 space showed an excellent 

correlation with calculated log D only, whereas the solubility of the de-novo designed set of macrocycles 

required development of an advanced RF model. Overall, these observations highlight that models 

developed for specific, small datasets usually cannot be transferred to other datasets. 

Another key observation is that the impact of ionization on solubility cannot be neglected when dealing 

with bRo5 compounds, just as for Ro5 compliant small molecules. Therefore, the pKa of the investigated 

compounds should be accurately predicted before modelling solubility, which is a far from an easy and 

trivial task. Moreover, lipophilicity and polarity descriptors are needed to model solubility, but they should 

be specifically designed and validated for large and flexible compounds. 

In principle, a 3D description of compounds in bRo5 space should be important for modelling solubility 

since conformational changes that expose surfaces with different properties could be required when a 

molecule dissociates from the crystal lattice and moves into solution. However, the examples discussed 

herein seem to suggest that the impact of the 3rd dimension on solubility is less important than for cell 

permeability. In fact, inclusion of 3D descriptors failed to improve the solubility models both for the 10 

bRo5 drugs [12] and for the de-novo designed macrocycles [19]. In contrast, Avdeef and Kansy suggested 

that inclusion of 3D information might be important [16], and this is also observed for the cyclic peptides 

studied by Lokey and co-workers [17,18]. Thus, it remains to be established if modelling of aqueous 

solubility is facilitated by methods for prediction of the conformations adopted in aqueous solution. 

However, we recently showed that reproducing experimental conformations by tools designed for 

conformational sampling of large and macrocyclic compounds is far from being an easy task [14].  

Overall, more experimental data is needed to draw general conclusions about what the best approaches 

are for modelling the solubility of large and flexible compounds. This data is likely to be available in the 

pharmaceutical industry and partnering with academic researchers could be the preferred way to further 

analysis. We hope that this weakness can be overcome so that more reliable methods for prediction of the 

solubility of compounds lying in the bRo5 chemical space can be developed. 
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