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Abstract 

The purpose of the present study was to characterize the passive permeation of tetracyclines in the parallel 
artificial membrane permeation assay (PAMPA). Tetracyclines exist as zwitterion at physiological pH. The 
PAMPA membrane was prepared by impregnating a phospholipid/decane solution to a filter support. The 
permeation coefficient (Pe) of tetracycline (TC) was markedly affected by the lipid composition of the 
PAMPA membrane. No permeation was observed when phospholipid was not added (pure decane 
membrane, Pe < 0.05 × 10

-6
 cm/sec). With the addition of 2 % PC, little or no increase in Pe was observed. 

The addition of 1 % PE increased the Pe value more than tenfold. The addition of 2 % soybean lecithin 
containing phosphatidylinositol (PI) and phosphatidic acid (PA) increased the Pe value to above 4 × 10

-6
 

cm/sec. The Pe value was further increased to 15 × 10
-6

 cm/sec by increasing the concentration of soybean 
lecithin from 2 to 10 %. The Pe value showed pH and temperature dependence, whereas it was not affected 
by the ionic strength, TC concentration, and ion-pair transport inhibitors. A weak correlation was observed 
between the Pe values and octanol-buffer distribution coefficients of tetracyclines. These results suggest 
that inter-molecular interactions between TC and PE, PI and/or PA facilitate the passive diffusion of TC 
across the PAMPA membrane. 
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Introduction 

Zwitterionic drugs are an important chemical class as they exhibit unique physicochemical and 

pharmacokinetic properties [1, 2]. A zwitterionic drug possesses at least one acidic group and at least one 

basic group (acidic pKa < basic pKa). Typical examples of zwitterionic drugs are antibacterials, antiallergics, 

and diuretics. Zwitterion drugs are less liable to human ether-a-go-go related gene (hERG) and 

phospholipidosis compared to hydrophobic bases [3, 4]. According to the pH-partition theory, the passive 

lipid bilayer permeation of a zwitterionic drug is expected to be negligible. However, many zwitterionic 

drugs such as tetracyclines and fluoroquinolones show moderate to high passive permeability in vitro [5] 

and good bioavailability in vivo [6]. 

The parallel artificial membrane permeation assay (PAMPA) has been widely used as a high throughput 

assay for passive membrane permeation [7-10]. Interestingly, several zwitterionic drugs showed moderate 
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to high permeability in PAMPA [6, 11]. In the case of cationic drugs, ion pair formation with an anionic 

phospholipid enhances the passive permeation of a drug [12,13]. However, the permeation mechanism of 

zwitterionic drugs has not been investigated. The purpose of the present study was to characterize the 

passive permeation of zwitterion drugs in PAMPA. 

Tetracyclines were used as model zwitterionic drugs in this study. Tetracyclines have three dissociative 

functional groups (Figure 1) [14-16]. At the physiological pH in the small intestine, they predominantly exist 

as zwitterion [14]. The octanol buffer partition coefficients (log D) of tetracyclines are below 0.2 (Table 1) 

[17]. In addition, they violate the Lipinski’s rule of five in the hydrogen bond number [18]. However, 

tetracyclines show good oral absorption in vivo [19]. Interestingly, tetracycline showed moderate 

permeability in the biomimetic PAMPA [9]. 

 
Figure 1. Chemical structures of tetracyclines 

Experimental  

Materials 

Tetracycline hydrochloride, L-leucine, decane, sodium dihydrogen phosphate, sodium chloride, 

phosphatidylethanolamine (PE), and 8N NaOH were purchased from Wako Pure Chemical Industries, Ltd 

(Osaka, Japan). Oxytetracycline hydrochloride, minocycline hydrochloride, doxycycline hyclate, and 2-

aminooctanoic acid were purchased from TCI (Tokyo, Japan). Demeclocycline hydrochloride and 

chlortetracycline hydrochloride were purchased from LKT Labs, Inc (MN, USA). Phosphatidylcholine (PC) 

was purchased from NOF corporation (Tokyo, Japan). Tetrahexylamine bromide (THA) was purchased from 

Sigma-Aldrich Co. LLC (MO, USA). Procainamide hydrochloride was purchased from Combi-Blocks Inc (CA, 
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USA). Soy bean lecithins (SLP-PC 70, SLP-white, SLP-PI grades) were provided by Tsuji Oil Mills co., Ltd (Mie, 

Japan). 

Table 1. Physicochemical properties of tetracyclines 

 MW pKa log D (pH 6.5)
a
 pKa Ref. 

Chlortetracycline 479 3.3, 7.6, 9.3 -0.88 (14) 
b
 

  3.25, 6.72, 8.84  (16)
 c
 

Demeclocycline 465 3.4, 7.4, 9.4 -0.67 (14) b 

Doxycycline 444 3.0, 8.0, 9.2 -0.08 (14)
 b

 

  3.50, 7.25, 9.58  (16)
 c
 

Minocycline 457 2.8, 5.0, 7.8, 9.5 0.20 (15) d 

Oxytetracycline 460 3.2, 7.5, 8.9 -0.96 (14)
 b

 

  3.53, 7.25, 9.58  (16)
 c
 

Tetracycline 444 3.3, 7.8, 9.6 -1.09 (14)
 b

 

  3.35, 7.29, 9.88  (16) c 
a
 Measured in this study. 

b
 Potentiometry (23 °C), ionic strength = 0.01 or 0.05 M. 

c
 Potentiometry (25 °C), ionic strength = 0.1 M. 

d
 Method not described in the literature. 

Table 2. Lipid composition of soy bean lecithin
a
 

Phospholipid SLP-PC70 (%) SLP-white (%) SLP-PI (%) 

Phosphatidylcholine (PC) 65 – 75 24 – 32 15 – 22 

Phosphatidylethanolamine (PE) 10 – 15 20 – 28 25 – 32 

Phosphatidylinositol (PI) 0 – 1 12 – 20 18 – 25 

Phosphatidic acid (PA) 1 – 3 8 – 15 8 – 15 

Lysophosphatidylcholines (LPC) 1 – 5 1 – 5 1 – 5 
a
 Taken from the product information provided by the manufacturer. 

Methods 

PAMPA assay 

The PAMPA sandwich was consisted of a 96 well filter plate (hydrophobic PVDF, 0.45 μm) and a PAMPA 

acceptor plate (Merck Millipore, MA, USA). Before forming the PAMPA sandwich, the bottom (acceptor) 

plate was filled with 300 μL of a 50 mM sodium phosphate buffer. The filter of the top (donor) 

compartment was coated with 5 μL of a phospholipid – decane solution. The compositions of soy bean 

lecithins were shown in Table 2. The buffer conditions were the same for both donor and acceptor 

compartments (iso-pH and iso-ionic strength condition). The PAMPA sandwich was placed in a plastic 

container containing a small amount of water on the bottom and incubated for 3 h (at 25 and 37 °C) or 18 

h (at 15 °C). After incubation, 100 μL of both the donor and acceptor solutions were transferred to UV 

plates. The concentrations of tetracyclines and procainamide were measured at 360 and 280 nm, 

respectively. The PAMPA permeability was calculated by the following equation [19]: 
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where Pe is the effective permeation coefficient (cm/s), A is the filter surface area (0.266 cm
2
), VD and VA 

are the volumes in the donor and acceptor phase (0.15 and 0.3 mL, respectively), t is the incubation time, 

CD(t) is the concentration of a drug in the donor phase at time t, R is the membrane retention factor, and rv 

is the volume ratio. 

Octanol-buffer distribution coefficient 

The octanol-buffer distribution coefficients (log D) of tetracyclines were determined by a shake-flask 

method at pH 6.5 (50 mM sodium – phosphate buffer). The octanol and buffer phases were mutually pre-

saturated before use. A buffer solution of a model drug (1.0 mM, 0.5 mL) and octanol (2.5 mL) were added 

to a 15 mL tube. The sample was vigorously shaken for 60 min at room temperature. The concentrations of 

tetracyclines were determined by UV spectroscopy at 360 nm. 

Results 

Effect of membrane composition 

The PAMPA permeation of tetracycline (TC) was markedly affected by the lipid composition of the 

PAMPA membrane (Figure 2). No permeation was observed when phospholipid was not added (pure 

decane membrane, Pe < 0.05 × 10-6 cm/sec). With the addition of 2 % PC, little or no increase in Pe was 

observed. The addition of 1 % PE increased the Pe value more than tenfold. The addition of 2 % soybean 

lecithin containing phosphatidylinositol (PI) and phosphatidic acid (PA) increased the Pe value to above 

4∙10
-6

 cm/sec. The Pe value was further increased to 15∙10
-6

 cm/sec by increasing the concentration of 

soybean lecithin from 2 to 10 %. The 10% soybean lecithin (SLP white) - decane membrane was used in the 

following studies. 

 
Figure 2. Effect of membrane composition on PAMPA permeation of tetracycline (mean ± SD, n = 3 - 9). Assay 

conditions: TC 0.5 mM, 10 % SLP-white/decane, pH 6.5 50 mM sodium phosphate buffer, 37 °C. 
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pH and ionic strength dependency 

The effect of pH on the PAMPA permeation of TC is shown in Figure 3. The Pe values decreased as pH 

was increased above 7.0. The effect of the ionic strength (I) is shown in Figure 4. The ionic strength showed 

little or no effect in the range of I = 0.15 to 2.0 M. 

 

Figure 3. Effect of pH on PAMPA permeation of tetracycline (mean ± SD, n = 3). Assay conditions: TC 0.5 mM, 
10 % SPL-white / decane, 50 mM sodium phosphate buffer, at 37 °C. 

 

Figure 4. Effect of ionic strength on PAMPA permeation of tetracycline (mean ± SD, n = 3). Assay conditions: 
TC 0.5 mM, 10 % SPL-white / decane, pH 6.5, 37 °C. The ionic strength of the medium was adjusted by NaCl.  
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Temperature dependence 

The effect of temperature on the PAMPA permeation of TC is shown in Figure 5. As the temperature 

was increased from 15 °C to 37 °C, the Pe value was increased 6.5 fold. 

 

Figure 5. Effect of temperature on PAMPA permeation of tetracycline (mean ± SD, n = 3). Assay conditions: TC 
0.5 mM, 10 % SPL-white / decane, pH 6.5 50 mM sodium phosphate buffer. 

Concentration dependence 

The effect of TC concentration on the PAMPA permeation is shown in Figure 6. The Pe value of TC was 

not affected by the TC concentration up to 0.5 mM. Due to the solubility of TC in the medium, the 

concentration of TC could not be increased above 0.5 mM. 

 

Figure 6. Effect of tetracycline concentration on PAMPA permeation (mean ± SD, n = 3). Assay conditions: 
10 % SPL-white / decane, pH 6.5 50 mM sodium phosphate buffer, 37 °C. 
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Effect of additives in the donor media 

The effect of possible inhibitors on the PAMPA permeation of TC is shown in Figure 7. Procainamide was 

used as a control of the ion-pair transport (a cation drug and an anion phospholipid). The permeation of 

procainamide was inhibited by tetrahexylammonium (THA), however not by L-leucine and 2-amino 

octanoic acid (AOA). The permeation of TC was not inhibited by the inhibitors employed in this study. 

  

Figure 7. Effect of additives on PAMPA permeation of tetracycline and procainamide (mean ± SD, n = 3). Assay 
conditions: substrates 0.5 mM, additives 10 mM, 10 % SPL-white / decane, pH 6.5 50 mM sodium phosphate 

buffer, 37 °C. 

Log Pe – log D relationship 

The log Pe – log D relationship for tetracyclines is shown in Table 3 and Figure 8. A weak correlation was 

observed between log Pe and log D. 

Table 3. PAMPA permeability for tetracyclines
a
  

 Pe (10-6 cm/sec, mean ± SD, n = 6) 

Chlortetracycline 41 ± 3 

Demeclocycline 33 ± 1 

Doxycycline 64 ± 5 

Minocycline 71 ± 6 

Oxytetracycline 9.2 ± 0.7 

Tetracycline 15 ± 1 
a
 Tetracyclines 0.5 mM, 10% SPL-white / decane, pH 6.5 50 mM sodium phosphate 

buffer, 37 °C. 

Discussion 

We first investigated the effect of the membrane composition on the PAMPA permeation of TC. The 

results of the lipid composition dependency study suggest that intermolecular interactions between TC and 

PE, PS and/or PI facilitate the passive diffusion of TC across the PAMPA membrane [20]. The results of this 

study are in good agreement with the previous finding that the lipid composition is critically important for 

the PAMPA assay [9,21]. The Pe value of TC in the 10 % soybean lecithin/decane membrane was similar to 

that observed in the biomimetic PAMPA in which 1,7-octadiene was used as an organic solvent. Even 

though the biomimetic PAMPA showed promising predictability for in vivo oral drug absorption, as 1,7-

octadiene is irritant, it is not suitable for routing use. 
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Figure 8. Correlation between log D and PAMPA permeability for tetracyclines (mean ± SD, n = 6). PAMPA 
conditions: tetracyclines 0.5 mM, 10 % SPL-white / decane, pH 6.5 50 mM sodium phosphate buffer, 37 °C. 

TC predominantly exists as zwitterion form (net zero charge) in the range of pH 4.0 to 7.0. In this pH 

range, the Pe value remained constant. Above pH 7.0, the Pe value decreased as TC becomes negatively 

charged (two anions and one cation) due to the dissociation of the phenolic diketone part above pH 7.0 

(Figure 1) [22]. However, the inflection pH point was below the pKa of TC. In addition, the slope of the pH - 

log Pe line above pH 7.0 was about -0.5. These deviate from the theoretical pH – log Pe curve based on the 

pH partition theory. Further investigation is required to clarify the reasons for these deviations. Ionic 

strength had no effect on the Pe value, suggesting that TC did not form an ion pair with the inorganic ions in 

the buffer at pH 6.5. 

The PAMPA permeation of TC showed marked temperature dependence in this study. The ratio of Pe 

values between 15 °C and 37 °C was 6.5. This ratio was greater than previously reported by Vizserálek et al. 

for undissociable, mono-acid, and mono-base drugs using the 2 % PC/1 % cholesterol/dodecane membrane 

(1.1 to 3.7) [23]. 

To investigate the permeation mechanism of TC, the saturation and inhibition of TC permeation were 

investigated. Neither saturation nor inhibition was observed. This result was different from the results for 

hydrophilic basic drugs, for which both saturation and inhibition have been reported [12]. For hydrophilic 

basic drugs, ion pair formation between a drug cation and an anionic phospholipid was suggested as the 

permeation mechanism [12, 13]. Since the addition of PE, PI and/or PA significantly enhanced the Pe value 

of TC, there might exist some nonspecific inter-molecular interaction between TC and these phospholipids 

other than ion-pair formation [20]. Only a weak correlation was observed between log D and log Pe, 

suggesting that the inter-molecular interaction between phospholipids and tetracyclines might be different 

from that between octanol and tetracyclines. 
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Conclusions 

In conclusion, in this study, the permeation characteristics of TC were investigated in detail. The 

phospholipid composition and incubation temperature showed marked effects on the permeation of TC, 

whereas the ionic strength of the media, the concentration of TC, and the addition of ion pair inhibitors 

showed little or no effect. 
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