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Abstract 

Cell membrane is at the frontline of the battle between pathogenic microbe and host. A thorough 
understanding of bacterial membrane is fundamental to tackle infection disease. Membrane mimetic 
provides a powerful tool for mechanistic investigation of drug-membrane interaction. Herein, we 
summarized major features of bacterial and mammalian cell in context of antibacterial therapy. Many 
details were given to model membranes and their application in mechanistic studies. Current challenge in 
antibacterial therapy and perspective of membrane mimics in antibacterial drug discovery were also 
provided. 
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Introduction 

Cell membrane defines the physical boundary of a cell from outside environment.  It contains lipids, 

proteins and carbohydrates, which usually arrange into structure unique to specific cell type and are critical 

to corresponding function. Of all kinds of membrane components, lipids are relatively homogenous and 

better studied. Lipids are amphipathic molecules with a polar or charged head group and a hydrophobic 

acyl chain tail.  They tend to form head-by-head, tail-to-tail bilayer structure in cell membrane to extrude 

water, salt and other hydrophilic molecules and maintain low entropy state. This ordered bilayer structure 

serves as the membrane framework, on which proteins and carbohydrates carry out their designated 

biological functions. As the target of more than half of all modern drugs [1], membrane proteins interact 

with surrounding lipid through their transmembrane domain and are vital to variety of cell function, 

including signal transduction, transporting, enzymatic catalysis and cell adhesion [2]. Carbohydrates in 

plasma membrane, predominantly glycoproteins but also with some glycolipids, are generally found on the 

extracellular side and play significant roles in many biological events such as cell adhesion and 

immunological response. As diverse as the membrane composition is, these components are not randomly 

or evenly distributed around the cell sphere. They tend to form distinct regions or microdomains, which 

contain specific type of lipids, glycolipids and proteins within fluid bilayer and perform unique biological 

function such as signal transduction [3,4]. 
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Studying biological membrane is always a challenging task because of its complicated composition and 

fluidic structure. These difficulties could be partially circumvented by using simplified lipids-based model 

systems, such as vesicles, micelles, bicelles, nanodiscs and bilayers. Through control of the lipid content 

and buffer conditions (salt concentration, pH etc.), model systems can be utilized to explore interaction 

between membranes and exogenous objects (such as drugs) quantitatively. 

In this article, we will touch specifics about bacterial and mammalian cell membrane in context of 

antibacterial therapy. We will then discuss the development of membrane models and their application in 

studies pertaining to biological function of the membrane. We will close the review with current challenge 

in antibacterial therapy and perspective of membrane mimics. 

Bacterial and mammalian membrane 

Although lipids in plasma membrane can be schematized as bilayer for simplicity, its composition and 

structure could differ greatly among species, cells from different organisms and tissues. In general, gram-

positive bacteria contain a single cell membrane surrounded by a thick layer of peptidoglycan (cell wall), 

while gram-negative bacteria plasma membrane is made up of two layer membrane (inner- and outer) 

encompassed by a thin layer of peptidoglycan. Membrane of the model bacterium Escherichia coli is made 

up of three major phospholipids: ~75 % phosphatidylethanolamine (PE), ~20 % phosphatidylglycerol (PG) 

and ~5 % cardiolipin (CL) [5]. But this cannot be generalized to all bacteria, as diversified lipids can be found 

in different microorganisms, or even in the same species in different environment [6]. 

In contrast to bacterial membrane, mammalian membrane is void of cell wall and exposed directly to 

surrounding environment, which thus demands more stringent regulation. Mammalian membranes of 

different cell types or from distinct tissues could vary significantly in its fluidity, which is believed to be 

modulated at least partially by the content of cholesterol [4], an integral lipid unique to animal cell 

membrane. Asymmetric distribution of lipid components on different sides of individual cell is another 

remarkable feature of multicellular organism cell membrane. Structural and compositional difference 

between bacteria and mammalian cell membrane represents also a big opportunity in antibacterial therapy 

for patient. 

Antimicrobial actions that are related to bacterial membranes 

Pathogenic bacteria pose a major threaten to public health, especially in under-developed regions of 

the world.  Large scale production and use of antibiotic penicillin during the World War II is a hallmark of 

modern medicine. Since then, a plethora of antimicrobial agents have been developed and 

commercialized, playing significant roles in improvement of human health, highlighted by gradual 

increasing of average life span worldwide.  

Depending on their structure and target sites within microorganism, different antibacterial drugs have 

distinct modes of action. Modes of action related to bacterial membrane are inhibition or block of cell wall 

synthesis, inhibition of membrane protein or lipid synthesis and interference of cell membrane function. As 

aforementioned, bacterial membrane is surrounded by a layer of peptidoglycan cell wall. This unique 

feature rendered a great interest in searching for glycopeptide and lipoglycopeptide, which mimic bacterial 

cell wall synthesis substrates or bind to synthesis intermediates, inhibiting cell wall synthesis [7], while 

having little effect on host cells. Some antibacterial peptides [8,9], peptidomimics [10] and small proteins 

[11] could also interact with or insert into cell membrane, where they interfere with membrane formation 

or alter local membrane structure, thus reducing bacteria growth or reproduction. Interestingly, some 
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pathological microorganisms could also as a countermeasure secrete protein toxins which could attack 

host cells by forming pores on their membranes [12,13]. Membrane is the combating field of the war 

between pathogens and their hosts, which also make mechanistic study on biological membrane 

fundamental to antibacterial therapy development. 

Current biomimetic membrane models and applications 

The complexity of biological membrane makes it always difficult or impractical in a lot of case to study 

the membrane intact. A variety of membrane models has been developed over decades to overcome the 

obstacle. 

Vesicles (liposome) are the most commonly used biological mimics as they are relatively easy to prepare 

and handle. Vesicle sphere consists of self-assembled round lipid-bilayer(s) which mimic plasma 

membrane. Enclosed aqueous compartment resembles cytoplasma can be used to incorporate diverse 

materials of interest (including drugs). Depending on its size and structure, vesicle can be either small-

unilamellar (SUV), large-unilamellar (LUV) or multilamellar (MLV). A variety of biophysical methods have 

been employed to study the interaction between drug and membrane mimicked by lipid vesicle. Simple 

mathematic model of drug diffusion into or release from cell could be derived from those studies. In 

addition to its application in the mechanistic study of membrane, controlled inner environment of 

liposomes have been used to deliver charged drugs [14,15] through membrane [16]. 

Micelles are aggregates of surfactant molecules dispersed in a liquid. The stability of colloid solution was 

established by the repulsion forces between hydrophobic surfactant tails and hydrophilic solvent 

molecules. Lipid molecules can be used as surfactant to form micelle and to dissolve membrane protein in 

the structural studies [17–19]. However, the application of micelles as membrane mimics is limited by its 

small size and a single layer structure. In disc-shaped bicelles, lipid hydrophobic tails pack against each 

other as bilayer in the center and form an amphipathic, micelle-like assembly at the edge. Bicelles are 

much smaller than vesicles, and are ideal in the experiments where the larger liposomes are not an option 

[20–22]. Nanodiscs are patch of lipid bilayer whose edge is wrapped with an amphipathic coating protein 

[23]. Compared to bicelles and micelles, nanodiscs are more stable and uniform in size (depending on the 

length of coating protein). Membrane protein of interest (such as drug target) can be inserted into 

nanodiscs and examined both biophysically and functionally [24]. 

Other than being freely mobile in aqueous solution, lipid-based membranes can also be studied while 

attached to device or to supporting materials. The first model developed of this kind is a black lipid 

membrane (BLM) [25,26], where lipid bilayer is formed within an aperture on a thin layer of hydrophobic 

material such as Teflon. Black lipid membrane has been employed to study membrane properties 

(electrical potential [27], structure [28] and function [29]), lipid-protein interaction [30], peptides or 

protein diffusion across membrane [31]. Application of micro-black lipid membrane technology had led to 

development of high throughput drug permeability assay system PAMPA (Parallel Artificial Membrane 

Permeation Assay) [32].  Lipid bilayer can also be attached to the surface of solid material to form a stable 

membrane mimic called supported lipid bilayer (SLB). Great stability and surface planarity of supported 

lipid bilayer make it especially useful for techniques requiring direct physical contact (e.g. atomic force 

microscopy (AFM) [33] and electrode-supported lipid nanoassemblies [34]) or rigidly-supported planar 

surface (e.g. total internal reflection fluorescence microscopy (TIRF) [35] and surface plasmon resonance 

(SPR) [36]). Supported lipid bilayer has another advantage in that, in light of the lipid rafts concept, lipids 

can be patterned into isolated regions through design of the surface [37]. 
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Beside lipids, biological membranes also contain variety of protein and carbohydrates. Thus, extra care 

must be taken when interpreting the studies obtained from lipid-based membrane mimics. In more 

advanced model systems, membrane proteins can also be reconstituted into artificial lipid bilayer to 

simulate protein function in lipid environment [34]. 

Challenge and perspective 

One of the biggest problems in the antibacterial chemotherapy field is development of pathogen 

resistance to antibiotics [38]. Infectious pathogen could quickly develop resistance to drugs applied on 

them by either mutating into new strains to get around the drug blocking pathway or inducing counting 

mechanism to remove the drug [39]. On the other hand, development of novel antibiotics has been 

stagnant since a half century ago [40]. A thorough understanding of the mechanism of drug action, 

metabolism and transportation is critical to develop new drugs to cope with antibiotics resistance. Model 

membrane study is fundamental to elucidating these mechanisms, upon which development of agents with 

novel [41-43] and/or multiple [39,44,45] mode(s) of action poses some most promising strategies to bring 

us new tools to combat microbial infection diseases. 

Conclusions  

Cell membranes are at the frontlines of the battle field between pathogenic microbe and host. 

Mechanistic study of the membrane is crucial for a thorough understanding of host-pathogen interaction, 

which could lead to discovery of new drug for efficient infection control. Biomembrane mimics are 

powerful tools to gain mechanistic insight of drug-membrane interaction by simplifying otherwise 

complicated membrane structure with controlled components. Multiple type of biomimetic membrane 

have been developed to meet variety of needs in mechanistic studies. 
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