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Abstract 

The drug discovery process can be accelerated by chromatographic profiling of the analogs to model in vivo 
distribution and the major non-specific binding. A balanced potency and chromatographically determined 
membrane and protein binding (IAM MB/PB) data enable selecting drug discovery compounds for further 
analysis that have the highest probability to show the desired in vivo distribution behavior for efficacy and 
reduced chance for toxicity. Although the basic principles of the technology have already appeared in 
numerous publications, the lack of standardized procedures limited its widespread applications especially in 
academia and small drug discovery biotech companies. In this paper, the standardized procedures are 
described that has been trademarked as Regis IAM MB/PB Technology®. Comparison between the Drug 
Efficiency Index (DEI=pIC50-logVdu+2) and generally used Ligand Lipophilicity Efficiency (LLE) has been 
made, demonstrating the advantage of measured IAM and HSA binding over calculated log P. The power of 
the proposed chromatographic technology is demonstrated using the data of marketed drugs.  
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Introduction 

Medicinal chemists face multi-factorial challenge problems when designing drug molecules that can 

reduce the impact or cure a pathological condition; drug discovery scientists seek the smallest possible 

dose with minimal side effects [1-4]. Screening cascades often generate vast quantities of primarily in-vitro 

data, and in some cases, in vivo data on compounds that form a decision on which compounds are selected 

for further progression. This paper documents an alternative screening triage which can help to avoid the 

problem of analysing too much discovery data when choosing lead compounds to pursue. 

Chemical structure design of discovery molecules usually focuses on elucidating the structure – activity 

relationships after identifying the target enzyme/receptor followed by the development of a potency 

screening method. The active molecules are then tested for a variety of assays for affinity and 
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developability, such as enzyme assays, selectivity assays, cellular assays, CaCo2 or MDCK cell permeability, 

solubility [5], lipophilicity, microsomal stability, Hep G cell hepatotoxicity, cellular toxicity, [6] etc. All future 

reference to receptors will have dual meaning referring to either receptor or enzyme targets, for simplicity. 

Project teams usually design screening cascades to guide the filtering process of compounds after each 

measurement, to ensure those compounds that do not meet pre-defined criteria in a particular assay are 

eliminated from further screening. This sequential screening process frequently excludes compounds with 

good in vivo drug properties; marketed drugs have appropriate in vivo properties for the disease they are 

being developed to treat, along with sufficient potency to engage the target and produce the desired 

effect. The discovery challenge is to recognise that discovery compounds may exhibit high potency, but 

they may lack acceptable in vivo distribution enabling the compound to achieve a therapeutic free drug 

concentration at the target receptor in the target tissue(s) in vivo. In vivo properties, particularly 

distribution, are as important as high potency or receptor occupancy. Regardless of this fact, none of the 

properties which are typically measured during compound screening is on their own sufficient to predict 

the compound’s fate in vivo or in human clinical trials. This must ultimately be measured. Several other 

properties should also be measured, which include target binding, selectivity, absorption, distribution, 

metabolism and elimination (ADME), pharmacokinetics and pharmacodynamics (PK/PD) profile, and of 

course the safety profile. 

In order to find good absorption and bioavailability, chemists have to design molecules which will have 

good solubility and permeability, and in general lipophilicity. Designing a drug candidate which has good 

clinical ADME properties, is often much different than designing discovery compounds with simply high 

receptor binding or potency. Various ligand efficiency parameters have been introduced and frequently 

used by medicinal chemists that relate the measured potency to some calculated properties of the 

compounds such as, size and lipophilicity as it has been recently reviewed [7-8]. This manuscript describes 

how chromatographic analysis can efficiently predict or help select which compounds have the greater 

probability of becoming lead molecules by balancing the receptor binding or potency with optimum 

compound distribution in vivo. 

Obviously, achieving good oral absorption alone is not sufficient when choosing a drug candidate. 

Overcoming the body’s natural defense mechanisms is also necessary to achieve relevant oral 

bioavailability as nature has evolved animal and human protection against potentially harmful xenobiotics. 

Some of these defense mechanisms we need to consider when developing NCE’s are: (i) gut metabolism, (ii) 

efflux processes and (iii) first pass metabolism. Thus, ensuring that discovery molecules are not subject to 

active efflux and quick elimination or metabolism is current mainstream thinking in most drug discovery 

processes. 

The latest studies show that the most significant problem with the late-stage attrition of discovery 

molecules is related to safety and efficacy. Many safety-related issues have been directly attributed to the 

lipophilicity of compounds [9-12] especially when it is measured using Immobilized Artificial Membranes 

(IAMs).  High IAM binding is indicative of the compound’s binding to multiple targets or receptors, this is 

often referred to as compound promiscuity. This may cause unwanted pharmacology or toxicity. It has 

previously been shown that compounds that require lower clinical dose (ranging between 1-100 mg) and 

therefore lower efficacious plasma concentrations are less likely to cause toxicity [9,13].  

The root cause of these problems is partially dominated by the compounds binding or partitioning into 

tissue which is predominantly comprised of membrane phospholipids; when this happens, the drug is 

sequestered into non-specific phospholipid binding sites and is then less available as a free drug near the 
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target of interest. Plasma proteins can also reduce the amount of free drug available to interact with 

enzymes/receptors (and when this happens an increased dose is essential). Thus, the non-specific 

binding/partitioning of compounds to phospholipids and proteins reduce the available free concentration 

at the site of action. Thus, increased doses are needed for activity, but, this increases the possibility of 

undesired pharmacology or toxicity.  

This paper focuses on the role of distribution in the Absorption, Distribution, Metabolism and 

Elimination (ADME) process, without neglecting the absorption and clearance that regulate the magnitude 

and the frequency of dosing. We propose to design and triage NCEs based on their in vitro distribution 

behavior that determines the amount/concentration of compounds in various tissue compartments, and 

the free unbound compartments that are responsible for safety issues and efficacy, respectively. This can 

be achieved by using some of the major protein components which make up tissues in the body as 

chromatographic stationary phases, this is called biomimetic chromatography and has been recently 

reviewed [14].  

We also propose that the unbound volume of distribution of compounds is an important parameter to 

consider, as this in vivo parameter describes the proportion of the dose relative to the free plasma 

concentration of compounds in steady state [15]. Based on the free drug hypothesis, [16] the free plasma 

concentration is the same as the free tissue concentration, when no permeability barrier or active transport 

distorts the thermodynamic equilibrium, between plasma and tissues which contain the therapeutic 

targets. Though active transporters may have a significant effect on the free concentration of a drug on the 

two sides of the membrane [17], the concentration difference can be explained by strong binding of the 

drug to intracellular components. The free concentration difference is usually not more than an order of 

magnitude on the two sides of the membrane due to active transporters that require constant energy 

supply to keep the concentration difference. Distorting the thermodynamic equilibrium by two to three 

orders of magnitude would require constant energy supply (ATP), and the active transporters may become 

easily saturated.  

The unbound volume of distribution can be considered as a proportional parameter to the drug partition 

coefficient between the free and bound compartments. In this respect, it is very similar to the recently 

introduced drug efficiency parameter that relates the free bio-phase concentration to the dose. The drug 

efficiency concept that was introduced by Braggio [18] highlights the importance of the free concentration 

of the drug in the biophase near the target relative to the dose to achieve efficient PK/PD of a drug 

molecule. The drug efficiency index, DEI highlights the importance of balancing the potency and drug 

efficiency of the molecules and is proposed as an alternative parameter to simply focusing on potency, as 

other ligand efficiency parameters tend to be biased towards [19]. The DEI concept also helps designing 

drug molecules with a low therapeutic dose that in turn reduce general toxicity. 

Table 1 shows the abbreviations and their meaning of the properties that are investigated in this paper, 

while Table 2 shows the equations how they are calculated and how they are related to each other. 

The drug distribution properties are most often characterised by lipophilicity. Lipophilicity has been 

recognised for a long time as the principal parameter that influences solubility [20,21], permeability [22], 

tissue binding, protein binding [23,24], toxicity [10], promiscuity [1], clearance [25] etc. Several ligand 

efficiency parameters contain the lipophilicity and propose to consider the potency relative to the 

lipophilicity of the compounds, such as Ligand Lipophilicity Efficiency, LLE [7,26]. Recently, the 

chromatographic lipophilicity has been combined with the number of aromatic rings in the molecules to 

derive the Property Forecast Index (PFI) [27]. It has been suggested that having a PFI value less than 6 for 
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drug discovery compounds increases the probability of improving drug attrition rates. 

Table 1. Variables, abbreviations used throughout the text 

IAM Immobilized Artificial Membrane (HPLC stationary phase_ 

HSA Human Serum Albumin 

AGP Alpha-1-acid-glycoprotein 

PPB Total plasma protein binding 

MB Membrane Binding (measured by IAM) 

MB/PB Membrane binding and protein binding 

Vdss Steady state volume of distribution (dose/plasma concentration) 

Vdu Steady state unbound volume of distribution (dose/free plasma concentration= Vd/fu) 

fu Unbound fraction in plasma 

DE Drug efficiency (100* free biophase conc/dose) 

DEmax Drug efficiency measured by MB/PB by HPLC (100*free plasma conc/dose) 

DEI Drug efficiency index, potency plus log DEmax (pIc50 +log DE) 

IAM MB Membrane binding index, previously known as CHI(IAM) 

clogP Calculated logarithm of octanol/water partition coefficient 

Log D/P Logarithm of distribution/partition coefficient 

 

Table 2. Equations used to predict distribution properties 

log K(IAM); Eq. (1) = 0.29*e
(0.026MB+0.42) 

+0.7 

log K(HSA); Eq. (2) = e
log k(HSA) 

log k(HSA)  = log(%HSAbound/(101- %HSA bound)) 

Estimated log Vdss; Eq. (3) = 0.44*log K(IAM) -0.22*log K(HSA) – 0.62 

Estimated log Vdu; Eq. (4) = 0.23*log K(HSA) +0.43*log K(IAM) -0.72 

DEmax; Eq. (7) = 100/Vdu 

LLE Ligand lipophilicity efficiency (pIC50 -clogP) 

log k (PPB) (8) 0.87 ∗ log 𝑘(𝐻𝑆𝐴) + 0.17 ∗ log 𝑘(𝐴𝐺𝑃) + 0.06 ∗ 𝑐𝑀𝑅 − 0.27 

 

Lipophilicity has been historically characterised by the octanol/water partition coefficient, log P, for the 

neutral form of the molecules and by the distribution coefficient, log D, measured at different pHs, mainly 

at pH 7.4. Log P is widely used since the work of Hansch [28] who suggested log P to describe the so-called 

“random” walk of the drug molecule that reduces its free concentration near the receptor. Lipophilic 

compounds energetically do not favour residing in the aqueous environment and have a preference to 

“stick” to any hydrophobic surface in the body. The octanol/water system is able to partially mimic the 

polar groups with hydrogen bond donor and acceptor properties that may be present in the lipophilic 

environment in the body and therefore serve as a good model to describe biological distribution. However, 

the octanol/water lipophilicity and any other lipophilicity measure that does not include cellular 

membranes and proteins, fails to explain the biological distribution of molecules when they have charge or 

special shape. An example is the comparison of nifedipine and amlodipine (see Figure 1). Nifedipine is more 

lipophilic at physiological pH but still, the volume of distribution of amlodipine is 30 times higher, indicating 

30 times higher partitioning to tissues then nifedipine. The clearance of nifedipine is 9.8 mL/min/kg [29], 

and clearance of amlodipine is in a similar range, 7 mL/min/kg [30]. The major difference between the two 
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molecules is a basic amine group on amlodipine. The basic group results in amlodipine having a stronger 

binding to phospholipids than albumin, and this results in a large difference in their volumes of distribution. 

 

Figure 1. Physico-chemical and biomimetic properties of nifedipine and amlodipine 

 

Besides measuring the octanol/water partition coefficients we propose a method of measuring the 

protein and phospholipid binding of the compounds using reverse phase high-performance liquid 

chromatography in conjunction with the Membrane Binding/Protein Binding Technology (MB/PB 

Technology®) registered to Regis Technologies inc. Using this approach, we can measure compounds 

interaction with phosphatidylcholine membrane (IAM), human serum albumin (HSA) and alpha-1-acid 

glycoprotein (AGP). These are commercially available HPLC stationary phases that contain or mimic these 

constituents of the body. These include (i) IAMs, (ii) chiral HSA and (iii) chrial AGP. 

The IAM concept was introduced by Pidgeon et al. [31-33] and it was the first attempt to emulate the 

biological membrane on a solid surface. HPLC columns with IAM stationary phase where the 

phosphatidylcholine moiety is chemically bonded to a solid surface mimic the density of 

phosphatidylcholine in the biological membrane bi-layer. Other approaches do exist for measuring 

membrane binding such as using liposome partition measurements or micellar electrophoresis [35-36]. 

However, they have their limitations and are also very time-consuming. Biomimetic stationary phases have 

been validated by comparing the retention times obtained on the commercially available ChiralPak-HSA  

[37-39] and ChiralPak-AGP [40-41] stationary phases result in binding values that are proportional to the 

albumin and AGP binding of compounds obtained by equilibrium dialysis. When using biomimetic 

stationary phases the retention time of the compounds is directly proportional to the dynamic equilibrium 

constant between the mobile phase (buffer at physiological pH) and the actual body component 

(membrane and proteins) in the stationary phase. The process is very similar to the biological distribution 

processes that are also dynamic (never in real equilibrium unless at steady state) and occurs on the surfaces 

of the biomimetic stationary phases. The measured membrane binding parameters reflect the three-

dimensional nature of the molecule’s interaction within an in vivo system (the drug, membrane and protein 
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stationary phase) that has been demonstrated in the literature [14]. The chromatographic technique to 

measure these biomimetic properties has several other technical advantages. It can be easily automated; 

there is no need for concentration determination and measurements. The important thing is, however, to 

standardise the retention times and binding data by measuring a calibration set of compounds with each 

compound set to be able to get normalised retention times for each of the stationary phases being used to 

generate binding data (IAM, HSA and AGP). A detailed description of the standardised methodology for 

each of the IAM MB/PB stationary phases has recently been published  [14].  

There are several publications establishing the usefulness of the IAM MB/PB technology to model in vivo 

drug distribution, such as the volume of distribution model [42], unbound volume of distribution model 

[43-44] and how they can be used to screen compounds in early drug discovery [45].  It was found that 

strong IAM MB (CHI IAM > 50) can be related to phospholipidosis [46-47], as well as high volume of 

distribution and tissue partitioning [43]. Recently, it was found that promiscuity (i.e., a discovery compound 

binding to multiple receptors) showed good correlation to the IAM MB of drug discovery compounds. The 

IAM MB data showed a good correlation with the intracellular concentration of compounds, indicating that 

membrane binding is important to get compounds into the cell [48]. Estimating the potential clinical dose 

as early as possible is an important aspect of the drug discovery process to help select the optimal 

compound profile and highest probability of successful progression to the clinic [49-50]. Valko et al. [51] 

highlighted that the maximum achievable drug efficiency (DEmax) that can be obtained assuming (i) 100 % 

bioavailability, (ii) no permeability barrier and (iii) no active transport could be calculated using in vitro 

biomimetic measurements, essentially the Regis IAM MB/PB Technology® that we are proposing in this 

paper as a useful tool in early drug discovery [51]. The drug efficiency concept as a design parameter has 

the advantage that it can be estimated from in vitro measurements, and can be monitored during the drug 

development process to see how the early estimation performs when in vivo measurements become 

available pre-clinically, or from human clinical trials. In this paper, the intention is to show the models and 

the applicability of the Regis IAM MB/PB Technology® in early drug discovery. It is also important to have 

the ability to estimate these in vitro properties from the chemical structure thus helping the design stage of 

the molecules too. It has been shown that the retention of compounds obtained on the proposed 

biomimetic stationary phases can be estimated in silico [52-55], however it is worth noting that the in silico 

models use 2D molecular descriptors that are not sufficient to estimate the 3D contribution of the 

molecules binding to proteins, therefore they can be used only as a rough estimations. 

Phospholipids constitute approximately 40 % of the human body, therefore, the phospholipid binding of 

compounds are a very important parameter that should not be ignored in the drug design process. It was 

found that MB IAM values above 50 indicate promiscuous binding [57], and higher phospholipidotic 

potential [56-59] for discovery compound.  It was also found that MB IAM showed a good correlation with 

the total cellular concentration of discovery compounds [60].  

In this paper, we present the models for human clinical unbound volume of distribution and drug 

efficiency using measured biomimetic properties, and we describe a protocol how to use these data in early 

lead optimisation.  

Experimental  

The values for dose, potency (pIC50), the volume of distribution, clearance, the half-life of the known 

drugs were obtained from various databases (www.drugbank.ca/drugs and www.drugs.com) and listed in 

Table A1. The measured IAM MB/PB data are published in the book by Valko [45] and listed in Table A2. 

Table A2 contains the estimated volume of distribution (IAM MB/PB log Vdss) and the estimated unbound 

http://www.drugbank.ca/drugs
http://www.drugs.com/
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volume of distribution (IAM MB/PB log Vdu) using the published models [42-43], and the  Regis IAM MB/PB 

Technology®. The same technology has been applied to estimate the Maximum Drug Efficiency (HPLC 

DEmax) value, that represents the maximum drug efficiency that can be achieved when the bioavailability is 

100 %, and there is no permeability barrier or active transport to disturb the steady state equilibrium. This 

can be expressed as the reciprocal value of the steady-state unbound volume of distribution [51]. 

The IAM MB data were obtained using IAM PC.DD2 HPLC column (Regis Technologies, Inc., Il, USA) with 

the dimensions of 100 x 3 mm. Mobile phase A was 50 mM ammonium acetate adjusted to pH 7.4, while 

mobile phase B was 100 % acetonitrile. The flow rate was 1.5 mL/ min, the linear gradient was 0 to 80 % 

acetonitrile in 0 to 5 min, 5 to 5.25 min 80 % acetonitrile then back to 0 % acetonitrile by 5.5 min. The total 

run time is 7 min. The calibration set of compounds are listed in Table 3 and the calibration test solution is 

available from Bio-Mimetic Chromatography, UK (www.bio-mimetic-chromatography.com). A typical 

chromatogram is shown in Figure 2. 

It is essential to obtain a straight line between the retention times and the IAM MB index of the 

calibration set of compounds. Moreover, it is essential to run a system suitability test of compounds (2 

neutral, 2 basic and 2 acidic compounds) listed in Table 4, and check that the measured IAM MB data are 

the same +/- 5 units listed in the table. This ensures that the IAM phospholipid immobilised phase is 

maintained, preserving the natural phospholipid density on the column. 

 
Figure 2. A typical chromatogram obtained on IAM PC.DD2 100 x 3 mm HPLC column. Flow rate: 1.5 mL/min, 
mobile phase A; 50 mM ammonium acetate adjusted to pH 7.4, B: acetonitrile. Run time 7 min; Gradient: 0 to 

5 min 0 to 80 % B, 5 to 5.25 min 80 % B, 5.25 to 5.5 min 0 % B 

It was found that the log k(IAM) shows a non-linear relationship with log P octanol/water values [42]. To 

convert the log k(IAM) scale to the log P scale we need the transformation as shown by equation (1). The 

converted log K(IAM) data is equivalent to the partition coefficient of the compound between the pH 7.4 

buffer and the phospholipid phase. 

log K(IAM)= 0.29* e(0.046*MB IAM+0.42)  + 0.70  (1) 

This data are then be used in the models for the volume of distribution, unbound volume of distribution 

and the in vitro maximum drug efficiency (HPLC DEmax). 

http://www.bio-mimetic-chromatography.com/
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Table 3. The calibration set of compounds and their standard IAM MB score on IAM.PC.DD2 
column. The IAM MB data approximate to the acetonitrile concentration in the mobile phase 
when the compound elutes using the gradient conditions. The log k(IAM) values obtained as 
0.046IAM MB+0.42 where the constants have been derived by plotting isocratic log k(IAM) 
data extrapolated to 0 % acetonitrile mobile phase using isocratic measurements [52]. 

Compound Typical tR (min) IAM MB  log k(IAM) 

Octanophenone 3.18 49.4 2.69 

Heptanophenone 3.07 45.7 2.52 

Hexanophenone 2.94 41.8 2.34 

Valerophenone 2.79 37.3 2.14 

Butyrophenone 2.58 32 1.89 

Propiophenone 2.35 25.9 1.61 

Acetophenone 2.04 17.2 1.21 

Acetanilide 1.85 11.5 0.95 

Paracetamol 1.62 2.9 0.55 

 

Table 4. System suitability test compounds and their expected IAM MB 
data. The measured values should be within 5 IAM MB value agreements 
with the values in the table. Further drug molecules data can be found in 

reference [45]. 

Compound Acid/base IAM MB  

Carbamazepine Neutral 26.5 

Colchicine neutral 18.0 

Warfarin Acidic 16.0 

Indomethacin Acidic 24.5 

Nicardipine Basic 45.1 

Propranolol Basic 46.8 

 

The PB data are obtained on Chiralpack-HSA and ChiralPack AGP columns with the dimensions of 50 x 3 

mm. The flow rate was 1.5 mL/min and 2-propanol was used as mobile phase B, while mobile phase A is 50 

mM ammonium acetate adjusted pH to 7.4. The calibration set of compounds and their log k(HSA) and log 

k(AGP) data are listed in Table 5a and 5b. These data are derived from literature %HSA and %AGP binding 

data obtained by other methodology (equilibrium dialysis and ultrafiltration). These data are used to 

calibrate the gradient retention times on the protein column so that the binding data obtained from the 

retention times are comparable with binding data obtained by other methodologies. The typical retention 

times were obtained using a 6 min gradient run: 0 to 3 min 0 to 35 % 2-propanol, 3 to 4 min 35 % 2-

propanol, 4 to 4.2 min back to 0 % 2-propanol. Typical calibration plots and chromatograms have been 

published previously [14]. It was found that the obtained log k(HSA) showed a non-linear relationship with 

the log P values of acetophenone homologues [42]. To convert the log k(HSA) data to the log P scale we 

need to transform them using Equation 2. The so obtained log K(HSA) data are used in the models. 

log K(HSA) = elog k(HSA)                       (2) 

The published in vivo models used the above-described MB/PB data using the following equations 

below: 

MB/PB log Vdss= 0.44*log K(IAM)-0.22*log K(HSA) - 0.66                               (3) 
n=179   r2=0.76    s=0.33   
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where MB/PB log Vdss is the estimated in vivo steady state volume of distribution based on 179 known 

drugs human clinical data [42]. 

The model for the unbound volume of distribution has also been published previously using the 

available data for 70 marketed drugs [43] and shown by Equation 4. 

MB/PB log Vdu = 0.23 log K(HSA) + 0.43 log K(IAM) - 0.72                (4) 

n=70  r2= 0.84   s=0.32 

The HPLC DEmax data were calculated using the reciprocal value of the MB/PB log Vdu data and validated 

against human clinical DEmax data [51]. 

Table 5. The literature % binding data and the log k(HSA) (a) and log k(AGP) (b) data for the 
calibration set of compounds. The logarithmic retention times measured under a given condition 
should result in a straight line when plotted against the log k data. The regression coefficient 
should be above 0.96 and the warfarin enantiomers should be baseline separated in order to pass 
the suitability of the column for protein binding determination. 

(a) 
Bio-Mimetic 

Chromatography calibration 
set of compounds 

Typical tR 
(min) 

log tR % HSA from 
literature plasma 
protein binding 

log k(HSA) 
(as log(%HSA/(101-

%HSA)) 

Warfarin 3.267 0.51 97.90 1.50 

Paracetamol 0.285 -0.55 14.00 -0.79 

Nizatidine 0.293 -0.53 20.40 -0.60 

Trimethoprim 0.512 -0.29 37.60 -0.23 

Propranolol 0.895 -0.05 66.60 0.29 

Carbamazepine 1.216 0.08 75.00 0.46 

Nicardipine 2.374 0.38 95.00 1.20 

Indomethacin 4.117 0.61 99.50 1.82 

Diclofenac 3.879 0.59 99.80 1.92 

 

 (b) 
Bio-Mimetic Chromatography 
calibration set of compounds 

Typical 
tR min 

log tR %AGP (obtained 
by ultrafiltration 

[45]) 

log k(AGP) 
(expressed from 

%AGP as log 
(%AGP/(101-%AGP)) 

Warfarin 3.72 0.57 83.2 0.67 

Acetaminophen 1.16 0.06 3.2 -1.49 

Nizatidine 2.19 0.34 37.1 -0.24 

Trimethoprim 2.50 0.40 46.2 -0.07 

Propranolol 3.86 0.59 86 0.76 

Carbamazepine 3.21 0.51 73.2 0.42 

Nicardipine 4.08 0.61 92 1.01 

Indomethacin 2.98 0.47 52.9 0.04 

Diclofenac 3.09 0.49 69.3 0.34 

 
For the calculation of the stepwise regression equations, the academic version of JMP (SAS Institute) 

software has been used. The calculation of the physicochemical parameters the Chemaxon and ACD 

software were used. For creating the plots the Sentira version 1.0.0.6 (Optibrium 2014) software has been 

used. 
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Results and discussion  

The importance of the unbound volume of distribution and the drug efficiency in the drug discovery 

process has been discussed in several recent papers focusing on the clearance and plasma protein binding 

[15-16]. There is a general consensus that the free concentration of the compound at the site of action 

drives clinical efficacy together with the high affinity for the target receptor. However, a significant debate 

remains regarding what determines the free concentration; the dose, dosing frequency, intrinsic clearance, 

plasma protein binding or volume of distribution, all are important factors that should be considered. We 

can depict a simplified model as it was described by Stepensky [15,61] and consider that the dosing amount 

and frequency required to balance the elimination rate of a compound determines the amount of drug in 

the body. While the volume of distribution describes how the total amount of drug distributes between the 

tissue and plasma compartment, unbound volume of distribution describes the drug distribution between 

the free and bound compartments regardless of the location where the drug binds (tissues or plasma 

proteins, see Figure 3). 

While investigating known drugs it was clear that the volume of distribution showed no correlation 

alone to clearance or half-life. However, it did show a good correlation with the product term (or the sum 

of their logarithmic values clearance and half-life) as is shown in Figure 4a, b and c. The data supports the 

statement that the distribution properties of compounds are an independent parameter from the 

clearance. 

 
Figure 3. The schematic absorption, distribution and elimination process 

 

The tissue/plasma partition coefficient of a compound can be defined as the tissue concentration 

divided by the plasma concentration of the compounds. The concentration can be expressed as the amount 

of drug in the tissue and plasma volume respectively, so Ktissue/plasma  can be described by Equation 5: 

 

𝐾𝑡𝑖𝑠𝑠𝑢𝑒 𝑝𝑙𝑎𝑠𝑚𝑎⁄ =
(𝐷𝑜𝑠𝑒−𝐴𝑝) 𝑉𝑡⁄

𝐴𝑝 𝑉𝑝⁄
                                         (5) 

 

where the amount of drug in tissues equals the dose minus the amount in plasma (Ap), Vt is the tissue 

volume, Vp is the plasma volume. As the steady-state volume of distribution (Vdss) equals the dose over the 
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plasma concentration, introducing that into Equation 5 we can express the tissue plasma partition as a 

proportionality term to the steady state volume of distribution shown in Equation 6.  

 

𝐾𝑡𝑖𝑠𝑠𝑢𝑒 𝑝𝑙𝑎𝑠𝑚𝑎⁄ =
𝑉𝑑𝑠𝑠−𝑉𝑝

𝑉𝑡
                                             (6) 

 

In turn, the volume of distribution of marketed drugs could be modeled by the difference in the 

membrane and the protein binding of compounds as described by Equation 3 and shown in Figure 5 for the 

investigated compounds. There are only 40 compounds that have been included in the training set, the 

majority of the compounds were not included in the original model. That explains that the statistics are 

slightly worse (r2 = 0.76; root mean square error = 0.33 in the original model, while here the r2 = 0.57 and 

root mean square error = 0.40). 

 

  

 

 

Figure 4. The plot of log Vdss vs log in vivo CL (a), log Vdss vs log T½ (b) and log Vdss vs the sum of log CL and log 
T½. 

 

The unbound volume of distribution is in principle the reciprocal value of the maximum drug efficiency 

(DEmax) defined by Braggio et al. [18], that is defined by the proportion of the free bio-phase concentration 

and the dose. If the free drug hypothesis is true, which means the free plasma concentration if similar to 

(a) (b) 

(c) 
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the free tissue concentration of the compounds when no permeability barrier or active transport distorts 

the equilibrium, then the model for the unbound volume of distribution can be used to estimate the 

maximum drug efficiency (DEmax) of the compounds. Based on the definition of the Vdu and DEmax, their 

relationship can be described by Equation 7. 

 

𝐷𝐸𝑚𝑎𝑥 =
100

𝑉𝑑𝑢
    (7) 

 

Figure 6 shows the unbound volume of distribution and the estimated DEmax of the marketed drugs 

listed in Table A1. In this case, only 10 compounds overlapped with the original training set.  Most of the 

compounds can be considered as a test set. The root-mean-square error increased from 0.32 to 0.45 while 

the r2 dropped from 0.84 to 0.66. The statistics for the training set is r2 = 0.76 and the standard error of the 

estimate is s = 0.33. The estimates can be considered as very predictive, as we have just used two major 

binding components in the body to describe the total non-specific binding of the compounds to the 

phospholipids and albumin type of proteins. 

 

 
Figure 5. The observed in vivo log Vdss vs the estimated Vdss by the IAM MB/PB Technology® using Equation 3. 

 
Figure 6. The plot of the human unbound volume of distribution and the estimated DEmax using the IAM 

MB/PB technology and Equation 4. 
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It is interesting to observe that the estimated DEmax of the marketed drugs is typically 1 % or just above. 

This also means that the unbound volume of distribution of marketed drugs is typically less than 100 L/kg. 

Thus, when we plot the potency (pIC50) values in the function of the Drug Efficiency Index (DEI), which is 

the sum of the pIC50 and the log DE, the marketed drugs are around the line of unity (see Figure 7). It has 

been observed [51] that discovery compounds usually have very narrow potency range (pIC50 between 7 to 

9), but a much broader range of drug efficiency index. Based on the retrospective analysis it turned out that 

compounds that are on the right side of the line of unity survived the strict candidate selection procedure 

and showed a good PK/PD profile [51]. 

 
Figure 7. The plot of potency in the function of DEI. The line of unity represents when the drug efficiency 
DE=1 %. The logarithm of 1 is zero, thus, DEI = pIC50. The yellow squares show project compounds [51], 

having the same good potency but a range of DEI. The candidate molecules (red stars) are on the right-hand 
side of the line where most of the marketed drugs are. 

It is interesting to note that we could not find any marketed drugs with drug efficiencies higher than 10-

15 %. This suggests that there should be an optimum proportion of the dose and free bio-phase 

concentration that is less than 10-15 % drug efficiency. It is very likely, that when the high proportion of the 

administered amount of compound is free then the elimination rate/clearance will be high and the various 

total tissue concentrations may be low. Therefore, we can optimise drug discovery compounds and triage 

them to have reasonably good potency if the drug efficiency is approximately 1 to 5 %. 

The Regis IAM MB/PB Technology® that use biomimetic HPLC stationary phases to measure the dynamic 

equilibrium constants of the compounds with the major binding components of the body enables the 

estimation of volume distribution and unbound volume of distribution without using in vivo 

experimentation for the fraction of the cost and time. 

It is also interesting to note that the DEmax values representing the sum of the albumin and 

phospholipid binding showed very good inverse correlation with clogP (much better than with clogD) [51]. 

This is because the log D drops whatever charge is present on the molecule at pH 7.4, however the sum of 

albumin and phospholipid binding change very little with the presence of charge. It is because positively 

charged compounds bind more strongly to IAM (phospholipids) while negatively charged compounds have 
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a stronger affinity to albumin type of proteins. That is why log P is a better model to use than log D [51]. 

Therefore, there is a connection between DEI and LLE. DEmax determined by the IAM MB/PB Technology is a 

better representation of the nonspecific binding of the compounds than log P as it is based on real albumin 

and IAM affinity of the compounds. In our earlier paper, we have shown that IAM MB/PB DEImax showed a 

better correlation with in vivo log DEImax than LLE as it shown in Figure 8a and 8b. 

  

 
 

Figure 8. Comparison of the relationship between in vivo log DEImax  vs LLE (a) and  IAM MB/PB log DEImax (b), 
respectively based on the analysis in reference [51]. 

 

The better fit is not surprising, as log P was intended to model the non-specific binding in the body 

caused by lipophilicity of the compounds. The IAM MB/PB technology provides the direct measurements of 

the major types of body components. Though AGP was not used in the models described above, it is mainly 

due to statistical reasons. The AGP binding and IAM MB binding showed a significant correlation, so it was 

not possible to use both as independent variables in the regression equations. AGP binds also the positively 

charged compounds, however, there is a different steric hindrance for molecules that have bulky 

substitutions near the positive charge [62]. Although AGP can be found in human plasma at low 

concentrations (approximately 1.5 %) it may be significant in clinical investigations as its concentration 

depends on the disease state and can increase significantly [63]. Therefore compounds’ strong binding to 

AGP should be avoided as it may cause variable free concentrations of the drug in patients with various 

diseases. The model to estimate total plasma protein binding (log k(PPB)) includes the AGP binding as is 

shown by Equation 8 [64]. 

log 𝑘 (𝑃𝑃𝐵) = 0.87 ∗ log 𝑘(𝐻𝑆𝐴) + 0.17 ∗ log 𝑘(𝐴𝐺𝑃) + 0.06 ∗ 𝑐𝑀𝑅 − 0.27     (8) 

n = 55      r2 = 0.85     s=0.36 

cMR is the calculated molar refraction of the compounds related to the size of the molecules and 

accounts for the non-specific binding of the compounds to immunoglobulins in the plasma. 

 AGP also represents important cellular components such as glycoprotein in general. There has been 

observed overlapping binding between AGP and P-glycoprotein [65]. Also, the mucus in human airways is 

composed predominantly of glycoproteins. Several tissue binding models include the AGP binding, such as 



Valko, Teague and Pidgeon  ADMET & DMPK 5(1) (2017) 14-38 

28  

mucus binding showed good correlation to AGP binding (r2 = 0.85) [66] and lung tissue binding showed 

good correlations with the weighted sum of HSA and AGP bindings [67].  

Conclusions 

Established screening procedures in pharmaceutical drug discovery companies cause significant delays 

in getting a compound to market.  One reason is that the initial discovery phase typically prioritises 

optimising discovery molecules to bind with high affinity to the target receptor. Drug analogues typically 

possess high receptor occupancy, which is anticipated to have better efficacy and selectivity, i.e., reduced 

off-target pharmacology. The insight lacking during this process is that all the potent analogues may not 

have the ADME properties to elicit sufficient free concentration of the drug near the receptor. We have 

presented an HPLC based technology by which the drug discovery process can be accelerated by 

chromatographic profiling of the analogues to model the in vivo drug disposition. The proposed 

methodology is able to identify compounds that have a greater probability of having acceptable in vivo 

properties. The methodology has been compared to Ligand Lipophilicity Efficiency (LLE) parameter that is 

used early in the lead optimization process. There is an inverse correlation between the maximum drug 

efficiency and clogP, thus LLE incorporates similar efficiency metrics as DEI. While clogP can be easily 

calculated and the drug efficiency requires simple HPLC based measurements, the advantage is that it 

mimics the biological non-specific binding more accurately than calculated octanol/water lipophilicity. The 

measured IAM MB/PB incorporates the effect of charge and shape of the molecules on the binding to real 

body components which are not reflected in their distribution in octanol and water. The technology is 

suitable for estimating the tissue binding, plasma protein binding, volume of distribution, unbound volume 

of distribution, drug efficiency, promiscuity, phospholipidotic potential, etc. Therefore, this technology is 

recommended for use in early drug discovery programmes to aid the compound triage process so that only 

compounds with a higher probability of having good affinity along with good ADME properties are selected 

for progression to expensive animal studies. The technology is commercially available; the models have 

been published in a book titled “Physicochemical and Biomimetic Properties in Drug Discovery: 

Chromatographic Techniques for Lead Optimisation” [45] and are encouraged to be routinely used in the 

early drug discovery process.   

The conclusion is that in vivo data should not be generated until the compounds have been analysed by 

chromatographic techniques, and only compounds that are predicted to have optimal in vivo properties 

should be progressed for further analysis. The proposed alternate drug discovery process should include (i) 

potency evaluation or receptor binding and (ii) predictive in vivo properties of each analogues. Only after 

both of these steps are completed should compounds be chosen for further development by extensive 

testing both in vitro and in vivo.  Using this approach will eliminate numerous candidates from the pool of 

active analogues and has the potential to help save considerable amounts of time and money during the 

process of getting NCE’s  to market.  Even if only 5-10 compounds are immediately eliminated as drug 

candidates, this potentially saves millions of dollars in the cost to get a drug to market.   
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Appendix 

Table A1. The in vivo human data for the investigated marketed drugs. Training set marked from the Vd model [42]. 
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t1/2 (h) Log 
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ABACAVIR Test 600 7.2 2 0.84 -0.08 1.68 0.23 13.00 1.11 1.00 0.00 

ACEBUTOLOL 
HYDROCHLORIDE 

Test 400 6.8 2 1.7 0.23 2.30 0.36 10.00 1.00 3.50 0.54 

ACETYLSALICYLIC 
ACID 

Train. 1200 5.5 3 0.22 -0.66 0.32 -0.49 12.00 1.08   

ACRIVASTINE Test 32 8.5 4       1.50 0.18 

ALBUTEROL 
SULFATE 

Test 8 7.4 4 1.9 0.28 2.07 0.31 7.80 0.89 2.40 0.38 

ALLOPURINOL Test 300 5.3 1 0.58 -0.24 0.60 -0.22 11.00 1.04 0.80 -0.10 

ALOSETRON 
HYDROCHLORIDE 

Train. 1 7.3 2 1.1 0.04 6.11 0.79 8.70 0.94 1.60 0.20 

AMILORIDE 
HYDROCHLORIDE 

Test 5 5.5 1 5 0.70     7.50 0.88 

AMINO-
GLUTETHIMIDE 

Test 500 4.9 2       12.50 1.10 

AMITRIPTYLINE 
HYDROCHLORIDE 

Test 50 6.2 1 8.7 0.94 124.29 2.09 6.10 0.79 17.00 1.23 

AMOXAPINE Train. 300 6.5 3         

ARIPIPRAZOLE Test 10 9.7 1 4.9 0.69 490.00 2.69 0.83 -0.08 75.00 1.88 

ATOMOXETINE 
HYDROCHLORIDE1 

Test 40 8.7 1 0.85 -0.07 42.50 1.63 9.30 0.97 5.20 0.72 

BENDRO-
FLUMETHIAZIDE 

Test 3 3.4 1       8.50 0.93 

BICALUTAMIDE Test 50 6.1 1       144.00 2.16 

BUPROPION 
HYDROCHLORIDE 

Test 300 6.3 1       24.00 1.38 

CABERGOLINE Test 0 10 0     45.71 1.66 65.00 1.81 

CAFFEINE Test 150 4.7 3 0.63 -0.20 0.98 -0.01 1.40 0.15 4.90 0.69 

CANDESARTAN 
CILEXETIL 

Test 8 10.5 1 0.13 -0.89 13.00 1.11 0.37 -0.43 9.00 0.95 

CARBAMAZEPINE Train. 800 4.6 1       17.00 1.23 

CELECOXIB Test 400 8.5 2 6.13 0.79 204.33 2.31 6.59 0.82 11.00 1.04 

CILOSTAZOL Test 200 6.7 2       12.00 1.08 

CITALOPRAM 
HYDROBROMIDE 

Test 20 8.3 1 12 1.08 60.00 1.78 4.30 0.63 33.00 1.52 

CLOMIPRAMINE 
HYDROCHLORIDE 

Test 25 7.9 1 13 1.11 433.33 2.64 8.20 0.91 26.00 1.41 

CLONIDINE 
HYDROCHLORIDE 

Train. 0 8.5 1 3.3 0.52 5.89 0.77 4.00 0.60 7.60 0.88 

DAPSONE Test 100 4.8 1 0.83 -0.08 3.32 0.52 0.48 -0.32 22.00 1.34 

DESLORATADINE Test 5 9.4 1       50.00 1.70 
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DIAZOXIDE Train. 150 4.7 3 0.21 -0.68 3.50 0.54 0.06 -1.22 48.00 1.68 

DIDANOSINE Test 250 8 2 0.77 -0.11 0.81 -0.09 11.00 1.04 1.40 0.15 

DIFLUNISAL Train. 1000 4.2 2 0.1 -1.00   0.10 -1.00 10.00 1.00 

DIPHENHYDRAMINE 
HYDROCHLORIDE 

Train. 75 8.1 3 6.5 0.81 34.21 1.53 9.80 0.99 9.30 0.97 

DIPYRIDAMOLE Train. 200 6.7 2 1.75 0.24 175.00 2.24 3.00 0.48 0.70 -0.15 

DOMPERIDONE Test 30 9.8 3 3.4 0.53 42.50 1.63 9.50 0.98 7.50 0.88 

DONEPEZIL 
HYDROCHLORIDE 

Test 5 8.2 1 12 1.08 300.00 2.48 2.17 0.34 70.00 1.85 

EFAVIRENZ Test 600 8.9 1       47.00 1.67 

ETODOLAC Test 600 6.2 2 0.39 -0.41 39.00 1.59 0.82 -0.09 7.30 0.86 

FELBAMATE Train. 1200 3.4 3 0.76 -0.12 1.09 0.04 0.50 -0.30 22.00 1.34 

FELODIPINE Train. 5 9.8 1 4.4 0.64   11.00 1.04 10.00 1.00 

FEXOFENADINE 
HYDROCHLORIDE 

Test 60 7.3 2       14.40 1.16 

FINASTERIDE Train. 5 7.3 1 0.89 -0.05 5.56 0.75 4.70 0.67 3.00 0.48 

FLUOXETINE 
HYDROCHLORIDE 

Train. 60 8.6 1 32.5 1.51 541.67 2.73   48.00 1.68 

FLURBIPROFEN Train. 200 6.2 4 0.12 -0.92     5.00 0.70 

FLUTAMIDE Test 750 5.9 3       6.00 0.78 

FLUVOXAMINE 
MALEATE 

Test 50 8.3 1 25 1.40 125.00 2.10   15.60 1.19 

FUROSEMIDE Train. 80 5 2 0.12 -0.92 12.00 1.08 1.60 0.20 2.50 0.40 

GLIBENCLAMIDE Test 3 5.3 1 0.13 -0.89 13.00 1.11 1.30 0.11 1.60 0.20 

GLIMEPIRIDE Test 1 5.4 1 0.19 -0.72 19.00 1.28 0.50 -0.30 10.00 1.00 

GLIPIZIDE Train. 3 5.5 1 0.16 -0.80 8.00 0.90 0.56 -0.25 3.30 0.52 

GRANISETRON 
HYDROCHLORIDE 

Test 2 9.9 2 3.7 0.57 10.57 1.02 9.10 0.96 5.20 0.72 

GUANABENZ 
ACETATE 

Test 8 8.2 2       6.00 0.78 

HALOPERIDOL Test 2 10 2 17 1.23 212.50 2.33 7.80 0.89 35.00 1.54 

HYDROCHLOROTHIA
ZIDE 

Test 50 4.7 2       8.00 0.90 

IMIPRAMINE 
HYDROCHLORIDE 

Train. 75 6.6 1 12 1.08 150.00 2.18 13.00 1.11 16.00 1.20 

INDAPAMIDE Test 1 4.2 1       14.00 1.15 

INDOMETHACIN Train. 75 6.5 3 0.1 -1.00 10.00 1.00 1.30 0.11 1.40 0.15 

IRBESARTAN Test 150 9.3 1 0.94 -0.03 9.40 0.97 2.30 0.36 14.00 1.15 

ISRADIPINE Test 5 6.6 2 1.5 0.18 37.50 1.57 26.00 1.41 3.30 0.52 

KETOCONAZOLE Train. 200 4.7 1       2.00 0.30 

KETOPROFEN Train. 225 7.6 3 0.13 -0.89 1.63 0.21 1.60 0.20 2.10 0.32 

LAMOTRIGINE Test 25 4 1 1.1 0.04 2.44 0.39 0.58 -0.24 25.00 1.40 

LANSOPRAZOLE Test 15 7.1 1 0.28 -0.55 14.00 1.15 4.40 0.64 1.00 0.00 

LEFLUNOMIDE Test 100 4.9 1 0.13 -0.89 13.00 1.11   336.00 2.53 
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LETROZOLE Test 3 7.9 1 1.9 0.28 4.63 0.67 0.57 -0.24 45.00 1.65 

LORAZEPAM Train. 3 8.9 3 1.3 0.11 14.44 1.16 1.00 0.00 17.00 1.23 

LOVASTATIN Test 10 9.5 1 0.87 -0.06 21.75 1.34 7.20 0.86 1.40 0.15 

LOXAPINE 
SUCCINATE 

Test 40 8.3 2       4.00 0.60 

MAPROTILINE 
HYDROCHLORIDE 

Train. 75 4.4 3 45 1.65 409.09 2.61 14.00 1.15 51.00 1.71 

MEBENDAZOLE Train. 200 6.7 2 1.2 0.08 13.33 1.12 15.00 1.18 1.10 0.04 

MERCAPTOPURINE Test 3 4.8 1 1 0.00 1.18 0.07 15.00 1.18 1.00 0.00 

METHYL-
PREDNISOLONE 

Train. 4 6.3 1 1.2 0.08 5.22 0.72 6.10 0.79 2.30 0.36 

METOCLOPRAMIDE 
HYDROCHLORIDE 

Test 20 8.4 2 3.2 0.51 5.33 0.73 5.70 0.76 7.20 0.86 

METOLAZONE Test 3 5.7 1       14.00 1.15 

MIANSERIN Train. 60 8.1 2       13.50 1.13 

MIBEFRADIL 
DIHYDROCHLORIDE 

Test 50 6.2 1 3.1 0.49 310.00 2.49 4.00 0.60 13.00 1.11 

MIFEPRISTONE Test 600 8 1       18.00 1.26 

MYCOPHENOLIC 
ACID 

Test 1440 8 2 0.77 -0.11 38.50 1.59 2.00 0.30 12.00 1.08 

NADOLOL Train. 40 8.9 1 1.9 0.28 13.57 1.13 2.90 0.46 9.20 0.96 

NAPROXEN Train. 1000 5.2 2       15.00 1.18 

NEOSTIGMINE 
BROMIDE 

Train. 15 7.4 1 0.74 -0.13   9.20 0.96 1.30 0.11 

NEVIRAPINE Test 200 8 1 1.3 0.11 4.06 0.61 0.30 -0.52 53.00 1.72 

NICARDIPINE 
HYDROCHLORIDE 

Train. 60 5.6 2 1 0.00 100.00 2.00 11.00 1.04 4.10 0.61 

NIMESULIDE Test 400 4.4 2       2.80 0.45 

NIMODIPINE Test 120 9.6 4 1.1 0.04 55.00 1.74 15.00 1.18 1.30 0.11 

NISOLDIPINE Test 20 9.8 1 5.5 0.74   15.00 1.18 11.00 1.04 

NITRENDIPINE test 20 7.6 2 6.1 0.79 305.0 2.48 25.00 1.40 8.20 0.91 

NORTRIPTYLINE 
HYDROCHLORIDE 

Train. 75 9 3 22 1.34 183.33 2.26 10.00 1.00 30.00 1.48 

OLANZAPINE Test 10 7.5 1 14.3 1.16 204.29 2.31 7.14 0.85 37.50 1.57 

PENTOXIFYLLINE Train. 800 3.7 2 1.8 0.26 6.00 0.78 39.00 1.59 1.20 0.08 

PERGOLIDE 
MESYLATE 

Test 0 8.9 1       27.00 1.43 

PHENYTOIN Train. 90 4.2 1       22.00 1.34 

PIMOZIDE Test 8 9.6 2       29.30 1.47 

PIOGLITAZONE 
HYDROCHLORIDE 

Test 15 4.5 1 0.63 -0.20 63.00 1.80   5.00 0.70 

PIROXICAM Train. 20 6.7 1 0.14 -0.85 2.33 0.37   58.00 1.76 

PRAVASTATIN 
SODIUM 

Test 40 8.2 1 0.46 -0.34 0.92 -0.04 14.00 1.15 0.80 -0.10 

PRAZOSIN 
HYDROCHLORIDE 

Train. 2 8.9 3 0.73 -0.14 12.17 1.09 4.70 0.67 2.00 0.30 

PRIMAQUINE 
PHOSPHATE 

Test 15 5.4 1 4 0.60   5.80 0.76 7.10 0.85 
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PROBENECID Train. 1000 3.8 2 0.13 -0.89 1.00 0.00 0.25 -0.60 5.90 0.77 

PROCHLORPERAZIN
E MALEATE 

Test 15 8.5 3 22 1.34   16.00 1.20 9.00 0.95 

PROCYCLIDINE 
HYDROCHLORIDE 

Test 8 8.6 3 0.74 -0.13   0.86 -0.07 12.00 1.08 

PROMETHAZINE 
HYDROCHLORIDE 

Test 50 8.2 2 14 1.15 155.56 2.19 14.00 1.15 14.00 1.15 

PROPAFENONE 
HYDROCHLORIDE 

Test 450 5.7 3 2.2 0.34 55.00 1.74 16.00 1.20 2.10 0.32 

PROPRANOLOL HCL Train. 160 9.4 2 3.1 0.49 23.85 1.38 12.00 1.08 3.40 0.53 

PROTRIPTYLINE 
HYDROCHLORIDE 

Test 15 5.6 3 22 1.34       

QUININE SULFATE Train. 1800 6.3 6 1.8 0.26 6.00 0.78 1.90 0.28 11.00 1.04 

RILUZOLE Test 100 4.4 2       12.00 1.08 

ROXITHROMYCIN Test 450 6.8 3   0.00    12.00 1.08 

SAQUINAVIR Test 2000 8.3 2 3.6 0.56 120.00 2.08 13.00 1.11 13.00 1.11 

SIMVASTATIN Test 40 8.4 1       3.00 0.48 

SULFINPYRAZONE Train. 100 3.3 1 0.12 -0.92 6.00 0.78 0.34 -0.47 6.20 0.79 

SUMATRIPTAN Test 75 8.1 3 1.7 0.23 2.05 0.31 19.00 1.28 1.70 0.23 

TAMSULOSIN 
HYDROCHLORIDE 

Test 2 11 2 0.21 -0.68 21.00 1.32 0.62 -0.21 6.80 0.83 

TRAZODONE 
HYDROCHLORIDE 

Train. 150 6.3 1 0.52 -0.28   1.40 0.15 7.30 0.86 

VENLAFAXINE 
HYDROCHLORIDE 

Test 75 7.7 2 4.4 0.64 6.03 0.78 14.00 1.15 5.00 0.70 

VERAPAMIL 
HYDROCHLORIDE 

Test 120 6.9 3 3.7 0.57 41.11 1.61 18.00 1.26 2.80 0.45 

 
 
 

Table A2. Measured biomimetic properties and estimated volume of distribution, unbound volume of distribution 

based on the published models. %HSA binding is obtained from the log tR vs log k(HSA) calibration plot using %HSA= 
101*10

logk(HSA)
/(1+10

logk(HSA)
), log K(HSA)= exp(logk(HSA); log K(IAM) obtained from measured IAM MB as described by 

Equation (1); IAM MB/PB DEmax is calculated from Vdu as 100/Vdu where log Vdu is obtained as a sum of log K(IAM) 
and log K(HSA) according to Equation (4); IAM MB/PB log Vdss is obtained from the difference between log K(IAM) 
and log K(HSA) as described by Equation 3. The test/training marks are based whether it was used in the model 
building for Vdu [43]. 

DRUG 

Test or 
training 
set of 

compound 

%HSA 
binding 

log K(HAS) 
Converted 

to log P 
scale 

log K 
(IAM) 

converted 
to log P 

scale 

IAM 
MB/PB 
DEmax 

(%) 

IAM 
MB/PB 
log Vdu 

IAM 
MB/PB 
logVdss 

Acid/base 
character 

ABACAVIR test 31.9 0.71 1.77 60.9 0.21 -0.04 Weak Base 

ACEBUTOLOL 
HYDROCHLORIDE 

test 32.7 0.73 1.59 72.1 0.13 -0.12 Basic 

ACETYLSALICYLIC ACID test 66.4 1.33         Acidic 

ACRIVASTINE test 82.5 1.91 2.68 13.2 0.87 0.10 Weak Base 
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ALBUTEROL SULFATE test 22 0.57 1.55 81.6 0.08 -0.10 Basic 

ALLOPURINOL  19.2 0.53 2 54.9 0.26 0.10 Acidic 

ALOSETRON 
HYDROCHLORIDE 

test 75.5 1.60 2.68 15.8 0.80 0.17 Weak Base 

AMILORIDE 
HYDROCHLORIDE 

training 38.6 0.81 2.56 27.3 0.57 0.29 Acidic 

AMINOGLUTETHIMIDE training 25.9 0.63 1.53 81 0.08 -0.13 Weak Base 

AMITRIPTYLINE 
HYDROCHLORIDE 

test 90.1 2.50 6.3 0.308 2.56 1.56 Basic 

AMOXAPINE test 88.4 2.33 6.64 0.24 2.67 1.75 Basic 

ARIPIPRAZOLE test 97.8 4.42 6.08 0.129 2.91 1.04 Basic 

ATOMOXETINE 
HYDROCHLORIDE1 

test 87.5 2.25 5.28 0.922 2.07 1.17 Basic 

BENDROFLUMETHIAZIDE test 64.4 1.28 2.95 12.7 0.84 0.36 Weak Acid 

BICALUTAMIDE test 96.8 3.91 3.21 2.66 1.56 -0.11 Neutral 

BUPROPION 
HYDROCHLORIDE 

test  73.9 1.55 3.21 9.7 1.02 0.41 Basic 

CABERGOLINE test 83.6 1.98 6.41 0.366 2.49 1.73 Basic 

CAFFEINE test 26.8 0.64 1.22 108 -0.05 -0.26 Neutral 

CANDESARTAN CILEXETIL test 97.9 4.48 3.8 1.07 1.94 0.03 Acidic 

CARBAMAZEPINE test 79.9 1.78 2.34 19.7 0.70 -0.02 Neutral 

CELECOXIB test 97.1 4.04 3.9 1.24 1.89 0.17 Neutral 

CILOSTAZOL test 89.9 2.48 3.02 6.97 1.15 0.12   

CITALOPRAM 
HYDROBROMIDE 

test 72.4 1.50 4.85 2.12 1.71 1.14 Basic 

CLOMIPRAMINE 
HYDROCHLORIDE 

test 94.4 3.18 7.6 0.06 3.28 1.99 Basic 

CLONIDINE 
HYDROCHLORIDE 

test 37.7 0.80 1.96 48.9 0.31 0.03 Basic 

DAPSONE test 80.6 1.82 2.07 25 0.59 -0.15 Neutral 

DESLORATADINE test 88.5 2.34 6.13 0.39 2.45 1.52 Basic 

DIAZOXIDE training 77.6 1.68 2.05 27.3 0.55 -0.13 Acidic 

DIDANOSINE test 27.5 0.65        Weak Acid 

DIFLUNISAL test 98.8 5.22 2.49 2.57 1.55 -0.71 Acidic 

DIPHENHYDRAMINE 
HYDROCHLORIDE 

test 68.7 1.39 2.98 13.3 0.88 0.35 Basic 

DIPYRIDAMOLE test 88.2 2.31 4.03 2.93 1.54 0.60 Weak Base 

DOMPERIDONE test 92.2 2.77 3.96 2.43 1.62 0.47 Basic 

DONEPEZIL 
HYDROCHLORIDE 

test 86.1 2.14 3.68 4.45 1.36 0.49 Basic 

EFAVIRENZ test 97.3 4.14 4.34 0.777 2.10 0.34   

ETODOLAC test 95.6 3.48 2.51 6.52 1.16 -0.32 Acidic 

FELBAMATE test 68.7 1.39 1.76 42.3 0.36 -0.19 Neutral 

FELODIPINE test 95.9 3.58 4.45 0.965 2.02 0.51 Neutral 
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FEXOFENADINE 
HYDROCHLORIDE 

test 74.1 1.55 2.64 16.6 0.77 0.16 Basic 

FINASTERIDE test 88.4 2.33 3.34 5.55 1.25 0.30   

FLUOXETINE 
HYDROCHLORIDE 

test 91.2 2.63 6.19 0.305 2.55 1.48 Basic 

FLURBIPROFEN test 98.6 5.02 1.99 4.77 1.29 -0.89 Acidic 

FLUTAMIDE test 94.3 3.15 3.48 3.11 1.50 0.18 Neutral 

FLUVOXAMINE MALEATE test 72.3 1.49 5.15 1.59 1.84 1.28 Basic 

FUROSEMIDE test 89.7 2.46 2.14 12.4 0.77 -0.26 Acidic 

GLIBENCLAMIDE test 98 4.55 2.7 2.99 1.49 -0.47 Acidic 

GLIMEPIRIDE test 98 4.55 2.53 3.61 1.41 -0.55 Acidic 

GLIPIZIDE test 95.8 3.54 1.83 12 0.88 -0.63 Acidic 

GRANISETRON 
HYDROCHLORIDE 

test 69 1.40 4.34 3.57 1.47 0.94 Basic 

GUANABENZ ACETATE test 88.1 2.30 4.85 1.36 1.90 0.97 Basic 

HALOPERIDOL test 90.4 2.54 4.6 1.46 1.84 0.81 Basic 

HYDROCHLOROTHIAZIDE test 45.4 0.92 1.62 63.3 0.19 -0.15   

IMIPRAMINE 
HYDROCHLORIDE 

test 86.3 2.16 4.23 2.63 1.59 0.73 Basic 

INDAPAMIDE test 75.1 1.59 2.6 17.1 0.76 0.13 Weak Acid 

INDOMETACIN test 98.6 5.02 2.34 3.33 1.44 -0.74 Acidic 

IRBESARTAN test 96.1 3.64 2.17 8.18 1.05 -0.51 Acidic 

ISRADIPINE test 94.4 3.18 3.48 3.05 1.51 0.17 Neutral 

KETOCONAZOLE training 94.6 3.22 3.59 2.69 1.56 0.21 Weak Base 

KETOPROFEN test 98.4 4.85 2.18 4.3 1.33 -0.77 Acidic 

LAMOTRIGINE test 59.5 1.17 1.99 38.5 0.40 -0.04 Weak Base 

LANSOPRAZOLE test 90.5 2.55 2.66 9.45 1.01 -0.05   

LEFLUNOMIDE test 92.6 2.84 3.37 4.07 1.38 0.20 Neutral 

LETROZOLE test 59.3 1.17 2.42 25.7 0.59 0.15 Neutral 

LORAZEPAM test 91.1 2.62 3.16 5.67 1.24 0.15 Neutral 

LOVASTATIN test 95.5 3.45 4.09 1.47 1.83 0.38 Neutral 

LOXAPINE SUCCINATE test 92.7 2.85 5.28 0.658 2.21 1.04 Basic 

MAPROTILINE 
HYDROCHLORIDE 

training 86 2.13 6.7 0.25 2.65 1.82 Basic 

MEBENDAZOLE test 92.9 2.89 3.07 5.25 1.26 0.06 Weak Base 

MERCAPTOPURINE test 41.2 0.85         

METHYLPREDNISOLONE test 71.9 1.48 2.6 18.2 0.74 0.16 Neutral 

METOCLOPRAMIDE 
HYDROCHLORIDE 

test 58.9 1.16 3.54 8.87 1.07 0.64 Basic 

METOLAZONE test 83.8 1.99 2.49 15.2 0.81 0.00 Neutral 

MIANSERIN test 91.9 2.73 5.47 0.595 2.26 1.15 Basic 

MIBEFRADIL 
DIHYDROCHLORIDE 

test 93.6 3.01 6.3 0.231 2.68 1.45 Basic 

MIFEPRISTONE test 95.5 3.45 4.2 1.33 1.88 0.43   



ADMET & DMPK 5(1) (2017) 14-38 In vitro membrane and protein binding 

doi: 10.5599/admet.5.1.373 37 

MYCOPHENOLIC ACID test 95.5 3.45 1.83 12.7 0.86 -0.61 Acidic 

NADOLOL test 39.7 0.83 1.76 58.5 0.23 -0.07   

NAPROXEN test 99.9 7.09 1.96 1.55 1.75 -1.36 Acidic 

NEOSTIGMINE BROMIDE test 87.6 2.26 1.68 28.1 0.52 -0.42 Basic 

NEVIRAPINE test 54 1.06 1.89 45 0.34 -0.06 Neutral 

NICARDIPINE 
HYDROCHLORIDE 

test 95.8 3.54 4.23 1.21 1.91 0.42 Weak Base 

NIMESULIDE test 98 4.55 2.32 4.4 1.32 -0.64 Acidic 

NIMODIPINE test 92 2.74 3.09 5.64 1.24 0.10 Neutral 

NISOLDIPINE test 91 2.61 3.16 5.67 1.24 0.16 Neutral 

NITRENDIPINE test 93.9 3.07 3.59 2.88 1.53 0.24 Neutral 

NORTRIPTYLINE 
HYDROCHLORIDE 

training 86.2 2.15 5.66 0.673 2.21 1.36 Basic 

OLANZAPINE test 86.2 2.15 5.06 1.2 1.95 1.09 Basic 

PENTOXIFYLLINE test 25.9 0.63 1.47 85.5 0.06 -0.15 Neutral 

PERGOLIDE MESYLATE test 85.2 2.08 5.71 0.672 2.21 1.40 Basic 

PHENYTOIN test 83.4 1.97 2.51 15.1 0.81 0.01 Weak Acid 

PIMOZIDE test 98.6 5.02 5.61 0.142 2.85 0.70 Basic 

PIOGLITAZONE 
HYDROCHLORIDE 

test 97.9 4.48 2.76 2.97 1.50 -0.43   

PIROXICAM test 97.3 4.14 1.9 8.14 1.05 -0.73 Acidic 

PRAVASTATIN SODIUM test 40.3 0.84 1.83 54 0.26 -0.04 Acidic 

PRAZOSIN 
HYDROCHLORIDE 

test 85.2 2.08 2.47 14.6 0.82 -0.03 Weak Base 

PRIMAQUINE PHOSPHATE test 79.2 1.75 4.6 2.31 1.66 0.98 Basic 

PROBENECID training 95.4 3.43 1.81 13.2 0.85 -0.62 Acidic 

PROCHLORPERAZINE 
MALEATE 

test 96.9 3.95 7.67 0.037 3.49 1.85 Basic 

PROCYCLIDINE 
HYDROCHLORIDE 

test 86.1 2.14 4.49 1.72 1.70 0.84 Neutral 

PROMETHAZINE 
HYDROCHLORIDE 

test 92.5 2.82 7.2 0.107 3.02 1.89 Basic 

PROPAFENONE 
HYDROCHLORIDE 

training 88 2.29 4.38 2.1 1.69 0.76 Basic 

PROPRANOLOL HCL test 72.7 1.51 4.45 3.04 1.54 0.97 Basic 

PROTRIPTYLINE 
HYDROCHLORIDE 

test 83.8 1.99 5.42 0.929 2.07 1.29 Basic 

QUININE SULFATE test 78.1 1.70 5.19 1.35 1.90 1.25 Basic 

RILUZOLE test 94.2 3.13 3.29 3.71 1.41 0.10 Weak Base 

ROXITHROMYCIN test 46.6 0.93 5.37 1.88 1.80 1.50   

SAQUINAVIR test 95.2 3.37 3.77 2.07 1.68 0.26 Weak Base 

SIMVASTATIN test 96.6 3.82 4.49 0.823 2.09 0.47   

SULFINPYRAZONE training 97.2 4.09 2.11 6.83 1.13 -0.63 Acidic 

SUMATRIPTAN test 28 0.66 2.68 26.5 0.58 0.37 Basic 
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TAMSULOSIN 
HYDROCHLORIDE 

test 68.9 1.39 2.84 14.8 0.82 0.28 Basic 

TRAZODONE 
HYDROCHLORIDE 

test 92 2.74 3.04 5.81 1.22 0.07 Weak Base 

VENLAFAXINE 
HYDROCHLORIDE 

test 35 0.76 3.19 15.5 0.83 0.58 Basic 

VERAPAMIL 
HYDROCHLORIDE 

test 88.1 2.30 3.59 3.93 1.35 0.41 Basic 

ZAFIRLUKAST test 99.1 5.57 3.67 0.789 2.14 -0.27 Acidic 

ZALCITABINE test 23.6 0.60         Zwitterionic 

ZIDOVUDINE test 11.9 0.42 1.17 127 -0.12 -0.24 Weak Acid 

ZILEUTON training 89.7 2.46 2.53 10.46 0.93 -0.09 Neutral 

ZIPRASIDONE 
HYDROCHLORIDE 

training 97.2 4.09 4.64 0.596 2.22 0.48 Weak Base 

ZOLMITRIPTAN training 61.4 1.21 2.78 16.3 0.75 0.30 Basic 
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