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Abstract 

As part of our endeavor to enhance survival of natural product derived drug candidates and to guide the 
medicinal chemist to design higher probability space for success in the anti cancer drug development area, 
we embarked on a detailed study of the property space for a collection of natural product derived anti 
cancer molecules. We carried out a comprehensive analysis of properties for 24 natural products derived 
anti cancer drugs including clinical development candidates and a set of 27 natural products derived anti 
cancer lead compounds. In particular, we focused on understanding the interplay among eight 
physicochemical properties including like partition coefficient (log P), distribution coefficient at pH=7.4 
(log D), topological polar surface area (TPSA), molecular weight (MW), aqueous solubility (log S), number of 
hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD) and number of rotatable bonds 
(nRot) crucial for drug design and  relationships between physicochemical properties, ADME (absorption, 
distribution, metabolism, and elimination) attributes, and in silico toxicity profile for these two sets of 
compounds. This analysis provides guidance for the chemist to modify the existing natural product scaffold 
or designing of new anti cancer molecules in a property space with increased probability of success and 
may lead to the identification of druglike candidates with favorable safety profiles that can successfully test 
hypotheses in the clinic. 
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Introduction 

Cancer is one of the major disease causes of mortality worldwide and the numbers of cancer cases are 

increasing gradually [1]. Cancer is a main public health burden in both developed and developing countries 

and affects the lives of millions of people. Cancer is an abnormal growth of cells in the body, which 

underlies a collection of multiple genetic abnormalities through a multistep, mutagenic process. Cancer 

cells usually invade and destroy normal cells in the body. Factors responsible for cancers includes genetic 

predisposition, smoking, incorrect diet, infectious diseases and environmental factors. American Cancer 

Society has predicted ~27 million newly diagnosed individuals and ~17 million cancer related deaths 

globally by 2050 [2]. The key problem to cancer treatment is the recurrence of tumor and the side effects 

of chemotherapy drugs. Hence, there is a potential demand to develop new and efficient anti-cancer drugs 
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[3]. Natural products have received increasing attention in the past 30 years for the discovery of novel 

cancer preventive and therapeutic agents [4]. Natural products have been used for centuries for the 

treatment of several ailments. There are many basic ancient medicinal systems derived from dietary 

sources. Nature has provided a plenty of natural products with potential anti-cancer activity in the last few 

decades. Since 1940, approximately 175 small molecules have been approved as anti-cancer agents, of 

these, 48.6 % were a natural product or derivative [5].  

Currently, pharmaceutical industry faces large attrition rates of preclinical and clinical candidates due to 

toxicity or lag of optimal pharmacokinetics properties, resulting in high costs and increased timelines for 

the drug discovery process [6]. Lead structures are compounds that typically exhibit suboptimal target 

binding affinity. Pharmacological studies have shown that there is a difference exists between leads and 

drugs [7]. The present study is an approach to establish the difference between some selected potent 

anticancer natural compounds (leads) and FDA approved natural product derived anti cancer drugs 

considering the distribution of physicochemical, ADME (absorption, distribution, metabolism, and 

elimination) attributes and in silico toxicity endpoints. This data was examined with the goal of identifying 

trends and defining a set of property values that would best define the anticancer drug space associated 

with a higher probability of clinical success. Several critical physicochemical properties of compounds like 

log P, log D, TPSA, MW, log S, HBA, HBD and nRot proposed by various research groups should be considered 

for compounds with oral drug delivery as a concern [8].  

The information obtained from this analysis could, in turn, be utilized to design anticancer drug 

molecules with optimum bioavailability and less or no toxicity based on the alignment of a set of key 

properties. The multi-parameter optimization (MPO) approach is very popular for providing guidance on 

how to design preferred molecules to reduce the attrition rate and increase the probability of 

prospectively designing molecules that survive preclinical safety studies and that possess optimal 

pharmacokinetic and pharmacodynamic properties to test hypotheses in the clinic [9]. Tremendous 

progress has been made in recent years in terms of enabling the development of robust pharmacokinetic-

pharmacodynamic (PK/PD) relationships for anticancer agents as well as in understanding how these 

relationships are influenced by molecular physicochemical properties.  

Key physicochemical properties related to a drug like molecules have been described previously by 

various research groups [10]. The most important and well-known rule of five (RO5) was given by Lipinski 

et al. in 1997 based on the database of clinical candidates that had reached phase II trials or further [11]. 

RO5 provided the end points for four crucial physicochemical properties that described 90 % of orally 

active drugs: (a) molecular weight, MW < 500 Da; (b) calculate of 1-octanol/water partition coefficient, 

ClogP < 5; (c) number of hydrogen- bond donors, (OH plus NH count) < 5; and (d) number of hydrogen-

bond acceptors, (O plus N atoms) < 10. These four physicochemical properties and their endpoints are 

associated with acceptable aqueous solubility and intestinal permeability, the important first step of oral 

bioavailability [11]. After the Lipinski’s RO5, various other ways of predicting the drug-like space for 

rational design purposes have been introduced by other people. Veber et al. 2002, showed that molecular 

weight cutoff at 500 Da does not itself significantly separate compounds with poor oral bioavailability from 

those with acceptable values based on the oral bioavailability measurements in rats for GlaxoSmithKline 

database of almost 1100 drug candidates [12]. He suggested that compounds having two criteria of (1) 

number of rotatable bonds (nRot) ≤ 10, (2) TPSA ≤ 140 Å2 will have a high probability of good oral 

bioavailability. Another effective range of physicochemical properties provided by Ghose et al. 1999, based 

on Comprehensive Medicinal Chemistry (CMC) database can be used in the design of drug-like 
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combinatorial libraries [13]. 

To go beyond the properties associated with the RO5 and other drug-like filters, we became interested 

in developing a holistic understanding of physicochemical property space for anticancer molecules by 

carrying out a thorough analysis of properties for natural product derived anticancer drugs and a set of 

natural product lead anticancer molecules, as most of the anticancer drugs have been derived from the 

natural products [14]. Herein, we present our efforts to develop a prospective MPO design tool for anti 

cancer molecules that does not focus on hard cutoffs or single end points but utilizes the eight essential 

physicochemical properties to prospectively align drug like attributes such as high permeability, low P-gp 

efflux liability, low metabolic clearance, and high safety into one molecule. In order to increase the 

flexibility in design and probability of identifying candidates with optimal pharmacokinetic and safety 

profile, we should not use hard cutoffs or focus on a single property, as it may restrict design space and 

may not align multiple attributes at once.  

Experimental  

ADMET property calculations  

Poor pharmacokinetic properties are one of the main reasons for terminating the development of drug 

candidates. Computed physicochemical properties associated with compounds that have good oral 

bioavailability, less or no toxicity and optimum values of physicochemical properties are key parameters 

for the anti cancer drug discovery, and we need compounds with good pharmacokinetic properties [15, 

16]. The drug set used in this study includes 24 natural product derived anti cancer drugs and structure of 

these drugs are mentioned in Figure 1. To the best of our knowledge, all compounds in the drug set could 

be used as oral agents [17]. The lead candidates included in our analysis consisted of 27 natural products 

derived anti cancer compounds that collected from the literature belong to the several chemical classes as 

shown in Figure 2 [18]. A complete list of the drugs and lead candidates used in the analysis appears in 

Table 1.  

ADMET related physicochemical properties for 24 natural product derived anticancer drugs including 

clinical development candidates and 27 natural product lead anticancer compounds were predicted using 

OSIRIS Datawarrior Version 4.2.2 software on a Windows XP operating system [19].  DataWarrior is able to 

calculate physicochemical properties, lead- or drug-likeness related parameters, ligand efficiencies, various 

atom and ring counts, molecular shape, flexibility and complexity as well as indications for potential 

toxicity.  

After calculating properties, these are automatically added as new columns to the data table. Chemical 

structures for 24 Natural Product derived anticancer drugs including clinical development candidates and 

27 Natural product lead compounds were downloaded and saved individually in 3D SDF format from 

pubchem (www.pubchem.org). DataWarrior is unable to optimize structures; therefore, geometry 

optimization of the molecules was performed in Avogadro software prior to the prediction of 

physicochemical properties [20]. DataWarrior software calculates the descriptors as inputs to independent 

mathematical models to estimate a range of ADMET values at relevant pH 7.4.   

Physicochemical properties of interest included predicted lipophilicity (log P), predicted aqueous 

solubility (log S), topological polar surface area (TPSA), molecular weight (MW), hydrogen bond donor 

(HBD), hydrogen bond acceptor (HBA), and number of rotatable bonds (nRot). Specific ADME properties of 

interest included predicted distribution coefficient at pH=7.4 (log D) (value predicted by ACD/Labs, 
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www.chemspider.com), predicted aqueous solubility (log S), quantitatively predicted apparent 

permeability (Papp Caco-2 cell), predicted effective permeability (Peff), and predicted Human Intestinal 

Absorption (HIA). In order to evaluate the distribution of drugs and leads, we considered two important 

parameters including a fraction of unbound to plasma proteins (Fu), and volume of distribution (VDss), a 

requirement of all clinical candidate through recently developed online ADMET calculation tool pkSCM 

(http://bleoberis.bioc.cam.ac.uk/pkcsm/) [21].  

Figure 1. Chemical structures of 24 natural products derived anti cancer drugs. 

To determine excretion routes, natural products anticancer drugs and leads we quantitatively predicted 

the total clearance and qualitatively predicted renal OCT2 substrate. The safety profile of compounds is 

one of the most common factors in drug attrition (1). As part of our analysis of properties for natural 

products anticancer drugs and leads, we assess some of the major toxicity endpoints. We generated in 

silico data to assess potential for the following safety risks: drug-drug interactions (CYP inhibitions) 

including CYP3A4, CYP2C9, and CYP2D6, hERG liability (inhibition of dofetilide binding), predicted LD50, 

predicted hepatotoxicity, predicted skin sensitization, cellular toxicity through pkSCM tool and 

mutagenicity, tumorigenicity and irritant effects through DataWarrior software. To access the likelihood of 

binding to transporter permeability-glycoprotein (P-gp), we used Pgp_Substrate model. We also calculated 

the three most crucial drug- likeness filters including Lipinski, Ghose, and Veber rules as well as the 

quantitative estimate of drug-likeness (QED) with the Drug Likeness Tool (DruLiTo) software 

(http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html). 
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Figure 2. Chemical structures of 27 natural products derived anti cancer lead molecules. 

Results and Discussion 

Optimum physicochemical property space for anticancer molecules 

The 24 natural product derived anticancer drugs including clinical development candidates and 27 

natural product lead anticancer compounds were evaluated against a set of eight calculated fundamental 

physicochemical properties that have gained wide acceptance as key parameters for drug design and 

development: (a) lipophilicity, calculated partition coefficient (log P); (b) distribution coefficient at pH=7.4 

(log D); (c) molecular weight (MW); (d) topological polar surface area (TPSA); (e) number of hydrogen bond 

donors (HBD); (f) hydrogen bond acceptor (HBA), (g) number of rotatable bonds (nRot) and predicted 

aqueous solubility (log S) [11, 22]. The calculated physicochemical properties value for the drugs and leads 

are mentioned in Table 1.    

Physicochemical property space as captured by these eight parameters was quite broad (Figure 3). The 

MW values for the drugs varied from 246 to 853 with a median MW value of 514, while MW range for leads 

is much broad and varied from 114 to 975 with a median value of 336. The log P value of the drugs varied 

from 0.46 to 4.67 with a median log P value of 2.6. Molecules in the lead set having the log P value from -2 

to 16, which is quite broad with a median of 2.68. There was no significant difference in the median log P 

values between the two sets, although the drug set had a lower span of log P values. Low hydrophilicity 

(e.g. high log P) values can cause poor absorption or permeation. Our analysis suggests that for anticancer 

drugs, there may be a need to design compounds with further reduced log P or MW to better match the 

corresponding properties in the drug set. Polarity, as described by polar surface area (TPSA), ranged from 



ADMET & DMPK 4(2) (2016) 98-113 Defining natural product derived anticancer drug space 

doi: 10.5599/admet.4.2.291 103        

about 29 Å
2
 to 224 Å

2
 with a median value of 118.25 Å

2
 for the drug set, while the polar surface area (TPSA) 

for lead molecules span from 0 Å
2
 to 266 Å

2
. There was a significant difference in the TPSA values between 

lead candidates and drugs, almost ~60 % of the lead candidates having TPSA< 80 Å2, oppositely 75 % drugs 

have TPSA ≥ 80 Å
2
 , which clearly suggests there is a huge need for the optimization of TPSA of lead 

candidates. The drugs and the lead candidates had a minimal number of hydrogen bond donors (HBD), with 

the median value of 2 for both sets. Almost ~78 % of lead candidates and 83 % of drugs having the HBD 

value ≤ 3. Lipinski’s RO5 identified HBD as a critical component of the drug property analysis and targets a 

HBD count (OH plus NH count) of < 5. Based on the number of HBD associated with anticancer drugs and 

lead candidates, optimization of HBD to ≤ 3 may increase the probability of identifying better anticancer 

molecules.  

        

      

Figure 3. Physicochemical property distribution and statistics of drugs and lead candidates are shown for MW,   
log P, log S, HBA, HBD, TPSA, nRot and log D. 

Hydrogen bond acceptor is another valuable physicochemical property in RO5, drugs and the lead 

candidates having the median value of 10 and 4 respectively. Only 11 out of 24 drugs in this study are 

following the HBA < 10 rule of Lipinski, on the other hand, most of the lead candidates ~89 % having the 

HBA < 10, so anticancer lead candidates well following this RO5 compare to anticancer drugs. Aqueous 
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solubility is another very important parameter for the oral bioavailability. The recommended range for a 

molecule to be good oral bioavailable is (-6 ≤ log S ≤ 0.5), here all drugs are following this rule and almost 

~95 % of lead candidates are also falling within the recommended range. The majority of this increased 

TPSA should originate from an increased number of HBA, as HBD must be strictly controlled at ≤ 6 to avoid 

reducing oral bioavailability. 

Log D provides a better measurement of lipophilicity for ionizable compounds; we know that 

hydrophilic molecules have higher solubility, but are less equipped to readily cross the cell membrane. 

Hence, a compound is considered to be hydrophilic, if log D < 0, lipophilic if log D > 0, and molecule 

excessive lipophilic by molecules with log D ≥ 3.5. Nearly ~85 % of the lead candidates having a log D value 

from 1 to 8 (1 ≤ log D ≤ 8), with a median of 3.15, which suggest maximum lead candidates are 

hydrophobic in nature. As expected for anticancer drugs, a similar but narrower range existed for log D, 

which varied from -0.86 to 4.88 with a median value of 2.57. 

In order to accurately access the differences between anticancer drugs and leads, four drug-like indices 

were utilized for comparison; Lipinski’s RO5, Ghose filter, Vebers’s selective criteria for oral bioavailable 

drugs, and QED by DruLiTo. The detailed results in percentage (%) of lead and drug molecules are following 

and violating the above mentioned most promising oral bioavailable rules are mentioned in the Figure 4(a) 

and Figure 4(b) respectively.  

 

   

Figure 4. Bar graph for percentage (%) of lead and drug molecules are (a) following, and (b) violating the 
Lipinski’s RO5, Ghose filter, Vebers’s rule, QED, and all selected filters. 

 

The inspection of the bar graph shown in Figure 4(a) reveals that leads are following most of the 

bioavailable rules greater than the drugs except the Ghose filter. Drugs and leads are showing almost equal 

percentage of molecules ~38 % following the all selected filters, which is obtained by considering all 4 

bioavailable, filters (Lipinski’s RO5, Ghose filter, Vebers’s rule, and QED) together. Similarly, greater 

percentage of drugs are violating the bioavailable rules except the Ghose filter. While the natural product 

derived anticancer drug space as defined by MW, log P, log S, HBA, HBD, TPSA, nRot and log D, is broad. 

Hence, our emphasis has been on defining physicochemical property rules for compounds to reduce 

attrition and increase the likelihood of candidates at various stages of anticancer drug development based 

on our analysis as well as earlier published various oral bioavailability rules by different research groups. 

Our analysis shows the optimal property ranges (covering almost ~80 % or more of the anticancer 

drugs) used to select drug-like anticancer molecule for these properties are 200 < MW ≤ 800 Da, 1< log P ≤ 

5, -6 ≤ clog S ≤ -1, 5 ≤ HBA ≤ 13, 1 ≤ HBD ≤ 5, 50 ≤ TPSA ≤ 180 Å2, 0 ≤ nRot ≤ 10, log D=2.8, which may be very 
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Table 1. Important computed physicochemical properties for anticancer lead candidates and drugs. 

Lead Candidates MW log P log S HBA HBD TPSA nRot log D 

13-epi-sclareol 611 -1.41 -2.58 16 10 266 6 -2.42 

6-gingerol 294 3.56 -3.25 4 2 67 10 3.64 

Ahwagandhanolide 975 5.36 -8.25 12 6 233 8 6.75 

Allicin 162 1.84 -1.22 1 0 62 5 2.01 

Anethol 148 2.68 -2.54 1 0 9 2 2.77 

Berberine 336 0.52 -4.67 5 0 41 2 3.96 

Beta carotene 537 13.87 -7.33 0 0 0 10 12.00 

Betulinic acid 457 6.37 -6.28 3 2 58 2 6.52 

Capsaicin 305 3.80 -3.32 4 2 59 9 3.90 

Catechins 290 1.51 -1.76 6 5 110 1 1.90 

Corchorusin-D 781 1.54 -5.21 13 8 208 6 1.31 

Curcumin 368 2.95 -3.62 6 2 93 8 3.55 

Diallyl sulfide 114 2.16 -2.01 0 0 25 4 2.03 

Diosgenin 415 4.88 -5.58 3 1 39 0 4.63 

Ellagic acid 302 1.28 -3.29 8 4 134 0 1.29 

Eugenol 164 2.27 -2.05 2 1 29 3 2.58 

Genistein 270 1.63 -2.73 5 3 87 1 1.12 

Indole-3-carbinol 147 1.10 -2.03 2 2 36 1 1.52 

Limonen 136 3.36 -2.54 0 0 0 1 3.50 

Drugs 

Abiraterone 392 4.67 -4.75 3 0 39 3 4.72 

Amrubicin 483 0.84 -4.62 10 5 177 3 1.59 

Arglabin 246 1.48 -2.78 3 0 39 0 2.13 

Camptothecin 348 1.18 -2.74 6 1 80 1 2.02 

Carfilzomib 720 2.51 -4.57 12 4 158 20 4.43 

Combretastatin 334 2.17 -2.48 6 2 77 7 1.84 

Docetaxel 808 2.61 -5.81 15 5 224 13 2.59 

Ellipticine 246 3.90 -5.14 2 1 29 0 3.14 

Etoposide 589 0.67 -3.95 13 3 161 5 0.94 

Exemestane 296 3.61 -3.95 2 0 34 0 3.01 

Formestane 302 3.14 -4.04 3 1 54 0 2.55 

Homoharringtonine 546 3.65 -4.38 10 2 124 11 1.34 

Irinotecan 587 3.56 -4.50 10 1 113 5 3.25 

Paclitaxel 854 3.19 -6.29 15 4 221 14 3.06 

Podophyllotoxin 414 1.79 -3.84 8 1 93 4 1.95 

Rohitukine 305 1.62 -2.30 6 3 90 1 -0.86 

Roscovitine 354 2.58 -3.93 7 3 88 8 4.45 

Teniposide 657 1.35 -4.85 13 3 189 6 2.52 

Topotecan 421 0.46 -1.96 8 2 103 3 0.93 

Vinblastine 811 3.30 -5.08 13 3 154 10 4.88 

Vincristine 825 2.98 -5.53 14 3 171 10 3.97 

Vindesine 754 1.99 -4.62 12 5 165 7 2.38 

Vinflunine 817 3.95 -5.87 12 2 134 10 4.30 

Vinorelbine 779 3.59 -5.15 12 2 134 10 4.66 

 

helpful in prospective design of anticancer molecules from natural products or identification of lead 

candidates from natural products that can successfully progress to the clinic and becomes better 

anticancer drug. For some of the physicochemical property, specifically MW, HBA and nRot lead molecules 
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are showing better optimal range compare to the drug candidates according to the RO5, which are quite 

significant for shaping the ADMET properties of potential anticancer drug candidates. 

Profiling ADME space of anticancer molecules 

Potential therapeutic compounds are useless without having a good ADMET profile, and thus, it is 

essential to find the source of such diminished potency for developing a drug. Significant advances in the 

development of HT in vitro ADME assays have enabled computational scientist to make robust 

computational models to the earlier assessment of potential liabilities (low permeability, susceptibility to 

efflux transporters, etc.) associated with new potential lead compounds. In order to gain a better 

perspective on the ADME properties of drugs and lead candidates, we evaluated the in silico profiling of 

these compounds to assess Caco2 cell permeability, human intestinal absorption, and P-gp efflux liability 

[23]. We can classify the permeability of a molecule as low, or high based on the predictive model and its 

relative range of log Papp (in 10-6 cm/s) rates are, as follows: log Papp > 0.9, considered to be high 

permeability, while log Papp < 0.9, considered to be low permeability of the molecule. The Caco2 cell 

permeability values for lead candidates and drugs are mentioned in Table 2.  

In the Caco2 cell permeability prediction, 70 % of the lead candidates show high log Papp values; 

surprisingly the drugs had a lower percentage (30 %) with high log Papp values. A similar discrepancy was 

observed when we assessed P-gp efflux liabilities for drugs and lead candidates. The P-gp efflux liability was 

assessed utilizing preADMET’s [https://preadmet.bmdrc.kr/] P-gp_Substrate model. Prediction of the 

likelihood of Pgp efflux shows that all drugs and 60% of the lead candidates are considered to be P-gp 

efflux substrates; the predicted values from the Pgp_Substrate model for both drugs and lead candidates 

dataset are mentioned in Table 2. An optimal clinical candidate could be achieved if it is possessed both 

high log Papp and low P-gp efflux liability. 

The intestine is the primary site of absorption for the orally administered drugs; hence, we predicted 

the percentage (%) of human intestinal absorption of the drugs and lead candidates. Systemic oral dosage 

requires compound properties that allow for dissolution and stability in the gastrointestinal (GI) tract, 

including the acidic environment of the stomach (pH 1–2 in fasted state, 3–7 in fed state) and the close to 

neutral environment (pH 4.4–6.6) of the small intestine [28. The % human intestinal absorption of the 

drugs and lead candidates was assessed by using pkCSM web server model [21]. All the drugs are showing 

good predicted human intestinal absorption > 60 %; while 93 % of the lead candidates predicted >70 % 

human intestinal absorption. The predicted % human intestinal absorption values for both drugs and lead 

candidates dataset are mentioned in Table 2. 

Many of the drugs in plasma will exist in equilibrium between an unbound state and a bound to serum 

proteins or whole blood proteins at various affinities. It is commonly accepted that only unbound drug may 

interact with anticipated molecular targets [24]; hence, the efficacy of a drug might affect by the degree to 

which it binds whole blood proteins. We have predicted the fraction unbound of both drugs and lead 

candidates through the predictive model of pkCSM, which was built using the measured free proportion of 

552 compounds in human blood (Fu). We also evaluated the steady-state volume of distribution (VDss) of 

drugs and lead candidates; another important parameter, which suggests the total dose of a drug would be 

required to be uniformly distributed to provide the similar concentration as in blood plasma. The values of 

predicted fraction unbound (Fu) and VDss values for both drugs and lead candidates dataset are mentioned 

in Table 2. Evaluation of individual ADME properties (Papp, P-gp, Fu) suggested that to increase the 

probability of success, the design should focus on optimizing all properties of a molecule.   
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Table 2. Computed ADME properties for anticancer lead candidates and drugs. 

Lead candidates Caco2 permeability 
(log Papp in 10

-6
 cm/s) 

Intestinal absorption 
(human) 

(% Absorbed) 

VDss 
(human) 
(log L/kg) 

Fraction 
unbound 
(human) 

P-gp 
Substrate 
(Yes/No) 

13-epi-sclareol -0.791 28.495 -1.597 0.419 Yes 
6-gingerol 0.959 93.293 -0.061 0.248 Yes 
Ahwagandhanolide 0.197 82.511 -0.244 0.112 Yes 

Allicin 1.366 98.525 0.084 0.502 No 
Anethol 1.391 98.814 0.066 0.322 No 
Berberine 1.732 100 0.134 0.196 No 
Beta carotene 1.397 91.234 1.319 0 No 
Betulinic acid 1.294 91.58 0.418 0 Yes 
Capsaicin 1.429 92.542 0.084 0.172 Yes 
Catechins -0.38 71.562 -0.79 0.326 Yes 
Corchorusin-D -0.193 55.926 -0.401 0.318 Yes 
Curcumin 0.556 81.7 -0.677 0.103 Yes 
Diallyl sulfide 1.252 98.6 0.282 0.487 No 
Diosgenin 1.245 96.426 0.931 0.09 Yes 
Ellagic acid -0.273 80.032 -1.214 0.27 Yes 
Eugenol 1.48 96.594 -0.071 0.375 No 
Genistein 1.07 90.14 -0.836 0.192 Yes 
Indole-3-carbinol 1.31 94.062 -0.027 0.406 No 
Limonen 1.248 98.048 0.503 0.422 No 
Longimide 1.02 89.104 0.525 0 Yes 
Longitriol 1.277 90.662 0.857 0 Yes 
Lycopene 1.444 90.326 1.115 0 No 
Methyl anolensate 1.241 100 0.04 0.14 Yes 
Resveratrol 1.294 89.885 -0.403 0.198 No 
S-allyl cyteine 0.375 88.593 0.026 0.711 No 
Silymarin -0.363 74.315 -1.327 0.142 Yes 
Withaferin A 1.475 95.986 0.337 0.171 Yes 

Drugs 

Camptothecin 1.118 99.412 -0.694 0.195 Yes 
Docetaxel -0.337 62.988 -1.068 0.138 Yes 
Etoposide -0.32 82.748 -1.185 0.194 Yes 
Irinotecan 0.986 93.659 -0.036 0.179 Yes 
Paclitaxel -0.239 71.535 -1.08 0.105 Yes 
Teniposide -0.255 90.274 -1.267 0.098 Yes 
Topotecan 0.668 83.641 -0.21 0.31 Yes 
Vinblastine 0.257 81.36 0.123 0.241 Yes 
Vincristine 0.186 78.558 -0.034 0.261 Yes 
Vinorelbine 1.413 90.783 0.282 0.193 Yes 
Abiraterone 1.20 98.16 0.67 0.05 Yes 
Amrubicin -0.26 66.22 -0.48 0.38 Yes 
Arglabin 1.59 100.00 0.49 0.41 Yes 
Carfilzomib 0.26 52.92 0.01 0.23 Yes 
Combretastatin 1.06 94.13 -0.71 0.21 Yes 
Ellipticine 1.35 94.47 -0.15 0.09 Yes 
Exemestane 1.52 100.00 0.69 0.18 Yes 
Formestane 1.39 96.29 0.50 0.21 Yes 
Homoharringtonine 0.57 79.16 0.11 0.35 Yes 
Podophyllotoxin 0.78 95.31 -0.82 0.13 Yes 
Rohitukine -0.22 73.76 0.18 0.49 Yes 
Roscovitine 1.01 90.21 1.97 0.59 Yes 
Vindesine 0.36 70.43 0.24 0.29 Yes 
Vinflunine 1.31 91.20 0.16 0.19 Yes 
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In order to understand the effect of physicochemical properties on ADME attributes of the molecules, 

we analyzed ADME attributes for both drugs and leads against all eight fundamental physicochemical 

properties. Interestingly, TPSA, HBD, and HBA showed good correlation with the Caco2 cell permeability, 

with the correlation coefficient of 0.83, 0.8, and 0.7 respectively for the drug molecules. Similarly, 

anticancer leads also showed slightly better correlation of physicochemical properties TPSA, HBD and HBA 

with Caco2 cell permeability, with the correlation coefficient of 0.83, 0.84, and 0.78, respectively. 

Although, all three physicochemical properties (TPSA, HBD, HBA) are inversely correlated with the Caco2 

cell permeability suggesting that lipophilicity is important for molecule to have good Caco2 cell 

permeability and by optimizing the TPSA, HBD, and HBA cell permeability of a molecule can be enhanced. 

Human intestinal absorption also showed good correlation with the HBD, TPSA, and HBA physicochemical 

properties for both anticancer drug and lead molecules. The correlation coefficient of % human intestinal 

absorption with HBD, TPSA, and HBA was 0.88, 0.74, and 0.67 respectively for drugs and 0.91, 0.81, and 0.8 

respectively for leads. This results clearly revealed the influence of physicochemical properties on ADME 

attributes of the molecule for oral bioavailability and the key physicochemical properties especially HBA, 

HBD, and TPSA need to be consider for further improvement in the ADME profile of natural product 

derived anticancer leads. 

Determining potential safety end points for anticancer molecules 

Early prediction of the safety endpoints through in silico techniques screening have become regular 

practice for both designing new molecule and screening of the large chemical databases within 

pharmaceutical industries [25].  As part of our analysis of properties for anticancer drugs and lead 

candidates, we determine the potential toxicity end points for through pkCSM. Most frequently measured 

end points to evaluate potential safety issues include inhibition of cytochrome P450 (CYPs) 

monooxygenase enzymes to determine potential for drug-drug interactions [26], inhibition of hERG 

potassium ion channel effects [27], lethal rat acute toxicity (LD50) and other crucial toxicity (AMES toxicity, 

skin sensitization, and hepatotoxicity). All toxicity predictions for both drugs and lead candidates are 

presented in Table 3.  

We qualitatively predicted the inhibition of CYP2D6 and CYP3A4 through pkCSM, which suggests the 

potential for drugs and leads candidates to mediate drug-drug interactions (DDI) through perturbation of 

clearance mechanisms for other drug substances. Inhibition of the potassium hERG channel might cause in 

prolongation of the QT interval of cardiac rhythm, which has resulted in the withdrawal of many clinical 

candidates from the market [28]. Therefore, we have qualitatively predicted the potassium hERG channel 

inhibition potential of drugs and lead candidates. The data obtained suggests that all of these drugs and 

lead candidates are non-inhibitor of the hERG channel as mentioned in Table 3. Analysis of the inhibition 

data of CYP2D6 and CYP3A4 revealed that all the drugs are non-inhibitor of both CYP’s and all lead 

candidates are non-inhibitor of CYP2D6, while 89 % of lead candidates are non-inhibitor of CYP3A4.  

This data suggests that most of these drugs and lead candidates occupy desirable, low-risk space for 

DDI. Drug metabolism and the drug excretion also have a significant role in the drug design process. Issues 

related to metabolism have been commonly associated with the compounds failure in the clinical. 

Understanding the metabolic pathways of drugs would be very helpful in predicting drug-drug interactions 

(DDI), toxicities, and pharmacokinetics [29]. Many relationships between CYP family enzymes and in silico 

molecular properties have been available in the literature; the primary concern is inhibition of CYP3A4, 

which is correlated to increasing MW and log P [30]. This may lead to issues with clearance as well as drug-

drug interactions. We have predicted the total clearance for drugs and lead candidates measured by the 
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proportionality constant and primarily occur as a combination of hepatic and renal clearance mentioned in 

Table 3. 

Hughes et al. have done the most considerable work with regard to the impact of molecular properties 

on in vivo toxicity, led to the “3/75 rule”, derived from an analysis of exploratory or dose-finding toxicology 

studies of 245 compounds at Pfizer [31]. Key finding emerged from this analysis was that compounds with 

a clog P < 3 and TPSA >75 Å
2
 were 2.5 times more likely to be non-toxic at the same total exposure. 

Reversely, compounds those with high lipophilicity (clog P > 3) and low polar surface area (TPSA < 75 Å
2
) 

had an increased risk of widespread toxicities in short-term animal studies. One crucial elucidation of these 

results would be that promising lipophilic compounds with small polar functionality likely to have an 

increased chance of toxicity. A similar study by AstraZeneca [32] on their compound failures showed a 

different profile, with the majority of failure happening with TPSA > 75 Å2 and clog P < 3. Though, attrition 

in the high-log P–low-TPSA space can readily be rationalized via consideration of promiscuity and 

interactions across a range of systems. Further Eli Lilly Company study of > 400 (Eli Lilly) compounds 

supported the influence of compound lipophilicity on toxicology in rat toxicological studies [33]. In this 

analysis, there was a three-fold enrichment in toxic compounds when log P > 3, but TPSA had little or no 

influence. Clearly, the benefits of establishing a link between important clinically relevant end points and 

simple descriptors such as log P and PSA (which can be easily calculated before synthesis) are highly 

attractive.  

We also analyzed our natural product derived drugs and lead compounds predicted toxicity endpoints, 

to establish meaningful correlations between physicochemical properties and toxicity profile of 

compounds. Predicted toxicities of drugs and leads have been categorized as “yes” or “no”. Most of 

anticancer drugs in our dataset having the low lipophilicity (clog P < 3.5) are showing the hepatotoxicity 

(e.g. camptothecin, rohitukine, carfilzomib, docetaxel, etc.), out of which some drugs also having clog P < 

3.5 and MW > 700 also showing hepatotoxicity (e.g. vinblastine, vincristine, vindesine, carfilzomib, and 

docetaxel, etc.). Similarly, four drugs, showed the AMES toxicity, also having the low lipophilicity (clog P < 

2). This link between the low lipophilicity of compounds and toxicity is in line with the results of Hughes et 

al. [31] and other research groups. Furthermore, some drugs showing the toxicity but no specific 

correlations with physicochemical properties was found, possibly the toxicity was a consequence of the 

primary drug target mechanism or of a specific off-target pharmacology. Examination of the relationship 

between physicochemical properties and other predicted toxicity end points, we found very good 

correlation for the drug molecules between the physicochemical properties and Oral Rat Chronic Toxicity 

(LOAEL).  The correlation coefficient of LOAEL with MW, HBA, HBD, TPSA, and nRot was 0.85, 0.84, 0.68, 0.84, 

and 0.77, respectively. All five physicochemical properties are positively correlated with the LOAEL, 

suggesting the need for the optimization of these physicochemical parameters to avoid the LOAEL toxicity. 

On the other hand, no correlation was observed between the LOAEL and physicochemical properties for 

lead molecules, which is evident from the Table 3, that drug molecules showed more toxicity endpoints 

compare to lead molecules. Hence, establishing meaningful correlations between the physicochemical 

properties and toxicity of natural product derived oral anticancer drugs and leads might be useful for 

future anticancer drug discovery. 
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Table 3. Computed safety end points for anticancer lead candidates and drugs 1 

 CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Total 

Clearance 

Renal 

OCT2 

substrate 

AMES 

toxicity 

hERG 

inhibitor 

Oral Rat 

Acute 

Toxicity 

(LD50) 

Oral Rat 

Chronic 

Toxicity 

(LOAEL) 

Hepatotoxicity Skin Sensitisation 

13-epi-sclareol No No 0.183 No No No 1.526 2.231 No No 

6-gingerol No No 1.369 No No No 1.861 2.381 No No 

Ahwagandhanolide No Yes -0.711 No No No 2.011 3.113 Yes No 

Allicin No No 0.721 No No No 2.423 1.317 No Yes 

Anethol No No 0.279 No No No 2.03 2.204 No Yes 

Berberine No No 1.324 No No No 2.587 1.998 No No 

Beta carotene No No 1.024 No No No 1.766 0.666 No No 

Betulinic acid No No 0.076 No No No 2.298 2.161 No No 

Capsaicin No No 1.269 No No No 1.998 2.373 Yes No 

Catechins No No 0.215 No Yes No 2.101 2.076 No No 

Corchorusin-D No No -0.069 No No No 2.094 2.341 No No 

Curcumin No Yes 0.014 No No No 1.93 2.421 No No 

Diallyl sulfide No No 0.562 No No No 2.274 1.689 No Yes 

Diosgenin No No 0.287 No No No 2.408 1.496 No No 

Ellagic acid No No 0.539 No Yes No 2.201 1.947 No No 

Eugenol No No 0.28 No No No 1.994 2.304 No Yes 

Genistein No No 0.241 No Yes No 2.309 2.075 No No 

Indole-3-carbinol No No 0.555 No No No 2.301 1.836 No Yes 

Limonen No No 0.224 No No No 2.257 2.204 No Yes 

Longimide No No 0.036 No No No 2.347 1.445 Yes No 

Longitriol No No 0.239 No No No 2.218 2.035 No No 

Lycopene No No 1.912 No No No 1.461 0.764 No No 

Methyl anolensate No Yes 0.265 No No No 2.594 1.088 No No 

Resveratrol No No 0.147 No Yes No 2.072 2.605 No No 

S-allyl cyteine No No 0.613 No No No 2.153 2.479 No No 

Silymarin No No -0.092 No No No 2.184 2.593 No No 

Withaferin A No No 0.37 No No No 2.294 1.983 No No 
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Table 3. Conituned 2 

Drugs 

Camptothecin No No 0.564 No Yes No 2.465 1.845 Yes No 

Docetaxel No Yes -0.172 No No No 1.617 2.808 Yes No 

Etoposide No No 0.041 No No No 2.071 2.331 No No 

Irinotecan No Yes 1.213 No No No 2.766 1.693 Yes No 

Paclitaxel No Yes -0.121 No No No 1.708 3.081 No No 

Teniposide No Yes 0.409 No No No 2.162 2.689 No No 

Topotecan No No 1.196 No Yes No 2.58 1.867 Yes No 

Vinblastine No Yes 0.618 No No No 2.251 2.588 Yes No 

Vincristine No Yes 0.739 No No No 2.11 2.67 Yes No 

Vinorelbine No Yes 0.622 No No No 2.343 2.5 Yes No 

Amrubicin No Yes 0.4 No No No 2.531 1.721 No No 

Arglabin No Yes 1.059 No Yes No 2.022 2.103 No No 

Carfilzomib No No 0.839 No No No 1.986 1.482 No No 

Combretastatin No Yes 1.564 No No No 2.162 3.012 Yes No 

Ellipticine No Yes 0.222 No No No 2.076 2.104 No No 

Exemestane No Yes 0.543 No No No 2.712 1.522 No No 

Formestane No Yes 0.832 No No No 2.062 1.822 No No 

Homoharringtonine No Yes 0.64 No No No 2.214 1.918 No No 

Podophyllotoxin No Yes 1.543 No No No 2.162 1.86 Yes No 

Rohitukine No Yes 0.14 No No No 2.205 2.284 No No 

Roscovitine No Yes 0.495 No Yes No 2.448 1.607 Yes No 

Vindesine No Yes 1.174 No No No 2.761 1.683 Yes No 

Vinflunine No Yes 0.467 No No No 2.414 2.729 Yes No 

Amrubicin No Yes 0.365 No No No 2.311 2.267 No No 
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Conclusions 3 

Improving the survival rate of clinical candidates and reducing the drug attrition is governed by multi-4 

factors, and thus, a holistic strategy that addresses key attrition factors (safety, ADME, and efficacy). 5 

Chemical space defined by physicochemical properties is vast, yet there are several design parameters that 6 

medicinal chemists can follow when designing druglike compounds (e.g., Lipinski’s Rule of Five) and 7 

defining the parameters that increase the likelihood of identifying best in class molecules is of critical 8 

importance. Understanding the fundamental relationships between physicochemical properties and in vitro 9 

and in vivo results is primary need to prospectively design compounds with an overall desired profile. As 10 

part of our efforts to further build this understanding in the Anticancer drug development space, we 11 

undertook a thorough analysis of the physicochemical properties, ADME attributes, and safety end points 12 

for 24 natural product derived anticancer drugs and 27 natural product lead candidates. We examined a 13 

comparison of eight fundamental physicochemical properties associated with these two sets of 14 

compounds: log P, log D, MW, TPSA, HBD, HBA, log S and nRot. The anticancer drug space defined by these 15 

physicochemical properties is pretty broad, but our analysis identified the optimum ranges for each of 16 

these properties. The optimal property ranges (covering almost ~80 % or more of the anticancer drugs) 17 

were found to be 200 < MW ≤ 800 Da, 1< log P ≤ 5, -6 ≤ clog S ≤ -1, 5 ≤ HBA ≤ 13, 1 ≤ HBD ≤ 5, 50 ≤ TPSA ≤ 18 

180 Å2, 0 ≤ nRot ≤ 10, log D=2.8. Analysis of in silico generated ADME data reinforced that the majority of 19 

anticancer drugs (70 %) are low permeable (Caco2 of log Papp (in 10-6 cm/s) < 0.9), and also all drugs are 20 

considered to be P-gp efflux substrates, and with low to moderate clearance rates.  21 

On the other hand, our analysis showed that for anticancer drugs, there may be a need to optimize new 22 

compounds with further reduced MW, HBA, and nRot to better match the corresponding properties in the 23 

marketed drug set. In addition, we have established meaningful correlations between the physicochemical 24 

properties specially HBA,HBD, and TPSA and ADME attributes of the molecules that might be generally 25 

applicable for the future anticancer drug development and optimization of the natural product derived 26 

anticancer leads/clinical candidates. Our study showed the meaningful correlations between 27 

physicochemical properties and toxicity profile of compounds. Log P and MW are most critical 28 

physicochemical parameter and robust predictor of toxicity profile of anticancer leads/clinical candidates  29 

We showed by our analysis that early prediction of physicochemical properties, ADME attributes, and 30 

safety attributes through in silico tools are all important parameters to enable better lead candidate 31 

selections, saving considerable time and effort in the anticancer drug development. 32 
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