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Abstract 

Background and purpose: Flavonoids are a group of phytochemicals found abundantly in various plants. 
Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to 
alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and 
inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor 
bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. 
Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown 
promising approaches to overcome such challenges. Review approach: This narrative review provides an 
overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory 
reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based 
delivery system in the preparation of the flavonoid-based drug. Key results: Various studies conducted in silico, 
in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely 
linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved 
in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase 
the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of 
these compounds. Conclusion: in Summary, we conclude that flavonoids and their derivates have given 
promising results in their development as new anti-inflammatory drug candidates, especially if they formulate 
in nanoparticles. 
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Introduction 

Inflammation is a complex and important protective response of the body to a stimulus in the form of 

stimulation by microorganisms, physical injuries, chemicals, allergic reactions or the presence of endogenous 

signals due to cell damage. In a physiological state, inflammation aims to eradicate inflammatory agents as 

well as repair the injured tissue and wounds [1-3]. In the aspect of pathomechanism, inflammation involves 

the body's immune system response, both natural and adaptive, although in most cases, the response is 

mainly initiated by the natural immune system. Inflammation is initially stimulated by the introduction of 

highly conserved pathogen- or damaged- associated molecular patterns (PAMPs and DAMPs) by pattern 

recognition receptors (PRRs) of the immune cells [4-6]. This will trigger the subsequent activation of the 

inflammatory cells such as neutrophils, eosinophils, mononuclear phagocytes, and macrophages, leading to 

the excessive production of nitric oxide (NO), prostaglandin E2 (PGE2), C-reactive protein (CRP), chemokines 

and proinflammatory cytokines such as interleukins (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α.  

The production of proinflammatory cytokines generally occurs due to the induction of nuclear factor-

kappa B (NF-κB), a transcription factor that plays a key role in the regulation of inflammation. In addition to 

the release of several molecules above, the inflammatory process is also accompanied by the release of a 

number of bioactive lipid mediators such as thromboxane, prostaglandins and prostacyclins on the initiative 

of the phospholipid conversion cascade by phospholipase and cyclooxygenase enzymes. The release of 

cytokines, chemokines, and mediators and these inflammatory molecules then triggers the appearance of 

inflammatory signs such as calor, dolor, rubor, tumour and functio laesa, and if it continues, it can cause a 

worse impact [3,7].  

However, the protective function of inflammation can shift to the detrimental effects caused by the 

uncontrolled and excessive inflammatory response. In this condition, inflammation may disturb the homeo-

stasis of the body's physiological processes and eventually develop into an inflammatory disorder [1-3]. 

Several studies have demonstrated that inflammation is associated with developing and worsening various 

non-communicable disease-associated inflammation disorders, such as autoimmune diseases, 

neurodegenerative diseases, cancer, diabetes mellitus, and cardiovascular diseases [1,8]. These findings 

support the development of anti-inflammatory drugs to prevent the progression of the diseases.  

Advances in the last few decades have revealed many facts about the benefits of various plant metabolites 

against inflammation. Curcumin, resveratrol, and capsaicin have been previously reported to have the ability 

to decrease the production of the proinflammatory cytokines IL-1β, IL-6, and TNF-α, inhibit cyclooxygenase-

2 (COX-2) and the inflammatory pathways (e.g., NF-κB, mitogen-activated protein kinase (MAPK), and 

activator protein 1 (AP-1) [9,10]. 

Of several plant metabolites with potential anti-inflammatory action, flavonoids have attracted much 

interest. Several studies have reported the activity of flavonoids in interfering with inflammatory signalling 

pathways and key enzymes, leading to the inhibition of the release of pro-inflammatory proteins and mediators 

[8,11]. However, the current problem is that these compounds have poor bioavailability and pharmacokinetic 

profiles. Advances in nanotechnology have brought promising approaches in improving the bioavailability and 

increasing the effectiveness of these compounds as anti-inflammatory drug candidates [12,13]. 

In our review, we summarize the latest scientific findings regarding the benefits of flavonoids, 

pharmacokinetics, and their development based on nanomedicine, as this technology has become a solution in 

the delivery and improvement of drug effectiveness, including drugs used to impede inflammatory conditions. 
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Mechanisms of inflammation 

As a fundamental biological process, inflammation is the protective response to tackle invading pathogens, 

antigens or damaged cells or tissues. It provides a defence mechanism to eliminate harmful substances and 

perform tissue repair [14,15]. At the molecular and cellular level, inflammation is characterized by five major 

signs: redness, heat, pain, swelling and functional loss. These changes can be triggered by two main causes, 

including infectious and non-infectious-related causes. The presence of these causes in the body will be 

recognized by receptors in the body that are subsequently followed by the activation of the inflammatory 

cascade, the release of the markers, and the recruitment of the inflammatory cells [16]. 

Table 1. Various causes that can trigger the activation of the inflammatory cascade. 

Infectious causes Non-infectious causes 

Bacterial  
Flagellin, meso-diaminopimelic acid, lipopeptides, muramyl 
dipeptide, lipopolysaccharides, peptidoglycans, microbial 
DNA, toxoid. 

Physical  
Ionizing radiation, burnt, physical injury, the 
presence of foreign bodies, trauma, frostbite, 
blunt object. 

Fungi 
Zymosans 

Chemical  
Toxins, fatty acids, acidic environment, alcohol, 
and chemical irritants. 

Viruses  
Single or double-stranded RNA 

Biological 
Damaged or death cells  

 
Allergen  
Pollen, chemical compounds 

 
Psychological  
Excitement 

The recognition of PAMPs and DAMPs by PRRs 

Tissue injury, cell-infected pathogens, microbial invasion, or death cells associated with necroptosis or 

pyroptosis will release PAMPs or DAMPs. PAMPs are unique structures in microbes or pathogens (e.g., LPS, 

β-glucan, flagellin, spike, DNA, RNA) that can be recognized by immune cells and trigger their activation 

[17,18]. Meanwhile, DAMPs are endogenous molecules that are hidden from recognition by the immune 

system and will only be released when cell damage occurs as a signal to activate innate immune cells Several 

DAMPs released by damaged cells include high mobility group box 1 (HMGB1), histones, ATP, heat shock 

proteins, fibrinogen, versican, uric acid, and mitochondrial components such as N-formylated peptides, C-

phosphate-G (CpG), DNA repeats, and mitochondrial DNA (mtDNA) [19]. 

Both PAMPs and DAMPs will be recognized by PRRs presented on innate immune cells such as neutrophils, 

monocytes, dendritic cells, macrophages, and other inflammatory cells [18,20]. Neutrophils are the first 

leukocytes migrating to the injured or infected tissue to kill pathogens through the phagocytic mechanism 

and granule secretion. This process involves the release of reactive oxygen species (ROS), hydrolytic enzymes, 

antimicrobial peptides, chemokines/cytokines, lipid mediators, as well as neutrophil extracellular traps 

(NETs) to initiate inflammation and monocyte activation. Upon this process, monocytes and macrophages 

will also migrate to the site of inflammation within a few hours to further promote inflammation as well as 

be involved in tissue repair [17,20]. 

Innate immune cells have various PRRs that recognize DAMPs and PAMPs, trigger phagocytic processes, 

and mediate inflammation. There are 4 classes of PRRs, including Toll-like receptors (TLRs), NOD-like 

receptors (NLRs), C-type lectin receptors (CLRs), and RIG-I-like receptors (RLRs) [21,22]. TLRs are a highly 

conserved subclass of PRRs that are localized in transmembrane (TLR1, 2, 4, 5, 6, and 10) and in intracellular 

(TLR3, 7, 8, and 9). They can recognize various DAMPs and PAMPs to trigger further activation of the MyD88 

signalling pathway or TRIF-dependent signalling pathway to induce the production of proinflammatory 
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cytokines and interferon-gamma. NLRs and RLRs have sensors that are located in the cytoplasm. However, 

they play different functions. RLRs are generally more specific for recognizing genome viruses (ssRNA and 

dsRNA) and trigger the production of IFNs and inflammatory cytokines. Meanwhile, NLRs tend to recognize 

PAMPs associated with bacteria (e.g., peptidoglycans, gamma-d-glutamyl-meso-diaminopimelic acid, and 

muramyl dipeptide) and some DAMPs (e.g., uric acid, histones, biglycan, hyaluronan). Recognition by these 

NLRs triggers the activation of the NF-kB signalling pathway [19,23].  

Furthermore, CLRs are unique PRRs that are located on the transmembrane and are characterized by the 

presence of a carbohydrate-binding domain in their receptors. They can recognize several pathogenic 

molecules (e.g., carbohydrates presented on bacteria, fungi, and viruses) as well as damaged cells (e.g. 

SAP130, F-actin). This recognition will trigger the activation of the NF-kB signalling pathway either through 

TLR modulation or directly through spleen tyrosine kinase (SYK) and RAF1 pathways. The interaction between 

CLRs and SYK also triggers the activation of MAP kinase [19,23]. 

Lipid-based signaling: arachidonic acid-derived eicosanoids 

Recognition of DAMPs and PAMPs by TLRs leads to the rapid phosphorylation of MAPK. The presence of 

MAPK will lead to the activation of cytosolic phospholipase A2 (cPLA), an enzyme that can cleave membrane 

phospholipids to produce arachidonic acid (AA) as the primary eicosanoid precursor [24,25]. Cytoplasmic AA 

can further be metabolized by COX, lipoxygenases (LOX), or cytochrome enzymes (CYP) to produce oxygenated 

derivatives of eicosanoids including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), lipoxins (LXs), 

hydroxyeicosatetraenoic acid (HETEs), epoxyeicosatrienoic acids (EETs), and eicosatetraenoic acids (ETEs). In 

addition to using arachidonic acid, eicosanoids can also be synthesized from other polyunsaturated fatty acids 

(PUFAs) such as di-homo-γ-linolenic acid (DGLA), α-linolenic acid (ALA), docosahexaenoic acid (DHA), or 

eicosapentaenoic acid (EPA). These eicosanoids can increase nerve pain signals and vasodilation in tissues that 

cause pain and swelling in the injured or invaded area [25-29]. COX is a highly conserved enzyme that plays an 

important role in the inflammatory process, making it a popular target for therapy like non-steroidal 

inflammatory drugs (NSAIDs). They exist in two isoforms, namely COX-1 and 2, and are responsible for the 

conversion of AA to various prostaglandins and thromboxanes [25,27]. Furthermore, LOX (such as 5-LOX, 8-LOX, 

12-LOX, and 15-LOX) is an AA-metabolizing enzyme that works by inserting molecular oxygen on its substrate 

to produce hydroperoxy eicosatetraenoic acids (HPETE). HPETE is an intermediate product that can be further 

converted to various eicosanoids, including HETEs, LXs, and hepoxilins. Meanwhile, CYP is associated with the 

metabolism of AA into HETEs and EET on the regulation of inflammation in certain organs such as the heart, 

blood vessels, and several other organs. However, despite this, drug development through this route is in lack 

of interest [29]. It is noteworthy that in addition to these afore mentioned enzymes, drug development is also 

carried out by targeting another enzyme called cytosolic phospholipase A2. 

Release of proinflammatory chemokines and cytokines 

Recognition and binding of pathogen and damaged cell molecules by PRRs induce innate immune cells to 

release small signalling molecules, namely chemokines and cytokines, as a cascade of protective responses 

against invaded pathogens and repair of tissue injury. Cytokines are small proteins secreted by immune cells 

to facilitate interaction and communication between cells. These proteins exist in several terms based on 

their origin, including lymphokine (secreted by lymphocytes) and monokine (secreted by monocytes), 

interleukins (secreted by certain lymphocytes but acting on other lymphocytes) as well as their activity, e.g. 

chemokines (cytokines with chemotactic activities) [30,31]. Cytokines play an important role in inflammation 

both as inflammatory stimulants (proinflammatory cytokines) such as IL-1β, IL-6, and TNF-α and those 

inhibitions of inflammatory (anti-inflammatory cytokines), e.g., IL-10, IL-1RA, IL-4, IL-11, and IL-13. 
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Proinflammatory cytokines are highly secreted by activated and polarized macrophages for the upregulation 

of inflammatory reactions and mediate remote adaptive immunity during tissue or cell injury, invasion of the 

pathogen, and inflammation. Some evidence reported that IL-1β can also be secreted by monocytes, 

fibroblasts, and endothelial cells during the stimulation of PRRs. Expressed IL-1β will be further activated by IL-

1-converting enzyme (ICE) or caspase-1 and followed by forming a complex with their receptor. This situation 

causes signal transduction leading to the activation of MAPK and NF-κβ to produce proinflammatory cytokines. 

Furthermore, similar to IL-1β, TNF-α is also secreted by other cells, including monocytes, T cells, mast cells, 

natural killer (NK) cells, keratinocytes, fibroblasts, and neurons. Their proinflammatory effect predominantly 

appears after their binding to tumour necrosis factor receptor 1 (TNFR1) and further facilitates activation of the 

c-Jun N-terminal Kinase (JNK), NF-κB, and MAPK signalling pathways. Meanwhile, IL-6, which is also expressed 

by neutrophils, fibroblasts, both T and B cells, endothelial cells, keratinocytes, hepatocytes, and bone marrow 

cells, first binds to IL-6R to mediate inflammation through activation of signal transduction via the gp130 

proteins and lead activation of the JAK/STAT signalling pathway [32]. 

The other highlighted cytokine in inflammation is pro-inflammatory chemokine. Chemokines, also known as 

chemotactic cytokines, are proteins of the cytokine family that play an important role in the chemoattraction and 

migration of leukocytes to various sites of tissue injury. Inflammatory chemokines will be secreted when there is 

an inflammatory stimulus (both pathogens or damaged cells) to mediate further the innate and adaptive immune 

response [30,33]. Chemokines induce the expression of integrins such as 2-integrin into leukocytes to facilitate 

diapedesis of these cells to the site of injury. Cytokine signalling can be transduced by binding to the seven-

transmembrane G protein-coupled receptor (GPCR) found throughout the body [32,33]. 

Involvement of MAPK and NF-κβ signalling pathways 

In response to the introduction of PRRs to PAMPs or DAMPs activating the innate immune cells like 

macrophages, a series of intracellular signals are also activated to produce inflammatory mediators such as 

IL-1β and TNFα. They will trigger a signalling cascade involving the adapter protein MyD88 to lead to 

activation of the host MAPK pathway, which is further followed by activation of transcription factor NF-κB. 

This, in turn, induces the production of proinflammatory cytokines [34-36]. Under normal conditions, the 

presence of IκB proteins in the cytoplasm could inhibit NF-κB. The presence of a stimulus in PRRs triggers 

signal transduction leading to the formation and activation of IκB kinase (IKK) that is composed of IKKα and 

IKKβ, as well as IKKγ as the regulatory subunit. IκB will be further phosphorylated to lead activation of NF-κβ. 

Taken together, both signalling pathways play an important role in the inflammatory processes because they 

are the suppliers of proinflammatory cytokines and thus serve as targets for drug action [15,21,36]. 

Flavonoid and its derivates 

Flavonoids are a class of compounds with a low molecular weight based on the 2-phenyl-chromone 

nucleus (Figure 1).  

 
Figure 1. The basic structure of flavonoids. 
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The basic structure of flavonoids consists of aglycones, but their presence in nature is usually bound to 

glycosides and methylated derivatives. They are produced via the shikimic acid pathway using acetic 

acid/phenylalanine derivatives as the precursor. Flavonoids are traditionally classed by oxidation degree, ring 

C annularity, and ring B connectivity [1,37]. They comprise 6 subclasses, as presented in Table 2 [38,39]. 

Among higher plant families and genera, the flavones and flavonols are the most commonly highly conserved 

encountered and marked by the presence of the 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) 

structures in their backbone [40]. 

Table 2. Subclasses of flavonoids 

Subclass Structure Type Ref. 

Flavones 

 

Apigenin     Luteolin 
Acacetin     Diosmetin 

Chrysoeriol 
[41,46-50] 

Flavonols 

 

Quercetin     Kaempferol 
Galangin      Myricetin 

Fisetin 
[51-56] 

Flavanols 

 

Catechin      Epicatechin 
Gallocatechin 

[57] 

Flavanones 

 

Naringenin      Naringin 
Hesperidin      Hesperetin 

Eriodictyol      Silybin 
[43,58] 

Isoflavones 

 

Genistein      Daidzein 
Glycitein      Formononetin 

Biochanin A 
[59] 

Anthocyanins 

 

Cyanidin      Malvidin 
Peonidin      Delphinidin 

Pelargonidin      Petunidin 
[60] 

 

Flavones are distinct from other flavonoids because their skeleton contains a double bond between C2 

and C3. Also, there is no substitution at their C3 position, while flavonols possess hydroxyl substitution at 

that position. Further, flavones are oxidized at the C4 position [41,42]. Flavanones and flavanols have 

saturated bonds between C2 and C3 and frequently coexist in plants with flavones and flavonols [37]. 

Flavanones have a flavan nucleus formed by two aromatic rings (A and B) linked by a dihydropyrone ring (C). 

The presence of a saturated C2–C3 bond, a chiral carbon atom at the C2 position, and no substitution at the 

C3 position of the C ring distinguish flavanones from the other two classes of flavonoids, i.e., flavones and 

flavanols [43]. Flavanols (flavan-3-ols) are heterocyclic compounds that contain a saturated heterocyclic ring, 

a single bond between C2 and C3, and a hydroxyl group at the C3 position. Unlike other flavonoids, flavanols 

are only found in food as aglycones (the glycosylated state is excluded). Additionally, they are found in 

monomeric form as catechins and epicatechins, as well as in polymeric form as tannins [44]. Isoflavones are 
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secondary metabolites formed by rhizobial bacteria and leguminous plant defence responses [45]. 

Isoflavones, like daidzein, include 3-phenylchromones. Chalcones are ring C-opening isomers of dihydro-

flavones that are responsible for plant colour. Anthocyanidins are a category of significant chromene 

pigments that exist as ions. Other flavonoids without the C6—C3—C6 structure include biflavones, furan 

chromones, and xanthones. Glycosides are the most common extant flavonoid form. The structure of 

aglycones dictates preferred glycosylation sites [37]. 

Pharmacokinetics and bioavailability 

Bioavailability 

To predict and explain the effect of flavonoids at their site of action, knowledge of the pharmacokinetics, form, 

and concentration of these compounds in plasma must be known. Animal and human studies have found that 

these compounds have poor oral bioavailability, which might be attributed to the loss of the compounds during 

the absorption and metabolism phases. In addition, these compounds also tend to have poor water solubility, low 

permeability, as well as poor stability profile [13,61]. Therefore, various studies have been carried out to engineer 

their structure to increase their water solubility and bioavailability and thereby increase their activity as a drug 

candidate as have been demonstrated in the treatment of several diseases [13,46,62]. 

Absorption 

Absorption of flavonoids in the intestine can occur through several mechanisms, namely active transport, 

passive diffusion, or both. Some flavonoids, such as quercetin, are absorbed completely in the small intestine 

by involving sodium-dependent glucose transporters 1 (SGLT1). These transporters are located in the apical 

membrane of intestinal epithelial cells that utilize Na+/K+-ATPase pumps to transport this flavonoid. In 

addition, the absorption of this compound is also carried out by glucose transporter 2 (GLUT2) located on the 

basolateral membrane of the intestine. However, the exact mechanism used by GLUT2 in transporting 

flavonoids is still unclear [63-65]. Further, quercetin is hydrolysed by the intracellular enzymes called lactase-

phloridzin hydrolase (LPH) and cytosolic β-glucosidase (CBG) in the aglycone form so that it is easily absorbed 

through the small intestine. In addition to quercetin, these enzymes can work on other flavonoid compounds. 

However, the effectiveness of these enzymes depends on the glycosides present in the flavonoid structure 

[41,64,66,67]. It should be noted that each compound grouped as flavonoids have different maximum 

absorption times. A study that was conducted in rats revealed that the absorption of some flavonoid 

derivatives such as apigenin, luteolin, and glucosides generally occurred rapidly with a maximum absorption 

time (tmax) of about 1 hour for maximum plasma concentration (Cmax) of 1 to 100 μmol/L and it will change 

depends on co-consumed food [41,68]. 

Distribution 

In circulation, flavonoids can bind to several blood proteins [69]. Gecibesler & Aydin [70] demonstrated 

that flavonoids could bind strongly to human serum albumin (HSA). HSA is an essential protein in blood 

plasma found abundantly in the body [71]. This soluble protein can bind and transport various metabolites 

and organic compounds such as flavonoids, unesterified fatty acids, hormones, and metal ions to various 

tissues throughout the body [72,73].  

Research by Boer et al. [74] revealed that flavonoid compounds, in particular quercetin and its derivatives, 

are widely distributed in rat tissues with the highest levels in the lungs, testes, and kidneys, while the brain, 

white fat, and spleen showed the lowest levels. This group also reported that this compound was deposited 

in several other organs in the rat, including the thymus, heart, liver, brown fat, bone, and muscle. Meanwhile, 
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in pigs, the deposition of quercetin was more abundant in the liver and kidney tissue after a quercetin diet 

of 500 mg/kg with a lesser extent in the brain, heart, and spleen . 

A similar finding was reported by Beiger et al. [75] demonstrating that the distribution of quercetin and 

some of its derivatives was found to be highest deposited in the liver, kidney, jejunum, lung, and muscle 

(longissimus dorsi) after a single dietary quercetin dose (25 mg/kg) in pigs. Furthermore, quercetin deposition 

was more distributed when administered at a dose of 50 mg/kg per day for four weeks, including colon 

(higher), kidney, jejunum, liver, lymph node, mesentery, lung, white adipose tissue, muscle (diaphragm), 

muscle (longissimus dorsi), and brain (as the smaller deposition).  

Metabolism 

After ingestion, approximately 10 % of flavonoid glycosides are absorbed in the upper gastrointestinal 

tract, while the remaining 90 % pass through the small intestine to reach the large intestine as unmetabolized 

and unabsorbed flavonoids. The unabsorbed flavonoids undergo a further enzymatic transformation in the 

small intestine, such as oxidation, reduction, and decarburization, as the preparatory steps before entering 

the large intestine. Once in the large intestine, they are hydrolysed and cleaved to remove glycosides and 

produce flavonoid aglycones, which are further metabolized to ring fission products. This process is carried 

out by the involvement of the lactase-phlorizin hydrolase (LPH) and colonic enzymes produced by the 

intestinal microbiota [41,76-78]. 

Flavonoids then extensively undergo two metabolic phases, namely phases 1 and 2, which occur in 

enterocytes and hepatocytes [79,80]. In the first phase, which takes place in hepatocytes, flavonoids will be 

oxidized by the cytochrome P450 (CYP450) enzyme to produce a minor contribution to flavonoid clearance. 

Different isoforms of the CYP450 enzyme play the metabolic process of several flavonoid-derived compounds 

in this phase. Isoform CYP2C9 is the most efficient enzyme for the metabolism of galangin followed by CYP1A3 

and CYP1A1. Meanwhile, most of the oxidation of galangin is determined by the action of CYP1A2 and 

followed by CYP2C9 and CYP1A1 [81]. Another investigation reported that apigenin was metabolized by 

CYP1A1, CYP2B, and CYP2E to form three monohydroxylated derivatives [82].  

In contrast to the first phase, phase II metabolism occurs in enterohepatic and enteric and is predominant 

in the direction of flavonoid disposition. In this stage, flavonoids undergo two main processes, namely 

glucuronidation and sulfation. While the former is mediated by UDP glucuronosyltransferases (e.g., UGT1A1, 

UGT1A8, and UGT1A9), the latter is catalysed by sulfotransferases (e.g., SULT1A1 and SULT1E1). Methylation 

can also occur in this phase. The process is mediated by a group of enzymes known as methyltransferases 

mostly found in many tissues, including the liver and intestines. The most common methylation reaction 

associated with flavonoid metabolism is O-methylation which occurs in the liver and is catalysed by catechol-

O-methyltransferase (COMT) [41,64,69,79,83,84]. The products of these metabolic processes will then be 

circulated and deposited in various body components to carry out their actions, including their anti-

inflammatory activities, as elaborated in the section “Flavonoid derivates as anti-inflammatory agents and 

their mechanisms of action”. 

Excretion  

Flavonoids are mainly excreted through the urine. A study reported that about 60-80 % of the metabolites 

of anthocyanins are excreted in the urine [85,86]. The excretion pathway of flavonoids depends on the 

conjugate form and the site of elimination. Glucuronide formed in the intestine tends to enter the systemic 

circulation directly and is excreted in the urine, while the products formed in the liver are mainly eliminated 
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through the bile. This indicates that glucuronidation in enterocytes Favors the loss of flavonoids from the 

enterohepatic circulation (EHC) into the systemic circulation.  

EHC-undergoing flavonoid compounds may also be further sulphated in the intestine or hepatocytes, 

leading to urinary excretion (without bypassing biliary excretion). Another study in isolated human faecal 

colonic bacteria found the presence of flavonoids such as quercetin, indicating the importance of the faecal 

route in facilitating the excretion of these compounds [76,86,87]. To sum up, the biological activities of 

flavonoids are diminished by the fact that these compounds have low aqueous solubility and poor 

bioavailability, as depicted in their pharmacokinetic profile described above. This leads to the development 

of various strategies to increase their solubility and oral bioavailability, including the development of 

nanoparticle-based delivery systems, which will be discussed in the section “Application of nanomedicine as 

delivery system of flavonoid derivates”. 

 
Figure 2. Pharmacokinetics of flavonoid. 

Flavonoid derivates as anti-inflammatory agents and their mechanisms of action 

Various studies of in silico, in vitro, in vivo, and clinical trials have demonstrated that flavonoids have 

potential activities in mitigating inflammation [11,88]. They can modulate various key points in regulating 

inflammation in the early and late stages. As displayed in Table 1, these compounds consist of several 

subclasses, and they can exert their anti-inflammatory properties via various mechanisms, including 

inhibition of the various inflammatory signaling pathways such as NF-κB [88], MAPK [89], blockage of pro-

inflammatory enzymes (COX-1, COX-2, and 5-LOX) [11], inhibition of proinflammatory cytokines release 

(TNFα, IL-1β, and IL-6), and suppression of other inflammatory proteins [62]. The summary of the putative 

anti-inflammatory mechanisms of flavonoids is presented in Table 2 and Figure 3. 
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Table 3. Anti-inflammatory activity of various flavonoids. 
Class of 

flavonoid 
Sources Flavonoid compound Study Target molecules References 

Flavanol 

Black and green tea, red 
wine, red grapes, 
bananas, apples, 

blueberries, peaches, 
and pears 

Catechin, 
Epigallocatechin-3-
galate, Epicatechin 

gallate. 

In vitro and 
in vivo 

NF-κB, IL-6, iNOS, COX-2, IL-1β, 
MAPK pathway, NOX, ROS, IKK, IL-

8, JNK1/2, p38, JAK/STAT1 
pathway, Nrf2, and PI3K/Akt 

[8,89-93] 

Flavanone 

Paulownia tomentosa 
fruits 

Tomentodiplacone O 
In silico, in 
vitro and In 

vivo 
COX-1, COX-2, and 5-LOX [11] 

Citrus fruits Hesperetin 
In vitro, ex 

vivo and 
vivo 

TLR4, NF-κB, TNF-α, NO, PGE2, 
iNOS, I-κB, JNK1/2, p38, MAPK and 

COX-2 
[62,94] 

Grapefruits, sour 
orange, tart cherries, 

tomatoes, Greek 
oregano. 

Naringenin 
In vitro and 

in vivo 

TNF-α, IL-1β, IL-6, NF-κB, Nrf2, 
TRPV1, TRPM3, TRPM8, caspase-3, 

Bad, Bax, TLR4, iNOS, COX2, 
NOX2, MAPK, TGF-β1, hsp70, 

MMP-3, IL-33, and HO-1 

[95-97] 

Flavanone 

Citrus fruits Naringin 
In vitro, and 

in vivo 

TNF-α, IL-1β, IL-6, IL-8, NF-κB, 
smad-7, TGF-β, iNOS, VEGF, pol-γ, 

caspase-3, smad-3, and Bax 
[98-102] 

Citrus fruits Hesperidin 
In vitro and 

in vivo 

ROS, CD14, NF- κβ, E-selectin, 
TNF‑α, IL‑1β, iNOS, IL‑6, MCP‑1, 

ICAM-1, COX-2, IFN-γ, IL-2, IL-4, IL-
10, p65, Foxo1, Foxo3 and Nrf2 

signaling pathway, MMP-3, MMP-
9, IL-10, TIMP-1, and SOX9 

[103-110] 

Citrus fruits Eriodictyol 
In vitro and 

in vivo 

NF-κB, p38, MAPK, ERK1/2, JNK, 
TNF-α, IL-6, Nrf2 pathway, MIP-2, 

iNOS, IL-8, FOXO1, PI3K/Akt 
pathway, COX-2, PGE2, IκBα, p-
p65, ERK1/2, JNK, NO and IL-1β 

[111-114] 

Milk thistle Silybin 
In vitro and 

in vivo 

ERK, MEK, MCP-1, IL-5, IL-10, IFN-
γ, IL-17A, GM-CSF, IL-1β, TGF-β, IL-

6, Ik-Bα and Raf 
[115,116] 

Flavonol 
Berries, grapefruit, 

onion, olive oil, and red 
wine 

Fisetin, 
In vitro, and 

in vivo 

MyD88 and NF-κB signaling 
pathways, NO, PGE2, IL-6, TNF-α, 

iNOS, COX-2a, IL-1β, Ser9, β-
catenin, IL-2, IL-4, IFN-γ, IL-18 and 

IL-5 

[117,118] 

Kaempferol 

In silico, in 
vitro, in 

vivo, and 
clinical trial 

MyD88 and NF-κB signaling 
pathways, IL-6, IL-1β, IL-18, IL-8, 

TNF-α, Akt, Src, Syk, IRAK1, IRAK4, 
Nrf2, TLR4, iNOS, IL-10, IL-12, p70, 
LOX, ROS, ICAM-1, E-selectin, CRP, 

COX1 and COX2 

[51, 119-124] 

Myricetin 
In vitro, and 

In vivo 

NO, iNOS, PGE2, COX-2, TNF-α, IL-
6, NF-κB, IκBα, Nrf2, STAT1, I FN-β, 
IL-12, IL-1β, JAK/STAT1, NOX2/p47 

phox, RANKL/RANK, MAPK, 
MALAT1, AKT, IKK, Akt, and mTOR. 

[55, 125-127] 

Quercetin 
In vitro, in 
vivo and 

clinical trial 

TNF-α, IL-6, IL-8, IL-1β, IL-18, IL-12, 
NF-κB, JNK1/2, c-Jun, ERK1/2, 
MCP-1, NO, iNOS and COX-2, 

AMPK, Sirt1, CD80, CD86, Dabs, 
Src, PI3K, Akt, MHC-II. 

[128-133] 

Flavone 
Magnolia officinalis, 

fruit peels, red peppers, 
and tomato skins 

Apigenin 
In vitro, and 

In vivo 

COX-2, NF-κB, TLR4, TGF-β, TNF-α, 
IL-1β, IL-6, IL-2, IL-8, NO, iNOS, AP-

1 (c-Jun, c-Fos, and JunB), ERK, 
MCP-1, IκBα, ICAM-1, ROS, Akt, 

mTOR, JNK, and p38-MAPK 

[134-139] 

chrysin 
In vitro, and 

In vivo 
IL-1β, IL-6, NLRP3, TGF-β, TNF-α, 

NF-кB 
[140-142] 

luteolin 
In silico in 

vitro, and In 
vivo 

NF-κB, MAPK, AP- 1, SOCS3, 
STAT3, IL-1β, IL-6, IL-2, IL-8, IL-12, 
IL-10, IL-17, TNF-α, IFN-β, CCL2, 

CXCL2, CXCL8, and CXCL9, NLRP3, 
TGF-β, NF-кB, iNOS, NO, COX− 2, 
PGE2, GM-CSF, MCP− 1. MMP− 2 

and MMP− 9. 

[46] 
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Class of 
flavonoid 

Sources Flavonoid compound Study Target molecules References 

Isoflavone Soya bean and peanuts 

Daidzin 
In vitro and 

In vivo 

TNF-α, IL6, IL-1β, IL-8, NO, iNOS, 
Cxcl2, PPARα/γ, p38, IκB-α, STAT1, 

Ccl2, and JNK 
[143-146] 

genistein 
In vitro and 

In vivo 

IL-6, IL-1β, IL-8, IL-12, IL-20, IL-23, 
IFN-γ, TNF-α, VEGFA, CCL2, TNF-α, 

NF-κB, PGs, iNOS, ROS, AMPK, 
MAPK, JNK, TLR4, IκBα, IKK, COX-

2, MCP-1, KC, ICAM-1 and VCAM-1 

[147,148] 

Anthocyanins 
Cherry, Elsberry, 

blueberry, hibiscus 
plants, and strawberry 

Cyanidin, delphinidin, 
malvidin 

In vitro and 
in vivo 

NF-κB, MAPK, MEK1/2-ERK1/2, 
JNK, IL-1β, IL-6, TNF-α, COX-2, 

PGE2, iNOS, NO, MCP-1, ICAM-1, 
VCAM-1, and CINC-1. 

[149-154] 

Flavanonols Milk thistle Silibinin 
In vitro, in 
vivo, and 

clinical trial 

NF-κB, MAPK, TNF-α, IL-6, IL-8, IL-
1β, IL-10, MMP-9, COX-2, PGE2, 

PGF2α, Th17, SIRT1, cyclin D1, Bcl-
2, iNOS, NO, VEGF, MMP-1, MMP-

3, MMP-13, PI3K/Akt 

[88,155-159] 

 
Figure 3. Mechanism of action of flavonoids as an anti-inflammatory agent. 

Flavonoid inhibit eicosanoids metabolism and function 

Prostaglandins and leukotrienes are potent lipid mediators derived from phospholipase-released 

arachidonic acid that play a critical role in inflammation [160]. They are produced from locally damaged cell 

membranes with the help of several enzymes such as phospholipase A2 (PLA2), cyclooxygenase, and 

lipoxygenases as previously explained (in section Lipid-based signaling: arachidonic acid-derived 

eicosanoids). Several approved drugs such as corticosteroid-including drugs (such as methylpredisolone etc.) 

and nonsteroidal anti-inflammatory drugs (NSAIDs; e.g., mefenamic acid, indomethacin, ibuprofen) have 

targeted these enzymes for the treatment of several inflammation-related diseases such as pain, injury, 

asthma, allergies, and inflammation. Elevated COX-2 levels have indeed shown adverse effects on inflame-

matory conditions and even on some other inflammation-related diseases such as tumor development, so 

their suppression could significantly suppress worsening prognosis [161].  
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Different studies demonstrated that flavonoid-derived compounds can inhibit enzymes, including 

phospholipase A2, cyclooxygenase, and lipoxygenases, improving inflammatory disorders [52,160,162,163]. 

Several pieces of evidence have proposed their effect to block the pathway and mediate improvement in an 

intestinal inflammatory response. A study by López-Posadas [162] reported that flavonoids could inhibit the 

formation of prostaglandins from the AA pathway by suppressing epithelial COX-2 expression during 

inflammation in Intestinal epithelial cells. This finding is supported by another study reported by Serra and 

colleagues that advocated C3G to provide strong inhibitory activity against COX-2 and lead downregulation 

of several inflammatory mediators in the colonic carcinoma cell [164].  

Apart from intestinal inflammation, several flavonoid derivative compounds have also been reported to 

be effective in inhibiting eicosanoid production in other inflammatory cases. A study by Husain et al. 

suggested that epigallocatechin-3-gallate (EGCG) can downregulate COX-2 in human prostate carcinoma 

LNCaP and PC-3 cells in a dose-dependent fashion [165]. Similar findings demonstrated the efficacy of EGCG 

could downmodulation of COX-2 were further lead reduction of PGE2 levels [166,167]. In another finding, 

giving EGCG results in the inhibition of NF-κB that in order leads to the inhibition of COX-2 promoter activity 

[168]. Several other flavonoid derivative compounds, such as luteolin, kaempferol, hesperetin, and naringin, 

have been shown to have inhibitory effects on this COX-2 enzyme [161,169]. Topical pre-treatment of 

kaempferol could attenuate UVB-induced COX-2 expression in mouse skin. This effect is hypothesized to arise 

through the modulation of Src kinase activity in the mouse skin [161]. Another promotion study 

demonstrated by He and colleagues [170], isolated and elucidated flavonoid compounds from Hosta 

plantagine and found twelve 12 different ones that showed significant inhibitory effects to both enzyme 

isoforms from 53.00 to 80.55 % (in COX-1) and 52.19 to 66.29 % (to COX-2) in concentration 50 μM. 

The increase in eicosanoids is also mediated by the COX-1 isoform, especially in some cases of neuroinfla-

mmation. Elevated COX-1 levels in microglia may explain PGE2 levels in the cerebrospinal fluid of Creutzfeldt-

Jacob disease (CJD) patients associated with shorter survival [171]. Regarding that, it has been reported that 

quercetin and tomentodiplacone-O could strongly inhibit COX-1 [11]. Similar to this finding, Kaempferol has 

been advocated to have an inhibitory effect on COX-1 in vitro. In addition to the cyclooxygenase pathway, 

several researchers have reported that this compound can inhibit the expression of lipooxygenase (LOX) 

enzymes which play an important role in the metabolism of arachidonic acid into leukotrienes, which is involved 

in various inflammatory-related diseases including asthmatics, rheumatoid arthritis, psoriasis, inflammatory 

bowel disease etc. [51,172]. Administration of several other flavonoid derivative compounds, such as quercetin 

and luteolin has also been shown to have a strong inhibitory effect on these enzymes to lead to improvement 

in symptoms of inflammation-related leukotrienes expression [169].  

The effectiveness of flavonoids in inhibiting the formation of eicosanoids in the AA-related pathway has also 

been proposed through the PLA2 enzyme inhibition mechanism. This enzyme plays an important role in the 

process of converting membrane phospholipids into product intermediates, namely arachidonic acid, before being 

further converted into lipid mediators. Many recent studies have reported the activity of various flavonoid 

derivative compounds having good activity in inhibiting this enzyme and treating inflammation [173,174]. A study 

conducted by Enechi and reported colleagues [175] that flavonoid-rich extract from Peltophorum pterocarpum 

stem-bark provide a strong inhibitory effect in PLA2 and generate downmodulate of the inflamematory symptoms 

of paw oedema induced by egg albumin, in comparison with prednisolone as well approve anti-inflammatory 

drugs that act in PLA2. In accordance, several other studies have also demonstrated compounds such as quercetin, 

kaempferol, and galangin showing promising inhibitory activity against PLA2 [173,174,176].  
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Flavonoid inhibit MAPK and NF-κβ signalling pathways 

Various evidence has suggested the crucial role of Nuclear Factor Kappa Beta (NF-κβ) and Mitogen-activated 

protein kinases (MAPKs) as two main signaling pathways that are interrelated in underlying inflamemati-

on [177]. NF-κβ accumulation has been implicated with increased transcription and expression of various 

inflammatory mediators. Meanwhile, MAPKs, consisting of p38 kinase, ERK, and c-Jun NH2-terminal kinase 

(JNK), have been advocated to regulate the transcription of COX-2, iNOS, and inflammatory cytokines in 

inflammation. Therefore, increasing evidence has studied and targeted these signaling pathways in the deve-

lopment of anti-inflammatory drugs [177-179]. A study conducted by Hour and colleagues [177] reported that 

dihydromyricetin, a flavonoid isolated from Ampelopsis grossedentata has been proposed to have good and 

promising inflamematory potential by inhibiting the phosphorylation of NF-κB and IκBα as well as p38 and JNK. 

This suppression simultaneously leads to a downmodulation effect on various proinflammatory cytokines such 

as TNF-α, IL-1β, and interleukin-6, as well as increasing levels of IL-10 as an anti-inflammatory cytokine. Further-

more, inhibition of these two signaling pathways also reduces the levels of iNOS, TNF-α, and COX-2.  

In another finding, an in vivo study conducted by Ichikawa and colleagues [180] had proposed 

epigallocatechin gallate (EGCG) to have a significant effect of reducing IL-6 expression, IKK activation, IκBα 

degradation, and activation of NF-κB which in turn inhibited inflammatory events that mediated by this 

pathway. The inhibition also reduces myocardial damage after ischemia and reperfusion in rats [181]. 

Furthermore, these compounds show promising effects in inhibiting IκBα degradation and the action of NF-κB 

in binding to DNA that leads to suppressing IL-12p40 and iNOS expression in LPS-activated macrophages [180]. 

In addition to EGCG, quercetin has been reported to have good anti-inflammatory activity through the same 

mechanism as EGCG, inhibiting IκBα phosphorylation and downmodulating the NF-κB pathway [182].  

Growing evidence has been demonstrated that compounds that can inhibit JNK, p38, and IKKβ generally 

exhibit anti-inflammatory effects and suggest a relationship between MAPK and NFκB in inflamematory 

events. Flavonoid derivatives have been reported to affect the MAPK signalling pathway at various stages. A 

study has proven that EGCG is able to influence this pathway through the inhibition of ERK1/2, p-JNK, and p-

p38 in human RA synovial fibroblasts (RASFs) [183]. Another study reported that kaempferol, luteolin, 

chrysin, and apigenin exert antiinflammatory activity by inhibiting MAPK signalling pathways such as JNK, 

p38, and ERK [181]. 

Application of nanomedicine as delivery system of flavonoid derivates  

Herbs have been widely used to promote human health since ancient times. Advances in phytochemistry and 

pharmacology have made it possible to determine the composition and bioactivity of many medicinal products. It 

has been proved that the effectiveness of many herbal medicines depends on the delivery of the active 

compounds. However, their success in clinical trials has been less impressive, partly due to the compound's poor 

bioavailability [184,185]. Furthermore, the efficacy of many drugs obtained from natural sources, including 

flavonoids in their micro/macro formulations, has also been shown to have poor bioavailability and 

pharmacokinetics following their oral administration, leading to their less effectivity [184,186]. Researchers have 

developed other drug delivery methods while avoiding potential causes of decreased bioavailability, such as first-

pass metabolism and drug malabsorption in the digestive tract [187,188]. 

Recently, the use of nanotechnology has shown tremendous success in the field of drug delivery, including 

natural compound-based drugs for the treatment of inflammation. This technique formulates the natural 

compounds in the form of nanosized particles (1 to 100 nm) [189,190]. It has been suggested that the 

encapsulation of flavonoids into nanocarriers is a beneficial technique to protect drug molecules from 
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changes in their size, shape, and surface characteristics that might be caused by environmental factors. It has 

been proved that this method can increase the bioavailability of flavonoids and improve the targeted and 

controlled release profile of the natural products, which in turn increases the drug's effectiveness [185]. 

Furthermore, nano-delivery systems could protect the therapeutic agents from being enzymatically 

metabolized, resulting in their increased stability and circulation time [191-195]. The smaller size of the 

nanoparticles has also been proven to increase the penetration of the compounds compared to conventional 

topical formulations [196]. Recently, the most common types of nanoparticles used for drug delivery are 

polymer nanoparticles, including solid lipid nanoparticles, liposomes, micelles, crystalline nanoparticles, and 

dendrimers [185,197,198]. 

Solid lipid nanoparticles 

Solid lipid nanoparticles (SLNs) are nanometer colloidal carriers composed of the solid particle lipid core in 

which active substances are trapped and stabilized by surfactants [199]. Their matrix is typically composed of 

solid lipids such as glycerides, sterols, fatty acids, and waxes. In particular, SLN has recently been proposed for 

oral and dermal administration of phenolic compounds to protect them from chemical degradation [200]. Tan 

et al. [201] demonstrated that the formulation of total flavonoid-based solid lipid nanoparticles (TF-SLN) could 

produce spherical particles in shape with a uniform size distribution of 104.83 nm and a zeta potential of 28.7 

mV. Furthermore, this formulation was proved to have a better myocardial protection effect than flavonoids 

alone. Another study showed that the formulation of quercetin-loaded solid lipid nanoparticles (QSLNs) 

exhibited an increase in their bioavailability by 3.5-fold compared to quercetin alone in rats [12]. 

Polymeric nanoparticles 

Natural or synthetic biodegradable polymer nanoparticles have become prominent in the field of 

nanomedicine for targeted drug delivery to improve biocompatibility, bioavailability, safety, increased 

permeability, preferable retention time, and less toxicity [186,202]. Drugs that are conjugated to macro-

molecules such as synthetic polymers, natural polysaccharides, or proteins through covalent bonds provide 

a direct and efficient approach to modifying pharmacokinetic performance, promoting the stability of drugs, 

and preventing drug leakage or explosive release during transport [203]. 

Chitosan is the most frequently used polymer for the formulation of nano-based drugs for their delivery 

to their target of action. Wang et.al., [204] reported that the administration of the inhaled baicalein 

encapsulated with chitosan-nanoparticle could mediate delivery of this drug and lead to the reduction of IL-

5 level, enhancement of IL-12 and controlled inflammation-related asthma in mice. In addition, polymer 

nanoparticles are also effective for mediating drug delivery given topically. A study by Nan et.al. [205] 

revealed that the formulation of a topical preparation of quercetin-loaded chitosan nanoparticles led to the 

increase of percutaneous absorption and retention of quercetin in the skin and improve its effects against 

ultraviolet B radiation. 

Nanoliposomes 

Nanoliposomes are phospholipid vesicles containing one or more bilayers surrounding an aqueous core. 

Nanoliposome-based drugs are effective for the development of transdermal drugs, topical drugs, drugs used 

to target hair follicles and other uses. Nanoliposomes usually consist of phospholipids with cholesterol often 

added to improve the stability of the liposome bilayer by filling the gaps caused by incomplete packaging. 

Some of the literature report that the use of nanoliposomes in natural product-based drug, especially 

flavonoids, is effective in delivering drugs well to the targeted sites leading to the generation of desired 

effects. A study by Wang et al. [206] explained that the formulation of nanoliposome of quercetin could 
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induce type III-programmed cell death in C6 glioma cells. Furthermore, another study by Jin et al. [207] 

exhibited that treatment of apigenin-loaded D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) 

liposomes could deliver apigenin well and exert inhibitory effects on tumor growth in A549 cell-bearing mice. 

Nanoemulsions 

Nanoemulsions are formed by combining two mechanically shear immiscible liquid phases with a surfactant 

having a droplet size of less than 100 nm. The formulation of natural product-based drugs with this method is 

able to overcome the weakness of flavonoid compounds that have problems with their bioavailability by 

improving their pharmacokinetic profile. A recent study by Fuior et al. [208] demonstrated that the formulation 

of flavonoid-loaded lipid nanoemulsions (FLNs) generated good characteristics (size of 200 nm, negative zeta 

potential, a high encapsulation efficiency >80 %, good in vitro stability, and steady release). Further, this 

formulation facilitated the action of the flavonoid in reducing endothelial inflammation. This finding is 

supported by a study conducted by Zain et al. [209] investigating the relationship between the delivery of 

nanoemulsion flavonoid-enriched oil palm and its wound-healing activity. 

Self-nano-emulsifying drug delivery system (SNEEDs) 

SNEDDS is a nanoemulsion pre-concentrate in which the drug is encapsulated in an oil phase in the presence 

of a surfactant/cosurfactant, capable of forming very small nanoscale droplets/nanoemulsion when gently 

mixed with an aqueous medium. Self-emulsifying drug delivery systems are isotropic mixtures of oils, 

surfactants, solvents, and cosolvents/surfactants which are developed to improve the physicochemical as well 

as pharmacological properties of highly lipophilic drugs, including flavonoids [210-212]. It has been demon-

strated that the loading of quercetin into SNEDDs could effectively enhance the hepatoprotective activity of 

quercetin in mice suffering from hepatotoxicity [213]. Another study performed in Wistar rats confirmed that 

the formulation of apigenin into SNEDDs enhanced the oral bioavailability of the compound [214]. 

Concluding remarks 

Flavonoids are secondary metabolites found abundantly in various plants. They exist in several subclasses, 

including flavanols, flavanones, flavonols, flavones, isoflavones, anthocyanins, and flavanonols. It has been 

demonstrated that flavonoids possess potential pharmacological activities, including their potency in 

mitigating inflammation. A number of studies conducted in silico, in vitro, in vivo, and clinical trials have 

deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate 

various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. 

However, these anti-inflammatory activities have been facing challenges as flavonoids have poor solubility 

and bioavailability. To tackle these challenges, the application of nanotechnology in developing better 

pharmaceutical dosage forms has brought promising results. Various nanotechnology platforms, including 

solid nanoparticles, polymeric nanoparticles, nanoliposomes, nanoemulsion, self-nano emulsifying drug 

delivery systems, have been reported to have better action in delivering flavonoids to their targeted sites. 

These platforms can potentially increase the solubility, bioavailability, and pharmacological activity of 

flavonoids and reduce the toxic effects of these compounds. 
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