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1. INTRODUCTION 

In recent years, wearable technologies have aroused a great 
deal of interest, which is expected to further continue thanks to 
the rapid improvements in technology. The involvement of big 
companies, such as Apple and Google, has fostered the focus of 
research activities in this field with the aim of developing and 
distributing wearable products ready for various applications. 
IDTechEx (www.idtechex.com) described the wearable 
technology sector as a market with great opportunities in terms 
of expansion, one that is expected to reach 51.6 billion USD by 
2022 with a compound annual growth rate of 15.5%. In fact, 
billions of wearable electronic products are already being sold 

each year, covering various different sectors of the market, 
including military and defence, space exploration, health and 
wellness, fashion and entertainment. 

Healthcare remains one of the most interesting markets, and 
the advantages provided by wearable technologies can potentially 
establish significant cost reductions for healthcare systems. The 
use of these technologies is increasing in clinical environments, 
with Holter systems used for electrocardiographic (ECG) or 
long-term blood pressure monitoring [1]-[2], wearable integrated 
systems used in polysomnographic monitoring [3], inertial 
measurement unit (IMU)-based systems used (attached on the 
patient’s skin) to recognise and evaluate activity [4] or to assess 
postural and gait analysis [5]-[6], and a variety of other 
technologies being introduced. Furthermore, wearable devices 

ABSTRACT 
The paper presents a new e-textile-based system, named SWEET Shirt, for the remote monitoring of biomedical signals. The system 
includes a textile sensing shirt, an electronic unit for data transmission, a custom-made Android application for real-time signal 
visualisation and a software desktop for advanced digital signal processing. The device allows for the acquisition of electrocardiographic, 
bicep electromyographic and trunk acceleration signals. The sensors, electrodes, and bus structures are all integrated within the textile 
garment, without any discomfort for users. A wide-ranging set of algorithms for signal processing were also developed for use within 
the system, allowing clinicians to rapidly obtain a complete and schematic overview of a patient’s clinical status. The aim of this work 
was to present the design and development of the device and to provide a validation analysis of the electrocardiographic measurement 
and digital processing. The results demonstrate that the information contained in the signals recorded by the novel system is comparable 
to that obtained via a standard medical device commonly used in clinical environments. Similarly encouraging results were obtained in 
the comparison of the variables derived from the signal processing. 
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for health monitoring can be easily used by the patient in the 
domestic environment and, when integrated within a complete 
communication chain, they allow for smart remote monitoring 
with great benefits for both caregivers and patients.  

Starting from the 1990s, the process of the miniaturisation of 
electronic components has allowed for considering the 
realisation of portable devices [7]. Today, the size of electronic 
devices has shifted from the micro- to the nano-scale dimension, 
which has allowed for the realisation of minimally invasive 
monitoring devices that can be used by the patient in their daily 
activities. The focus has therefore shifted toward the concept of 
electronic textiles (e-textiles) or smart textiles. The term e-textile 
refers to a textile substrate that incorporates electronic elements 
that provide it with certain capabilities for sensing (biometric or 
external), communication (usually wireless), power transmission, 
and interconnection technologies while maintaining the 
‘wearable’ capabilities much like any other garment.  

The advances in e-textile technologies have led to the 
development of comfortable wearable garments directly 
integrated in internet of things (IoT) networks. Many 
applications have been developed exploiting this background in 
the field of remote monitoring, with the aim of ensuring and 
increasing the patient’s comfort, quality of life and safety. 
Nevertheless, almost all the attendant projects remain within the 
research field and are not intended for entry into the commercial 
market. Here, the main barriers include the regulatory issues 
related to patient safety, privacy, and data management [8], [9], 
as well as the need for a certain degree of reliability in terms of 
device performance. 

A detailed review of the wearable systems for health 
monitoring introduced up to 2010 is provided in [10], with a 
dedicated section on textile-based devices. The field of ECG 
signal monitoring is one of the fields most covered by e-textile 
applications. Pani et al. (2018) provided a complete survey on 
textile-electrode technologies for ECG monitoring [11], with all 
the examined prototypes exclusively used in the scientific 
research field with the aim of investigating the feasibility of this 
form of biosignal monitoring. A number of the prototypes are 
used as stand-alone devices to record ECG signals in a clinical 
environment, rather than as part of an integrated tele-monitoring 
system [12]-[13]. Meanwhile, other works have presented remote 
tele-monitoring systems focused on collecting ECG signals and 
other important biosignals, such as those related to 
electromyography (EMG) [14], breathing [15]-[17], 
accelerometery [12], [18], and galvanic skin response [13]. The 
systems presented in [13] also provide tools for off-line digital 
signal processing, gathering the principal parameters assessed 
from signals, including heart rate, blood pressure, respiratory 
rate, and activity classification.  

Hexoskin (https://www.hexoskin.com/) is one of the leading 
e-textile based remote monitoring products that is currently 
commercially available. This product allows for the collection of 
ECG and accelerometric signals, as well as for heart and 
respiratory rate monitoring, heart rate variability analysis and 
activity intensity assessment. Here, the attendant hardware is 
distributed along with compatible mobile apps for real-time 
signal visualisation, with specific software used for basic off-line 
data processing. 

In this manuscript, the aim is to present our prototypal 
system, which is based on an e-textile sensing shirt with the 
capacity to collect ECG, EMG and accelerometric signals. The 
sensing hardware uses Bluetooth low energy (BLE) technology 
to transmit data to a connected smartphone, enabling real-time 
visualisation. In exploiting the internet network, the relevant data 
can be shared on a dedicated server, where they can be accessed 
and downloaded only by authorised healthcare professionals. 
Raw signals can subsequently be processed using a custom-made 
MATLAB desktop graphical user interface (GUI) to assess a 
wide-ranging set of synthetic parameters. The overall aim is to 
provide a complete system for healthcare remote monitoring 
based on a textile device. Unlike many of the referenced 
applications, the proposed system allows for the simultaneous 
acquisition of ECG, EMG and acceleration signals, with their 
digital processing producing an extremely large set of synthetic 
parameters that comprehensively reflect the patient’s clinical 
state. The innovative tool is represented by the custom-made 
platform that gathers a set of advanced signal-processing 
algorithms, collecting all the possible information from the 
signals. Healthcare professionals can access and manage the 
information in a practical way, with the possibility of directly 
contacting the patient through the mobile application in the case 
of dangerous clinical conditions. 

The details of the prototype’s design and development are 
provided in the first subsection of the following section. 
Meanwhile, a validation analysis of the system was also 
undertaken by performing comparative assessments with a 
standard device commonly used in clinical environments. In this 
work, the focus is on ECG monitoring, providing validation 
analysis for the raw signals collected via the prototype and for 
the processed data flowing from the digital signal processing. The 
rules followed in the validation analysis are presented in section 
3, with the validation results presented in section 4. In section 5, 
we discuss the results, outlining the advantages, limitations and 
perspectives of the proposed technology. Finally, in the 
concluding section, the major findings are summarised. 

 

Figure 1. System architecture: 1) wearable sensing device, 2) electronic unit, 3) SWEET App, 4) cloud, 5) SWEET Lab. 

https://www.hexoskin.com/
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2. MATERIALS AND METHODS 

The main aim of this work was to present the novel wearable 
device, SWEET Shirt, for remote health monitoring, and to 
validate its performance in terms of the acquisition and analysis 
of electrocardiographic activity. In this section, we describe in 
detail the units that make up the novel system and the materials 
and methods used to perform the validation analysis. 

2.1. The SWEET Shirt 

The SWEET Shirt is a wearable sensing device that allows for 
the acquisition of electrocardiographic, bicep electromyographic 
and trunk acceleration signals. It can be integrated within a 
complete system for remote healthcare purposes, as illustrated by 
the schematic shown in Figure 1. The remote monitoring system 
includes an e-textile-based sensing sock for gait and postural 
assessments, as described in [19]. 

The wearable sensor unit allows for bio-signal acquisition 
when connected to the analogue front-end located in the 
electronic unit. This unit also contains a microcontroller and 
allows for data transmission through an integrated BLE module. 
A custom-made Android mobile application was developed to 
receive and visualise real-time signals on a smartphone, and to 
subsequently upload data on a dedicated web server. This server 
presents a restricted area that is exclusively accessible (following 
prior authentication) by authorised and appointed healthcare 
professionals, who can download, analyse and process the data 
using the custom-made MATLAB desktop software.  

In the following sections, the functional modules of the 
system are individually presented. 

2.2. Wearable sensing unit 

The wearable sensing unit is comprised of a commercial 
elastic t-shirt in which e-textile electrodes are integrated. A knit 
conductive fabric with a resistance of less than 0.03 ohm per cm 
in any direction across the textile was used to produce the 
electrodes. This fabric (Adafruit Inc. www.adafruit.com – 
product ID: 1167) is plated with real silver, which gives it highly 
conductive properties. Two 4 × 2-cm electrodes were integrated 
within the garment as sensing elements for electrocardiography 
processes, with two 2 × 2-cm electrodes placed on each shirt 
sleeve for electromyography acquisition and a 2 × 2-cm electrode 
integrated within the upper part of the chest as a ground 
electrode for all the biosignals. A conductive ribbon (5 mm in 
width; Adafruit Inc. product ID: 1244) was then used to connect 
the electrodes to the output connectors of the wearable unit, 
represented by snap buttons placed in a pocket on the chest of 
the shirt. The conductive ribbon is made of woven conductive 
stainless-steel fibres, with a resistance of less than 0.1 ohm per 
cm. Conductive traces sewn onto the shirt were covered by a 
non-conductive fabric to avoid contact with the skin. Figure 2 
shows a schematic of the wearable sensing unit, with the 
complete unit and the main details shown. 

2.3. Electronic unit 

The electronic unit is a compact module containing all the 
electric and electronic elements that allow for the acquisition, 
digitalisation and wireless transmission of the signals. 

We decided to develop a custom-made analogue front-end for 
the ECG and EMG measurement in view of suitably dealing with 
the higher impedance caused by the fabric electrodes. The 
analogue front-end for ECG measurement comprises four 
principal stages: an instrumentational amplifier INA 118 from 
Texas Instruments, a high-pass passive filter with a cut-off 

frequency of 0.05 Hz, an isolation stage designed with an 
OpAmp LM358 in voltage follower configuration, and a low-
pass active filter with a cut-off frequency of 40 Hz. The first filter 
is a first order high-pass CR passive filter, while the last stage is 
represented by a first-order active filter comprising an OpAmp 
LM324 in non-inverting configuration with a RC feedback. 

In terms of the EMG analogue front-end, three principal 
stages were designed, with the first two similar to those used for 
the ECG analogue front-end but with the high-pass cut-off 
frequency set to 15 Hz. The last stage is a precision rectifier 
circuit with the integration of a low-pass filter. The rectifier 
circuit comprises an OpAmp LM324, two diodes and a resistor 
on the feedback connection. This form of configuration is also 
known as super-diode configuration. Meanwhile, a capacitor was 
added in parallel to the resistor to ensure this stage acts as a first-
order low-pass filter. The various components were chosen to 
set the filter cut-off frequency at 30 Hz. The introduction of this 
rectifying stage was important as we are interested in the EMG 
envelope signal for performing the subsequent processing 
operations. Generally, an EMG signal is sampled and then 
rectified in the digital domain; however, we preferred to rectify it 
in the analogue domain in order to use a lower sampling 
frequency. The digitalisation of EMG signals requires a high 
sampling frequency, around 800–1,000 Hz, since the highest 
spectral components are at around 400–500 Hz. In contrast, an 
EMG envelope requires a lower sampling rate since its main 
spectral information is at low frequencies. The use of a lower 
sampling rate facilitates the real-time transmission of the signal. 
Moreover, using this configuration, the mobile application can 
provide the user with real-time EMG envelope signals, without 
the use of a processing stage that would increase the complexity 
of the system and potentially introduce delays. 

The electronic board, FLORA 9-DOF (Adafruit Inc.), which 
mounts the triaxial inertial module iNEMO LSM9DS0, was 
integrated within the electronic unit to acquire accelerometric 
signals, while a LilyPad Simblee™ BLE board (Sparkfun Inc.), 
was used as the system control unit. This unit provides the 
digitalisation of the ECG and EMG signals and is connected to 
the Flora accelerometer through the serial I2C bus. The LilyPad 
Simblee board also allows for sending data via a BLE protocol 
(or Bluetooth 4.0), using the Simblee™ Bluetooth® Smart 
Module integrated on the shield. In fact, BLE technology 
presents a perfect trade-off between energy consumption, 
latency, piconet size, and throughput [20]. The choice of using 
BLE technology can also be regarded as a means of increasing 
the battery life of the device as much as possible. Battery life is a 
central issue in the development of portable devices and, in this 
type of application, it is mostly influenced by the data 
transmission operations. Indeed, BLE is one of the most data-
saving transmission protocols, while other solutions have been 

 

Figure 2. SWEET shirt sensing unit: a) internal view with textile electrodes and 
connections, b) external view. 
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proposed based on reducing the amount of data to be sent, using 
a compression method that does not degrade the signal quality 
[21], [22]. 

The control unit features were implemented through 
employing an ARM® Cortex M0 microcontroller that can be 
programmed using the Arduino IDE. The control unit was 
programmed to digitalise ECG and EMG analogue signals and 
to receive digital data from the accelerometer. Here, the ECG 
signal is digitalised with a sample rate of 200 Hz, while the EMG 
and accelerometric signals are acquired using a sample period of 
15 ms (66.7 Hz). All data are collected in 20-bytes-sized packets 
and are sent in real time via BLE to the smartphone using the 
SWEET app. The packet transfer rate was set to 66.7 Hz, which 
was experimentally identified as the maximum rate supported by 
BLE transmission without data loss. Hence, each packet contains 
one sample from EMG and triaxial acceleration signals and three 
successive ECG samples in accordance with their sampling rates. 

Despite the fact that the sampling rates chosen for the ECG 
and EMG signals were lower than those usually used, they were 
in line with the time resolution required by our target 
applications. In ECG digital processing, we are not interested in 
signal morphology but on heart rate analysis, which can be 
accurately performed with a lower sampling rate [23]. With 
regard to EMG signalling, the envelope signal was extracted in 
the analogue domain such that it can be safely sampled using the 
chosen rate. 

All the modules that make up the electronic unit are powered 
by a 1,200 mAh/3.7 V lithium battery placed on the back of the 
unit, which is enclosed in a 3D-printed plastic case (10 × 7.5 × 2 
cm³). On the top part of the case, eight snap buttons were 
integrated to allow for connection to the wearable sensing unit, 
thus providing the input signals for the analogue front ends. 
Figure 3 shows the internal electronic board and the complete 
unit. 

2.4. The SWEET app 

The SWEET app is a custom-made application for mobile 
devices requiring an operating system of Android 6.0 or higher 
and BLE technology. The application allows the smartphone to 
communicate and receive data coming from the electronic unit, 
via the BLE protocol. When the application is started, it is 
possible to associate and connect the wearable device using its 
media access control (MAC) address. Following this, the 
measurement session can commence, with the data transferred 
from the electronic unit to the mobile device, which allows for 
real-time signal plotting. At the end of the session, the data will 
be automatically saved in a ‘.csv’ file, which is stored locally and 
can be uploaded at any time to a dedicated web server. Figure 4 
shows the main frames of the app. 

2.5. Signal processing algorithms 

Data from the web server can be accessed and downloaded 
only by authorised healthcare professionals. The custom-made 
MATLAB GUI software, SWEET Lab, can be used to plot and 
post-process signals in order to achieve a huge set of synthetic 
parameters of clinical interest. In this work, we focus on ECG 
signal measurement and processing validation, and therefore, 
here, we only discuss ECG signal processing, while a number of 
algorithms for EMG and acceleration signal processing were 
developed. 

The first step in ECG signal processing involves the detection 
of QRS complexes using an Okada algorithm [24] for the 
assessment of the tachogram and the discrete series of RR 
intervals. The subsequent analysis is divided into seven 
frameworks, the first of which relates to the heart rate (HR) 
analysis, with the instantaneous HR assessed as the mean over 
four successive beats. From this series, the minimum, the 
maximum, the medium and the median HRs can be extracted 
and the tachycardia (HR > 110 bpm) and bradycardia 
(HR < 60 bpm) events subsequently searched and listed.  

The second framework is dedicated to the heart rate 
variability (HRV) analysis in terms of the time, frequency and 

 

Figure 3. SWEET Shirt electronic unit: a) internal electronic unit, b) complete 
unit, external view. 

 

Figure 4. SWEET app main frames: a) login, b) unit connection and c) real-
time signal visualisation. 

Table 1. HRV time domain variables. 

Statistical Measures 

Variable Description 

SDNN in ms 
(Standard Deviation 
NN-intervals) 

Standard deviation of normal-to-normal intervals 
(NN).  SDNN reflects all cycles responsible for heart 
rate variation in time, thus representing the total 
variability. 

SDANN in ms 
(Standard Deviation 
Averaged NN-
intervals) 

Standard deviation of the average NN intervals 
calculated over 5 min. SDNN is therefore a measure 
of the changes in heart rate due to cycles longer than 
5 min. 

SDNNi in ms 
(SDNN index) 

Mean of SDs of NN intervals, calculated over 5 min. 

RMSSD in ms 
(Root Mean Square 
of Successive 
Differences) 

Square root of the mean of the squares of the 
successive differences between adjacent NN 
intervals. 

NN50 Number of pairs of successive NNs that differ by 
more than 50 ms. 

pNN50 in % Proportion of NN50 divided by total number of NN 
intervals. 

Geometrical Measures 

Variable Description 

HRV Ti 
(Triangular index) 

Area of the histogram distribution of RR intervals, 
normalised to the maximum value of the histogram. 

TINN Base width of the RR intervals histogram. 
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time–frequency domains. Here, the beats are first classified in 
terms of normal, ectopic, premature ventricular contraction 
(PVC) and artifacts based on their timing before the RR series is 
edited to exclude any artifacts and any beat-to-beat intervals that 
are too short or too long. The new RR series is then processed 
in the time domain to extract the statistical and geometrical 
measures, as listed in Table 1 [25]. 

The HRV is also assessed in the frequency domain by 
analysing how the power spectral density (PSD) is distributed as 
a function of frequency. The PSD presents three main 
components in terms of very low frequency (VLF), low 
frequency (LF) and high frequency (HF). The frequency peaks 
and the absolute and relative power values of each component 
are computed along with the LFHF ratio [26]. Three different 
methods are provided by the software to compute the PSD, 
namely, the Welch Periodogram [27], Burg Periodogram [28] and 
e Lomb–Scargle Periodogram [29] methods. The same analyses 
are conducted on the windowed periodogram of the RR series to 
obtain a time–frequency domain analysis of the HRV variability.  

The third framework in the ECG processing relates to heart 
rate turbulence (HRT) analysis. This form of analysis presents a 
non-invasive method that explains the response of the heart to 
ventricular arrythmias [30] and is a good predictor of mortality 
following acute myocardial infarction [31]. Two numerical 
parameters are assessed by the software to describe HRT: 
turbulence onset (TO: to describe the initial acceleration in heart 
rate following PVC), and turbulence slope (TS: to reflect the 
subsequent deceleration of the sinus rhythm) [30]. Meanwhile, 
the fourth framework provides a nonlinear analysis of ECG 
signals using four different approaches: sample entropy, 
detrended fluctuation analysis (DFA), Poincaré plots and fractal 
dimension analysis (FDA). Here, sample entropy presents a 
nonlinear method for determining the complexity of a RR series, 
which is computed in terms of various values of k and is used 
for HRV analysis [32]. Meanwhile, DFA is used to quantify the 
fractal properties of brief intervals of the tachogram signal [33], 
while a Poincaré plot is a plot of RR intervals vs. the previous 
RR intervals used to quantify self-similarity. Two numerical 
parameters are assessed in Poincarè plot analysis: SD2 (the 
magnitude of the major axis of the ellipse fitting the data; 
represents the short-term variability) and SD1 (the magnitude of 
the minor axis of the ellipse; represents the long-term variability). 
Finally, FDA provides the measurement of the fractal dimension 
of the RR series assessed using a Higuchi algorithm [34]. The 
fractal dimension is a useful indicator in cardiology since it 
assumes different values for different types of heart disease [35]. 

3. VALIDATION ANALYSIS 

Here, we present a validation analysis related to SWEET Shirt 
ECG signal acquisition and processing. In fact, three different 
type of analysis were conducted in order to address any possible 
unconformity in the measurement and/or processing phases 
managed by the new prototype. We first compared the RR 

intervals identified by the SWEET Shirt with those obtained via 
a reference device. Following this, the similarity between the 
ECG signals obtained via the different devices was assessed. 
Finally, comparative analysis was carried out to validate a specific 
subset of parameters derived from the SWEET Lab software 
signal processing. 

3.1. Experimental setup 

A three-channel digital Holter recorder (Oxford Medilog 
FD5) was used as the reference for the ECG signal measurement. 
The device incorporates seven electrodes and operates with a 
sampling rate of 8,000 Hz and a resolution of 15.5 bits. A healthy 
subject, aged 25, was equipped with the clinical Holter device 
along with the prototypal wearable device, SWEET Shirt, for the 
ECG measurement (Figure 6). Here, the Holter’s electrodes were 
placed on the subject’s thorax (Figure 6a, b) in order to avoid any 
overlapping with the SWEET Shirt e-textile electrodes and to 
ensure the two ECG waveform were as similar as possible by 
means of visual analysis. The ECG acquisition time was set to 
2 h.  

3.2. Digital processing and analysis 

The ECG signals from both measurement units were loaded 
in the MATLAB environment for pre-processing and analysis 
operations, with both signals passed through a notch digital filter 
to remove any 50 Hz interference. The R peaks in the ECG signal 
from the SWEET Shirt were identified using the Okada 
algorithm, while those in the Holter ECG were automatically 
detected via its own software and could be loaded in the 
MATLAB environment. The first analysis was carried out to 
compare the RR intervals by means of Passing–Bablok (PB) 
regression. To achieve interval-to-interval correspondence, six 
RR values from the Holter series were removed since they 
corresponded to a region of artefacts in the SWEET ECG signal. 
Following this, comparative analysis was performed using the 
MATLAB function for PB regression [36]. 

The waves for each beat were subsequently isolated to allow 
for a beat-to-beat morphology comparison. The cut-off point 
was chosen as the midpoint between two subsequent R peaks in 
order to cover the complete signal. We chose R peaks as fiducial 
points since no significant differences were found among the RR 
locations in the first analysis (see the results section). A set of a 
total of 6,968 corresponding beats were obtained for the analysis. 
The waveforms were then resampled on a normalised axis, with 

 

Figure 5. ECG electrode configuration used for signal acquisition. 

 

Figure 6. Average beat waveform from the SWEET Shirt and the cut-off points 
(red vertical lines) used to isolate single waves. 
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a common number of samples in order to allow for correlation 
analysis among the corresponding beats. The number of samples 
was chosen to equal the maximum number of samples found in 
a non-normalised beat. A resampling operation allows for 
avoiding any signal distortion in the normalising time axis. We 
also decided to individually analyse the three principal 
constituent waves, namely, the P-wave, the QRS complex and 
the T-wave. Two cut-off points were set in the normalised time 
axis to divide the three single waves, which were selected to be 
the two stationary points between the three local maxima 
representing the single waves, as calculated based on the average 
beat waveform from the SWEET Shirt recording (Figure 5). 

The complete beat and the single waveforms were rearranged 
in eight matrices (four for each device recording), with each 
column containing the signal corresponding to an occurred beat. 
Correlation analysis for the waveforms was carried out using the 
MATLAB function, ‘corr’, which computes the linear correlation 
between each pair of columns in the input matrices. The diagonal 
elements of the output matrix hence represent the linear 
correlations between the corresponding waveforms recorded by 
the devices under examination. The ‘corr’ function also returns a 
matrix of p-values for testing the hypothesis of no correlation vs. 
the alternative hypothesis of a non-zero correlation. 

We finally compared a subset of parameters derived from our 
software to those provided by the commercial Holter software 
in order to validate our signal processing algorithms. To this end, 
a further 2-h ECG recording was measured using a 68-year-old 
volunteer experiencing a pathological disorder (cardiopathic), 
with the same experimental setup as used previously. The two 
records were then windowed in terms of 24 five-minute 
segments, which were individually processed, carrying out a set 
of 24 measures for each record and for each parameter. The 
ECG signals were also windowed to enlarge the dataset for the 
comparison, and because five minutes is the recommended 
duration for short-term ECG analysis [25]. Since Holter software 
only provides HRV measures in the time and frequency domains, 
validation analysis was carried out on a subset of two 
representative parameters, one for each HRV field, which were 
computed by both systems, that is, the standard deviation of 
normal-to-normal beats (SDNN) for the time domain, and the 
ratio between low- and high-frequency spectral power (LF/HF 
ratio) for the frequency domain. The agreement between the 
measures was assessed using root mean square error (RMSE), PB 
regression and Bland–Altman analysis. 

4. RESULTS 

4.1. RR interval comparison 

The RR series were compared using PB regression. This 
method was first proposed in 1983 as a method for testing the 
agreement between two sets of measurements obtained via 
different systems [37], [38]. Here, the PB regression involved 
searching for a linear relationship between the measures from the 
two systems and the returns slope and offset of the fitting linear 
model. The systems could be considered as equivalent if the 
confidence intervals of slope and offset contained 1 and 0, 
respectively. Table 2 shows the results of the PB regression for 
the RR intervals. 

4.2. Signal waveform comparison 

The ECG waveforms were compared using Pearson’s linear 
correlation analysis. Figure 7 shows the distribution of Pearson’s 
correlation coefficients for the complete ECG waveform, the P-
wave, the QRS complex and the T-wave. 

High values of correlation were found for the ECG waveform 
(mean value ± standard deviation: 0.94 ± 0.07), QRS complex 
(0.96 ± 0.04) and T-wave (0.96 ± 0.09), while lower values were 
returned in the P-wave analysis (−0.19 ± 0.36). 

We assessed the quality of the correlation between each 
couple of beats using the following rules: (i) high correlation if 
|r| ≥ 0.7, (ii) moderate correlation if 0.3 ≤ |r| < 0.7 and (iii) low 
correlation when |r| < 0.3. Table 3 shows a summary of the 
qualitative assessment of the correlation in terms of the 
percentage of beats, indicating high, moderate or low correlation.  

Table 2. Summary statistics and results of the PB regression analysis for the 
RR interval series. 

Statistics Mean (StD) 

RR intervals from SWEET Shirt in ms 1032 (77.44) 

RR intervals from Holter MEdilog Darwin 1032 (77.41) 

PB Regression Mean Confidence interval 

Slope 1.00 1.00 to 1.00 

Offset in ms 0 0 to 0 

 

Figure 7. Boxplot of Pearson’s correlation coefficient for complete and single 
ECG waveforms. 

Table 3. Qualitative assessment of correlation for ECG waveforms. 

 Quality of Correlation 

% of the entire set High Moderate Low 

P-wave 5.97*** 49.13** 44.90 

QRS complex 99.92*** 0.04** 0.04 

T-wave 98.87*** 0.82** 0.31 

ECG waveform 98.82*** 0.88** 0.30 

*** p-value < 0.001 
** p-value < 0.005 

Table 4. Main statistics and RMSE assessed for the HRV variables under 
examination. 

Non-Pathological Subject 

 Holter  

(mean ± std) 

Sweet  

(mean ± std) 
RMSE 

SDNN in ms 63.2 ± 11.2 63.2 ± 11.2 0.184 

LF/HF Ratio [adim] 1.54 ± 0.846 1.53 ± 0.850 0.0561 

Pathological Subject 

 Holter  

(mean ± std) 

Sweet  

(mean ± std) 
RMSE 

SDNN in ms 20.9 ± 6,15 19.8 ± 5.87 4.41 

LF/HF Ratio [adim] 3.64 ± 3,62 2.96 ± 2.92 1.97 
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Almost all ECG beats recorded by the prototypal device 
exhibited a high correlation with the corresponding waveforms 
obtained via the standard instrument, with a p-value excluding 
the hypothesis of null correlation between them. Specifically, the 
QRS complex and T-wave were the most comparable 
components, while the P-waves mainly exhibited moderate or 
low correlation values.  

4.3. Signal processing algorithm validation 

The first approach to the analysis of the parameters generated 
by the signal processing algorithms involved assessing the 
RMSEs among the different sets of measures. Table 4 shows the 
RMSE values and the principal descriptive statistics of the 
datasets, which were divided according to subject. 

In the first section of Table 4, the results from the non-
pathological volunteer session are reported. In this case, the 
RMSE values were extremely low for both parameters: ~0.3 % 
of the mean value for the SDNN and ~3.6 % of the mean value 
for the LF/HF ratio. However, different results were obtained 
with the pathological subject, with the RMSE values greater in 
terms of both parameters: the SDNN presented a RMSE of 
almost 20 % of the mean value, while the LF/HF ratio RMSE 
was higher than 50 % of the mean. 

The analysis of agreement was then further investigated using 
PB regression and Bland–Altman analysis, with the attendant 
results presented in Table 5.  

For each of the analysed parameters, the slope and offset 
from the PB regression are provided, along with their 95 % 
confidence interval (CI). Across all the results, the slope values 
were close to 1 and their CIs always included values of 1. 
Similarly, the offset values were close to 0 in all analyses, with the 
CIs always including 0 values. In terms of the pathological 
subject results, the CIs were larger than the corresponding CIs in 
the non-pathological subject, confirming a better agreement in 
the measurements derived from the recording involving the 
healthy volunteer. 

The Bland–Altman analysis results included some bias with 
the 95 % CI and the limits of agreement [LoA]. In terms of the 
results from the non-pathological volunteer, the bias values were 
very close to 0, while both the bias CIs and LoA exhibited a low 
width and always included a 0 value. Meanwhile, in terms of the 
results for the pathological subject, the bias values for the SDNN 
and the LF/HF ratio were higher, with a wider LoA including 0.  

The Bland–Altman plots are presented in Figure 8 and Figure 
9. While the differences between the methods were greater in 
terms of both parameters assessed using the pathological subject, 
they exhibited a random distribution, meaning no systematic or 
proportional error could be confirmed from this analysis.  

5. DISCUSSION 

In the first analysis, we compared the RR intervals obtained 
via the two systems under examination by means of PB 
regression. The results (Table 2) confirmed that the systems can 
be considered as equivalent in terms of the identification of the 
R peaks along the ECG signal as beat reference points.  

We then compared the signal waveforms by means of 
Pearson’s correlation analysis. This assessment demonstrated 
that good agreement existed between the signals, particularly in 
terms of the QRS complex and T-wave, while less 
correspondence was found in the comparison of the P-waves 
(see Figure 7 and Table 3). Figure 10 shows the averaged ECG 
waveforms recorded by the two systems. Here, the P-waves were 
less visible in the Holter signal than in the SWEET Shirt 

recording. This was due to the non-standard electrode placement 
used for the Holter system (see Figure 6), which was chosen to 
avoid the overlapping with the textile electrodes enclosed in the 
shirt. Therefore, the lower agreement level with the P-waves can 
be attributed to the different electrode placements used, which is 
all but compulsory in a simultaneous recording. We can therefore 
affirm that the prototypal shirt has the capacity to clearly record 
an ECG signal that is comparable with those acquired by 
commonly used clinical portable devices. 

Finally, we investigated the performances of the developed 
software in terms of signal processing. As shown in Figure 8, 
Table 4 and Table 5, excellent results were achieved in the 
analysis of the parameters assessed using the non-pathological 
subject. The RMSE for both parameters under examination was 

 

Figure 8. Bland–Altman plots of the parameters for the non-pathological 
volunteer. The red lines represent the bias, while the blue dashed lines 
represent the LoA. 

 

Figure 9. Bland–Altman plots of the parameters for the pathological 
volunteer. The red lines represent the bias, while the blue dashed lines 
represent the LoA. 
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extremely low, as were the biases assessed via the Bland–Altman 
analysis. Meanwhile, the PB analysis revealed that there was a 
regression line very close to the identity line, underlining a strict 
correspondence between the measurements from the two 
devices. However, lower agreement was found in the analysis 
involving the pathological subject. Here, the RMSE and bias 
values were higher (Table 4) and the PB CIs were wider (Table 
5), albeit that they still involved values that allowed for 
concluding that there was some agreement between the two 
methods. However, the Bland–Altman plots (see Figure 9) did 
not exhibit any prevalent trend in the distribution of the 
differences, thus suggesting that no systematic or proportional 
differences existed between the measurement systems.  

Based on these results, the lower agreement level in the 
parameters related to the pathological subject can be attributed 
to the greater presence of artefacts in the SWEET Shirt record, 
which was likely due to the weak adherence of the textile 
electrodes on the patient’s skin or the higher number of 
movements made by the subject during the recording session. 
The ECG signal from the SWEET Shirt was clearly visible in 
94.66 % of the registration time, while the signal from the Holter 
recorder did not present any artefacts. The presence of artefact 
regions will affect any signal processing results since the artefacts 
must be replaced by a specific number of normative RR intervals 
to ensure the continuity of the RR series. In this case, the results 
were further affected by the fact that they were averaged using a 
reduced window of 5 min. 

6. CONCLUSIONS 

In this paper, a new textile-sensor-based wearable device for 
the measurement and analysis of vital signals was developed and 

presented. The innovative features of the system rely on the 
multi-parametric approach in health monitoring and on the wide-
ranging set of tools available for digital signal processing. In the 
development of the sensing unit, various sensors, electrodes, and 
bus structures were integrated within the textile garment, making 
it possible for the patient to perform normal daily activities 
without any discomfort while their clinical status is monitored by 
a specialist. The system includes a custom-based app for real-
time visualisation of the acquired signals and a software desktop 
for off-line plotting and digital signal processing. 

In this work, we described the design of the device and 
provided a validation analysis related to ECG measurement and 
digital processing. Here, encouraging results were achieved, 
indicating that reliable measurements can be obtained using our 
prototype wearable device, both in terms of ECG signal 
acquisition and further signal processing. In terms of possible 
improvements, the adherence of the electrodes must be 
increased to reduce motion artifacts interfering with the signal, 
which is, in our experience, the major issue encountered in this 
area, one that can seriously affect processing operations. 
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