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1. INTRODUCTION 

Some quantities like color, odor or software complexity are 
usually measured with inappropriate scales. Indeed, the theories 
chosen to abstract such quantities usually define an affine space 
to represent measurement values even if this choice is not 
justified. For example, colors are represented in many different 
colorimetric spaces like RGB, xyz, Luv, Lab, HSV and the 
transformation from one to each other is not always an affine 
transformation. We can conclude from this situation that the 
empirical space of colors doesn’t hold an affine structure and 
then cannot be represented by an affine space. 

Conversely, the metric, defined with psychophysic 
experiments stays stable and is the most known relation on 
colors. The basis hypothesis of this paper is that the empirical 
space of some quantities manifestations, more specifically the 
color, can be represented by a non-affine abstract space that 
holds a metric. 

The determination of such metric depends on the theory 
used to perform calculus reasoning or decision, and on an 
abstract world where quantities are represented by their 
quantity value [1]. Let us describe the full process. First the area 
of interest, i.e. the concrete world is identified. Then the 
concrete objects and their associated quantities are selected. 
Finally, a theory that is made of entities, axioms and theorems is 

chosen. Experiments are then performed in order to obtain 
some observations of the quantity manifestations. The 
representations of the manifestations are named quantity values 
[2] and are expressed into a space which structure depends on 
the chosen theory. The choice of the theory is crucial and 
depends on the goal of the experiment. In the color area, the 
experiment goal can be a color based identification of chemical 
components. In this case the theory is defined on the area of 
molecular physics and color manifestations are represented by 
spectral energy distributions. The spectra are expressed as an n-
dimensional vector space. If the goal is to check the quality of a 
manufactured color, then the experiment is based on a theory 
of color vision and colors are expressed into a colorimetric 
space. 

2. COLOR VISION REPRESENTATION 

This paper, will focus on psychophysical aspects of colors. 
This means that color quantities are not considered exclusively 
into the context of physics but also into the context of human 
perception. From a pure physics based consideration, the color 
of an electromagnetic flow is defined by its spectral power 
distribution (SPD). As for any distribution, a general definition 
is never obtained due to the necessity to define the spectral 
resolution. Indeed the quantity that represents a color is a 
vector which length depends on the chosen resolution and on 
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the chosen range of the spectrum. We can see that even with a 
given theory, the goal of the experiment has a strong incidence 
on the representation of the measured quantities. As an 
example, the International Commission on Illumination (CIE) 
specified that for color measurements of visible light the 
spectrum range is from 360 nm to 830 nm with 1nm resolution. 
This institution gave also a first approximation of human color 
perception with the definition of the tristimulus values XYZ. 
The X, Y and Z values are obtained with 3 colorimetric 
observers x(), y() and z() (see (1) and Figure 1) that 
approximate the spectral sensitivity of human photosensors [3]. 

 (1) 

This representation of colors into a 3D space is justified by 
the fact that 2 colors represented with the same XYZ tristimuli 
are considered as equal by any human. It is then easy to deduce 
that this color measurement is based on a nominal scale, i.e. on 
a scale that links an equivalence relation on empirical quantities 
with an equality on measured values.  

All colorimetric spaces are derived from the XYZ tristimuli 
by the use of one-to-one transformations. As one-to-one 
transformations are admissible transformations for the nominal 
scales, this confirms that the color measurement scales are 
equivalent when they are considered as nominal scales. For a 
given color classification, color histogram methods do not 
depend on the colorimetric space and they use the classification 
as a nominal scale. Most other methods need a metric on the 
colorimetric space or at least a similarity relation between colors 
[4]. In the first case, a metrical scale, i.e. a scale that preserves a 
metric, is needed. With its ability to preserve a similarity 
relation, a fuzzy nominal scale is a good candidate for the 
second case [5][6]. Some methods use colorimetric spaces as 
affine spaces [7]. These last approaches are questionable when 
the different colorimetric spaces must be considered as 
equivalent representation spaces of the same quantity.  

From a formal point of view, a method must not depend on 
the choice of a representation space that actually depends on 
the choice of a scale. In this paper, we promote the hypothesis 
that the number of different colorimetric spaces proposed 
shows that the representation space of a scale for color 
measurement may have a metric but not necessary be an affine 
space. The preservation of distances is then the generic 
property of such scales known as metrical scales. The 

consequence is that any signal processing method needs to be 
defined on the basis of a distance. 

3. COLOR REPRESENTATION BY LEXICAL FUZZY SUBSETS 

Fuzzy nominal scales where introduced in order to formalize 
an application to the measurement process of the description of 
a quantity by a fuzzy subset of symbols [8]. With these scales, 
the measured values are expressed in the representation space 
with fuzzy subsets of symbols, also called lexical fuzzy subsets 
(LFS). The measurement is split into a measurement from the 
set of manifestations to a numerical space X and into a 
mapping from X to a linguistic space. A mapping D called 
fuzzy description or simply description translates a numerical 
scalar or a vector into a lexical fuzzy subset. In the following 
example, a manifestation is represented by a scalar itself 
described by a LFS defined by its membership function on a 
lexical set S = {a,b,c,d}. 

 Building the fuzzy representation. 3.1

The following notation is used for the representation of 
fuzzy subsets: 

A fuzzy subset A on a set S is characterized by its 
membership function also denoted A:  

 
Then A(c) is called the grade of membership of c to A. 
The grade of membership of a symbol a to the fuzzy 

description D(x) of a value x is then denoted D(x)(a). 
The grade of membership of a couple (x,y) to a relation R 

will be denoted by R(x, y), or by (x R y). 
In this paper, we restrict our study to the fuzzy nominal 

scales that respect: 

 (2) 

Such scales define a fuzzy equivalence relation between LFSs 
like for example the simplest one:  

 (3) 

This relation also known as similarity relation is a 
representation of a relation between manifestations. It respects 
the reflexivity condition, expressed by (2), and a weak version 
of the transitivity condition. In our case ~ is  TL-transitive: 

 (4) 

where 

 (5) 

Using fuzzy scales for color measurement is justified by the 
fact that a similarity relation between colors always exists even 
if such a relation is not clearly known.  

 
Figure 1. The  color matching  functions  x(),  y() and  z() as given by  the 
CIE. 

 
Figure 2. Example of a fuzzy description mapping a scalar into a lexical fuzzy 
subset (LFS). 
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A fuzzy representation mechanism is defined by a fuzzy 
symbolism <X, S, R>  where X is a numerical space, S is a 
lexical set and R is a fuzzy mapping from X to S. 

The fuzzy description D is then  

 (6) 

On the other hand, the fuzzy meaning of a symbol s is 
defined by: 

 (7) 

Applying eq. (2) imposes the set family M(S) to be a fuzzy 
partition of the set X. 

 (8) 

Finally, given a numerical space and a lexical set, the fuzzy 
representation mechanism is simply defined by a fuzzy partition 
on the numerical space. 

 Definition of the numerical space 3.2

From an anthropocentric viewpoint, a color is fully defined 
by 3 coordinates in one of the standard colorimetric spaces. 
Actually, several colorimetric spaces hold a coordinate for 
luminance, and two separate coordinates for the chromacity. In 
this paper we restrict the study to the measurement of the 
chromaticity. A color is then represented by an element of a 
chromatic plane. In this case, white, black and intermediate grey 
colors are represented by the same value. As for many 
applications, the ab chromatic plane defined as a projection of 
the Lab space, is chosen for its closeness with human 
perception. 

 Definition of the lexical set  3.3

The numerical set can be used as lexical set where each item 
is a couple (a,b). In this trivial situation the fuzzy relation R is 
reduced to an isomorphism and the scale is no more fuzzy but 
is a classical two-dimensional ratio scale. This case gives the 
larger lexical set that can be used to represent the chromacity. 
Smaller lexical sets can be defined by sub-sampling. For 
example the set of couples S={-10,...,10}x{-10,...,10}. The 
semantic of such lexical set stays close to the preceding one, 
and the syntax, i.e. the set of available relations, is derived from 
the syntax of the ratio scale. 

The smaller lexical sets are well known and hold three 
symbols: S = {green, red, blue} and S = {cyan, magenta, yellow}. In 

this case, using fuzzy subsets of symbols to represent colors fits 
in with the additive mixing or with the subtractive mixing of 
primary colors.  

 A usual lexical set for the representation of colors is the set 
of the 8 colors of the RGB cube and of the affine 
transformations of the RGB cube: S = {green, yellow, red, purple, 
blue, cyan, black, white}. As we work only on the chomatic plane, 
we choose the symbol neutral for the linguistic representation of 
the values associated to white, black and the intermediate gray 
colors. The new lexical set is then defined as S = {green, yellow, 
red, purple, blue, cyan, neutral}. 

We propose also to use different symbols to represent real 
colors and colors that define the boundaries of the chromatic 
plane. Finally we add the color orange to the set in order to 
obtain a lexical set more representative of the human feeling. A 
possible lexical set is then  

S = {full_green, full_orange, full_yellow, full_red, full_purple, 
full_blue, full_cyan, neutral, green, yellow, orange, red, purple, blue, cyan}. 

 (9) 

 Definition of the fuzzy meaning 3.4

Except for the trivial case of an infinite lexical set, the set of 
fuzzy meaning of symbols defines a fuzzy partition of the 
numerical space.  

Two other simple cases are the definition of the fuzzy 
meaning of the lexical sets S = {green, red, blue} and S = {cyan, 
magenta, yellow}. Assuming that each color x into the mapping of 
the RGB cube on the Lab plane has obviously an RGB 
coordinate (xR,xG,xB), the fuzzy partition can be simply defined 
by the normalized RGB coordinates: 

 

 (10) 

 
The same approach can be used to define the fuzzy meaning 

of the lexical set S = {cyan, magenta, yellow} with the CMY (Cyan, 
Magenta Yellow) coordinates. These two fuzzy representations 
of colors are equivalent to a chromatic plane defined on the 
RGB space and to a chromatic plane defined on the CMY 
space, respectively. In this case, the fuzzy representation is 
useless.  

Between these two extreme situations, the fuzzy 
representation of colors is useful when the lexical set has more 
than 3 symbols. In our approach, we suggest to use the 
preceding lexical set made of 15 symbols as defined in Eq. (9). 
In order to define the meaning of each symbol, we first 
associate each symbol with a chromatic coordinate that 
characterizes this symbol. This coordinate is called the modal 
coordinate of the symbol. 

The fuzzy meaning is defined by a piecewise linear 
interpolation based on a triangulation of the chromatic plane. 
First a set of symbols and their modal coordinates are defined. 
Then the plane is split into triangles such that vertices are 
modal coordinates. The meaning of a symbol is then defined as 
a fuzzy subset which membership function is equal to 1 for the 
modal coordinate of the symbol and equal to 0 for the modal 
coordinates of the other symbols. The membership of any 

 
Figure  3.  Projection  of  the  lighter  colors  of  the  RGB  cube  into  the  Lab 
chromatic space.   
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coordinate to a fuzzy meaning is then interpolated on the 
triangles. 

Figure 3 shows a triangulation used to define the meaning of 
the lexical set on the ab chromatic plane.  

4. FUZZY SCALES 

Within the formalism of the representative theory of 
measurement, the scale <X,S,R,~,=,(~,=)>, where R is a fuzzy 
relation and ~ is a similarity relation, is a fuzzy nominal scale. 
This scale preserves a similarity relation on X during the 
measurement process. Actually, R is a morphism that links the 
empirical relational system <X,~> and the representational 
relational system <FS(S),~>, where FS(S) is the set of fuzzy 
subsets of S and ~ are relations that coincide with the equality 
= on the singletons of S. This means that the grade of 
membership of the couple ({a} ~ {b}) is equal to 1 when a = b: 

 
 The similarity relation ~ on X, is associated with the 

similarity relation ~ on FS(S) (Eq. 3). At this step, the similarity 
relation preserved by the measurement process allows to 
compare the colors in a small region of the chromatic space. In 
order to compare colors over a wider range, we need a stronger 
scale. A two-dimensional affine scale will be the solution 
applied in the case of a numeric scale, i.e. in the case of an 
infinite lexical set from the view point of this paper. We 
consider that the chromatic plane cannot be considered as an 
affine space. This hypothesis is first based on the multiplicity of 
color spaces that cannot be transformed from one each other 
by an affine transformation.  In this case, the affine scale cannot 
be used to measure colors. Another argument to confirm this 
hypothesis is that color perception highly depends on a context. 
As for any psychophysical human perception, such context is 
given by the human itself and leads to his history (see [9]) and 
subjectivity. The goal of the perception is also part of the 
context.   

Another hypothesis is to consider that chromatic planes are 
metrizable spaces, i.e. spaces that can hold a metric. Then it 

might be possible to build a scale that preserves a metric: a 
metrical scale. Building a metrical scale from a fuzzy scale needs 
to define a distance d on the lexical set and to define a distance 
d’ between lexical fuzzy subsets that verifies:  

 the singleton coincidence: d’({a},{b}) = d(a,b), 
 the continuity property, 
 the precision property that imposes that the distance 

between two LFSs must be a positive real number, 
 the consistency property that is usually verified by 

distances on crisp subsets. 
The transportation distance verifies all these properties [10]. 

It is computed as solution for a mass transportation problem 
[11] where the masses are membership degrees, the sources and 
the destinations are items of the lexical set and the unit cost 
from a source to a destination is given by the distance d on S 
[12]. This distance can be defined relatively to the goal of the 
measurement process or relatively to the application. If the 
distance on S is unavailable we propose to use the triangulation 
to compute a distance on the basis of the adjacency of the 
symbols provided by the graph of characteristic coordinates. 

5. ADAPTATION OF THE SCALE 

According to the hypothesis that color perception is context 
dependent, it is necessary to adapt the scale to a given context. 
In this part, we propose to start from an initial knowledge 
materialized by a scale defined as a mean consensus about the 
meaning of colors. The adaptation, performed iteratively, is 
based on the identification of clusters of colors in the 
chromatic plane. At each iteration the clusters are identified 
relatively to the preceding scale. Then clusters are used to 
update the scale.  

The crucial point of the scale definition is the location of the 
modal coordinates. The modal coordinates given as the initial 
knowledge are defined for general use and are not usable for 
specific cases. For example, a Van Gogh painting usually not 
fits with this generic scale. In this paper, we choose a painting 
as application example, because the used colors highly depend 
on the subjective perception of the artist. 

The proposal of this paper is to perform a Fuzzy C-Means 
clustering (FCM) to adapt the generic knowledge given by the 
initial modal coordinates. The idea is to fit each characteristic 

 
Figure  4.  Triangulation  that  defines  the  fuzzy meaning  of  S  =  {full_green, 
full_orange,  full_yellow,  full_red,  full_purple,  full_blue,  full_cyan,  neutral, 
green, orange,  yellow,  red, purple, blue,  cyan}.  The  letters a,b,c,..  replace 
full_green, full_orange, full_yellow, … 

 

Figure 5. The fuzzy meaning of the symbol orange (letter k) is a fuzzy subset 
with a membership equal to 1 for the modal coordinate of orange and equal 
to 0 for other modal coordinates. 
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point with the center of its closest cluster. The original FCM 
algorithm is based on the minimization of an objective function 
based on the computation of the Euclidean distance between 
samples and cluster centers and cannot be directly used. Indeed, 
as seen before, nothing can justify that the colorimetric space, 
or the space of LFSs, holds an Euclidean metric.  

In the original FCM algorithm a set of clusters is first 
defined. Each cluster is randomly defined by a fuzzy subset of 
samples. At each iteration, the FCM algorithm computes the 
center of each cluster. Then the membership degree of each 
sample to each cluster is re-evaluated relatively to its proximity 
to the associated cluster center.  

In our approach, we propose several adaptations to this 
process. 

Let M be a set of samples in X. 
In the initial state, Each cluster Cs is identified by a symbol s 

and is defined by a fuzzy subset of X derived from the fuzzy 
description. 

 (11) 

where 

 (12) 

As the fuzzy equivalence relation that characterizes the scale 
defines a distance for short range LFSs, eq. (11) can be 
simplified to: 

 

 (13) 

The main difference with the standard FCM is the inclusion 
of a basic knowledge at the initial step of the algorithm. This 

knowledge can be considered as an average knowledge about 
the representation of colors. 

At each iteration, the cluster center is simply computed as 
the gravity center of the cluster.  

 (14) 

The scale is then transformed such that the center of the 
cluster Cs becomes the modal coordinate of the symbol s. 

As for the original algorithm the iterations stop when the 
changes reach a termination criterion. 

The  parameter, must be defined into [0,1]. It represents 
the inertia of the learning process. If  = 1, each iterated cluster 
includes only its modal point as unique sample, and the modal 
points never moves during the algorithm. If  = 0, then each 
iterated cluster can include new samples far from the modal 
point. 

The next figure shows the triangulation after the adaptation 
of the scale with this method. As the colors full_green, full_orange, 
full_yellow, full_red, full_purple, full_blue, full_cyan, neutral are 
synthetic colors defined by a norm, they are not supposed to be 
changed during the learning process. So the parameter   is set 
to 0 for these colors.  

6. DISCUSSION 

The information of color has the property on one side to be 
typically psychophysical information, on the other side to be 
acquired with accurate measuring instruments and then to be 
accurately represented in a numerical space. Between the 
physical world, from where the color entities are issued, and the 
abstract human mental world, where they are defined and 
represented, is the sensitive world that is a partial perception of 
the physical world. Color entities, like the orange color for 
example, cannot be considered as concrete physical entities of 

 
Figure 6. Van Gogh painting as a context for color measurement. 

 
Figure  7.  Color  histogram  of  the  painting  in  comparison with  the modal 
coordinates of each symbol before the adaptation of the scale. 
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the concrete physical world. They are issued from a concrete 
entity, an electromagnetic spectrum, and appear into the 
sensitive world. The difficulty of color measurement is that the 
human sensitive world, i.e. the human perception of the 
concrete world, differs from the instrumental sensitive world, 
i.e. the instrumented perception of the world. The consequence 
is that the abstract worlds used to represent these sensitive 
worlds also differ. In particular, the structure of the 
colorimetric spaces of the instrumental abstract world is richer 
than the structure of the colorimetric spaces of the mental 
abstract world.  

Indeed, each colorimetric space of the instrumental abstract 
world holds a metric. Usually, but not necessarily, an Euclidean 
metric. So it is legitimate to consider that the colorimetric space 
in the instrumental sensitive world also holds this metric. A 
colorimetric space of the abstract mental world is a metrizable 
space, but the associated metric is not defined. This fits with 
the general knowledge that a distance between color exists but 
cannot be precisely defined. Within this context, the space of 
lexical fuzzy subsets gives an alternative to the usual numerical 
colorimetric spaces. Indeed, this space is a metrizable space, 
and the metric depends on the goal of the color process and 
not on the sensitive world. Furthermore, the distance is based 
on a fuzzy scale that can be adapted through a learning 
algorithm. 

7. CONCLUSION 

The color measurement does not lead to a unique theory 
and needs a scale for each application, or more precisely for 
each context. We proposed in this paper to use scales that 
preserve a similarity relation or a metric. The fuzzy scales, with 
their ability to express the measurement values on a non affine 
space, give a good solution for color measurement. The counter 
part is the necessity to adapt the scale according to a context or 
a color process. This paper gives an algorithm to perform such 
adaptation. This adaptation can be compared with a calibration 
process where the calibration standards are color entities. 
Finally the colorimetric space associated to a fuzzy scale has a 
structure closer to the human representation than classical 
colorimetric spaces.  

The goal of a measurement process is to obtain a consensual 
value to represent a unique quantity. This goal might be felt as 
contradictory with the approach presented in this paper. But 
actually it is not. Indeed the linguistic representation of a 
psychological quantity is influenced by subjectivity and the 
usual scales are not adapted to reach a consensual value. Using 
scales that can be adapted to a context or a human perception is 
a way to compensate the subjectivity and then to reach the 
initial goal of any measurement process.  
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Figure  8.  Color  histogram  of  the  painting  in  comparison with  the modal 

coordinates after the adaptation of the scale with the FCM like clustering ( 
= 1 for colors a to h,  = 0.5 for colors i to o). 


