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1. INTRODUCTION 

Alloy chemical composition, microstructural features and 
corrosion layer stratification provide archaeologists, researchers 
and conservators with the scientific evidence necessary for the 
dating, authentication and identification of archaeological metal 
findings. Thus, the understanding of the complex corrosion 
mechanisms occurring on copper (Cu)-based alloys during burial 
is a fundamental prerequisite for their long-lasting conservation 
and safeguarding. 

The corrosion of Cu-based archaeological artefacts buried in 
soil for long periods depends on many variables related to the 
microclimatic conditions and soil chemical–physical properties. 
In fact, soil is a very complex environment and many different 
parameters, such as geological and hydrological factors and soil 
chemical composition, can affect the degradation mechanisms of 
the objects. The formation of patinas during burial can be 
ascribed to oxygen and carbon dioxide, moisture content, 
temperature, pH and salt content [1], [2]. Moreover, water in the 
soil acts as an electrolyte on the surface of the buried object, and, 
in the case of Cu-based artefacts, a minimum pH value is 

required to induce the formation of stable corrosion product 
layers [3].  

A precipitation–dissolution mechanism forms part of the 
degradation process, which can be explained by considering the 
dissolution of copper, which is kinetically controlled by the mass 
transport of this element from the alloy to the environment, and 
the diffusion of the aggressive ions towards the alloy interphase. 
Anionic control, in the presence of chloride ions, produces 
higher volume change and less coherent corrosion layers, 
whereas cationic processes arise in the diffusion of metallic 
components and become the rate-determining step, resulting in 
compact corrosion layers [4], [5].  

Due to the complexity of both the patina structure and the 
degradation mechanisms, several analytical techniques and 
statistical data analyses are employed to collect reliable 
information on Cu-based artefacts. Among them, Raman 
spectroscopy has found a wide application in the cultural heritage 
field because it is non-destructive and allows measurements to 
be performed in situ using portable instrumentation [6], [7]. In 
the last decades, different studies have analysed Raman spectra 
acquired from copper minerals, providing important knowledge 
to characterise patinas related to copper corrosion [8], [9]. This 
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has allowed researchers to use Raman spectroscopy in different 
investigations in order to identify the compounds present in the 
patinas of archaeological findings [10]-[11][12]. This kind of 
study has great relevance for assessing the artefacts’ conservation 
state and, thus, proposing the most appropriate restoration 
strategy [13].  

An additional tool that is often used by researchers involved 
in spectrometric analyses is multivariate statistics and, in 
particular, principal components analysis (PCA). This 
chemometric technique allows the user to find characteristic 
patterns in the acquired spectra and, therefore, to discriminate 
between the different components that belong to the system 
under study. It is possible to find various case studies in the 
literature that have taken advantage of this technique in different 
contexts [14]-[16]. 

This study deals with a non-invasive Raman investigation on 
bronze artefacts from the Rakafot 54 archaeological site in Israel. 
The proposed measuring approach is appropriate as a 
preliminary investigation, which could be performed in the field, 
to collect information about the stability and the conservation 
state of the artefacts immediately after excavation, thus leading 
to the development of tailored preservation strategies for the 
storage of these items. 

In section 2, details of the Israeli bronze artefacts and the 
experimental methodology are presented, together with the 
model for PCA analysis and data matrix decomposition. Section 

3 deals with the presentation and discussion of the results of the 
Raman spectroscopy measurements and the PCA data 
processing. Finally, in the concluding section, the major 
achievements are summarised. 

2. MATERIALS AND METHODS 

In this section, the archaeological artefacts under 
investigation are described as well as the main methodological 
issues and the data analysis performed. 

2.1. Archaeological artefacts under study 

The artefacts that are the subject of this study were excavated 
in the Rakafot 54 archaeological site near Beer-Sheva, Israel, 
close to the border between Judea and Nabataea, involving a 
settlement dating back to the Roman period. The site dates from 
the first century AD (Second Temple) to the Bar Kochba revolt 
against Rome in 135 AD.  

The excavations were carried out by Peter Fabian, 
Department of Bible, Archaeology and Ancient Near East, Ben 
Gurion University of the Negev (Beer-Sheva, Israel), and Daniel 
Varga, Israel Antiquities Authority. 

During the excavation, several artefacts and dozens of bronze 
coins were found, most of them belonging to the Roman 
procurators' period (6–66 AD). Of these, a set of 24 artefacts, 23 
coins and a pendant were selected for the investigation of the 

 

Figure 1. Images of the 24 analysed artefacts from the Rakafot 54 archaeological site, labelled with their identifier code. Each photograph represents an area 
of 3.5 cm x 3.5 cm. 
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corrosion products. Figure 1 shows the high-resolution images 
of the artefacts and their identifier codes.  

Under visual observation, most of the artefacts appeared to 
be covered by a thick layer of corrosion products that were rather 
non-uniform. Brownish or dark-green patinas were 
predominantly present on the surface, while some areas had a 
light-green colour; soil traces were also found on the surface.  

2.2. Raman spectroscopy 

Superficial corrosion products were analysed using Raman 
spectroscopy, a technique widely used in the characterisation of 
metallic artefacts. Measurements were performed using the 
BWTEK i-Raman Plus spectrometer. This is a portable 
instrument equipped with an optical-fibre probe to analyse 
specific areas of the sample and a high quantum efficiency CCD 
array detector to guarantee a good signal-to-noise ratio in the 
acquired spectra. A laser wavelength of 532 nm was used for all 
measurements, which were carried out in the range between 150 
cm−1 and 4,200 cm−1 with a resolution of 7.3 cm−1. After 
optimising the measurement parameters on reference samples, as 
described in [17], spectra were acquired using a laser power of 6 
mW, with 10 repetitions and an integration time of 20 s, in order 
to avoid any modification or degradation being induced in the 
material by the laser radiation. 

As the samples under study were not flat but had irregular 
shapes and high surface roughness, measurements were carried 
out by gradually changing the distance between the probe and 
the analysed artefact to focus the laser beam and have the best 
signal-to-noise ratio in the acquired spectrum. 

2.3. Data analysis 

PCA was used to recognise the different patterns present in 
the acquired Raman spectra and to support the identification of 
corrosion products on the samples. PCA is a powerful tool that 
allows the reduction of the dimensionality of a dataset, keeping 
only those variables that account primarily for data variance [18]. 
Thus, it transposes all the vectors representing each of the 
acquired spectra into a new space that has a dimension equal to 
the number of significant components evaluated through PCA. 
In matrix notation, it is possible to express the original spectra as 
follows: 

𝑋 = 𝑇 ∙ 𝑃𝑇 + 𝐸 , (1) 

where, if we have I samples and J points for each measurement, 
X is the original data matrix (with a dimension of I x J), P is the 
loading matrix (with a dimension of J x K, where K is the number 
of significant components), which form the eigenvectors 
representing the new space, T is the score matrix (with a 
dimension of I x K), which form the eigenvalues derived from 
the X matrix decomposition, and E is the residual matrix, also 
known as the error matrix, which contains the variance burden 
not explained by the PCA model [19]. 

In the present study, PC analysis was carried out on the 
acquired Raman spectra using a Python script. First, pre-
processing was performed, as is usually required for this kind of 
data [20]. The analysed spectrum was limited to the interval of 
interest between 150 cm−1 and 1,150 cm−1, where the peaks 
related to the copper corrosion products are present [21]. 
Baseline removal was performed using asymmetric least square 
smoothing, as described in [22]. A Savitzky-Golay filter was then 
applied [23] using the savgol_filter function from the SciPy library 
[24]; the original spectrum was processed using a window length 
of 15 cm−1 and fitted with a 2nd order polynomial. After that, 

standard normal variate transformation was performed [25] 
using the following calculation for each measurement point:  

𝑦𝑆𝑁𝑉 =
𝑦 − �̅�

𝑠𝑡𝑑
 , (2) 

where 𝑦𝑆𝑁𝑉  is the variable value after transformation, 𝑦 is the 

original variable, �̅� is the mean value in the original spectrum and 
std is the standard deviation.  

The results of the pre-processing operations can be seen in 
Figure 2, where the results obtained for one of the spectra is 
presented. As can be seen, only the wavenumber range from 150 
cm−1 to 1,150 cm−1 is selected. The broad background caused by 
fluorescence is then removed, the spectrum is filtered to improve 
the signal-to-noise ratio and, finally, normalisation is performed. 

Original data matrix decomposition was performed using the 
PCA package from the sklearn.decomposition module [26]; in this 
way, eigenvectors and scores are directly computed. The PCA 
model was improved by eliminating possible outliers, which 
generally proved to be noisy measurements, considering two 
parameters, leverage and root mean square deviation (RMSD). 
The former is defined as the diagonals of the ‘hat matrix’ H: 

𝐻 = 𝑇(𝑇𝑇𝑇)−1𝑇𝑇  , (3) 

where T is again the score matrix. All measurements with a 
leverage higher than three times the median value were discarded 
from the model construction and analysed separately [27]. 
Moreover, RMSD, which quantifies the difference between the 
acquired spectrum and the same spectrum reproduced by the PC 
model, was calculated as follows: 

𝑅𝑀𝑆𝐷 = √
∑ (𝑋 − 𝑇𝑃𝑇)2𝐽

𝑖=1

𝐽
 , (4) 

where J is the number of points for each measurement, X is the 
original data matrix, T is the score matrix and P is the loading 
matrix. Model optimisation was carried out until all the 
reproduced spectra had an RMSD lower than 30% of the initial 
standard deviation. 

After applying the obtained PCA model to the spectra, it was 
possible to compute the scores related to the most important 
components. Similarity between spectra was evaluated using 

 

Figure 2. Top: original Raman spectrum acquired on sample 9883. Bottom: 
same spectrum in the restricted range of interest between 150 cm−1 and 
1,150 cm−1 after pre-processing and normalisation. The yellow line 
represents the computed baseline in the original spectrum.  
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hierarchical clustering. This analysis was performed using the 
Agglomerative clustering method in the sklearn.cluster module; 
Euclidean metric was used to compute the linkage. In Figure 3, 
a flow chart summarises the steps involved in PCA processing. 

3. RESULTS AND DISCUSSION 

A preliminary study by Peters et al. [28] analysed the chemical 
composition of the artefacts under investigation by means of X-
ray fluorescence. This study revealed that most of the artefacts 
were produced from a copper-lead-tin alloy, with a lead content 
that, in some cases, reached 14 wt%. Starting from this basis, the 
present investigation tried to identify the specific corrosion 
products that characterise the artefacts by means of Raman 
spectroscopy.  

Gentle brushing without any solvent, to avoid surface 
modification or the dissolution of the corrosion products, was 
the only cleaning operation that was performed before the 
Raman measurements were taken, as soil traces can affect their 
acquisition by causing large fluorescence signals in the spectrum.  

The acquisition of Raman spectra was not straightforward, as 
the shape and conservation state of the artefacts were not 
optimal. As mentioned above, due to the irregular shape, the 
focusing of the laser beam was performed by manually adjusting 
the distance between the spectrophotometer probe and the 
sample in order to achieve optimal conditions. Moreover, despite 
the preliminary cleaning, soil traces caused a broad fluorescence 
signal in the central part of the spectrum, between 1,200 cm−1 
and 3,000 cm−1, as can be seen in Figure 2 for sample 9883. A 
good signal-to-noise ratio could be obtained only when bright-
green patinas were analysed, while measurements could not be 
performed on the brownish patinas, possibly associated with 
cuprite [28]. This could be due to the low thickness of these 
layers or to the excitation wavelength that was used in this study; 
only a 532 nm laser light was employed. 

For all 24 artefacts, at least five Raman spectra were acquired 
for different areas, and in all cases, it was possible to find at least 
one area giving a good Raman signal. 

Taking into account the characteristic peaks for copper 
corrosion products [21], the analysis was limited to the 
wavenumber range between 150 cm−1 and 1,150 cm−1. After 
performing the pre-processing operations, as described in 
Section 2.3, the resulting spectrum appears as shown in Figure 2 
for sample 9883. From a visual comparison of the different 
measurements, it was possible to distinguish two patterns that 
were predominant in most of the spectra. The first was 

characterised by four intense peaks at 505 cm−1, 814 cm−1, 905 
cm−1 and 972 cm−1, with the peak at 814 cm−1 having a shoulder 
at a higher wavelength. The second pattern exhibited an intense 
peak at 505 cm−1 and then another four, respectively, at 796 
cm−1, 888 cm−1, 921 cm−1 and 967 cm−1. These two patterns 
could be associated with the characteristic spectra of two copper 
hydroxy-chlorides (Cu2Cl(OH)3), atacamite and its polymorph, 
clinoatacamite.  

Due to the presence of several minor peaks and the noise 
related to the non-ideal acquisition conditions, data were 
processed also using PCA, an unsupervised multivariate analysis. 
Using this chemometric technique, it is possible to classify 
different measurements, identifying their characteristic patterns. 
The PCA model was built progressively, removing those spectra 
that were identified as outliers by the algorithm (see Section 2.3 
for further details on outlier detection). All these measurements 
had been previously classified as noisy acquisitions, and some of 
them were dubiously identified as atacamite. After model 
optimisation, all measurements fell into the desired leverage and 
RMSD range (leverage below three times the median value and 
RMSD lower than 30% of the initial variance).  

The cumulative explained variance trend can be observed in 
Figure 4. The first three components represent an overall 
variance of about 85.5% - respectively, 59.7%, 19.8% and 6.0%, 
which is a satisfactory level. Taking also into account that the 
fourth component captures only 4.2% of the total variance, it 

 

Figure 3. Flow-chart summarising the steps involved in PCA processing. 

 

Figure 4. Cumulative explained variance for the first five components, as 
obtained from the PCA model. 
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was decided to use only the first three components to carry out 
the analysis. Using components representing a low percentage of 
the initial variance can have adverse effects because they would 
generally fit the measurement noise and not the important parts 
of the spectrum.  

The result of the PC analysis is presented in Figure 5, which 
plots the scores of the three principal components two at a time; 
spectra that appear close in these graphs are similar to each other. 
As can be seen, measurements group together in two clusters, 
and the main discriminant is the PC1 score value, which is 
positive in one case and negative or with low positive values in 
the other. This behaviour is clearly visible in the PC1-PC2 and 
PC1-PC3 plots, while cluster formation is not evident in the PC2-
PC3 plot. Four samples belong to the first group, namely 6151, 
8103, 8299 and 8599, while 6015, 6058, 6081, 6101, 8260, 8261, 
8591, 8603, 8893, 9024, 9483, 9803, 9830 and 9883 are part of 
the second. The absence of clusters in the PC2-PC3 plot can be 
explained by considering the low variance captured by the third 
component (only 6.0%) and the PC3-loading trend (Figure 6). In 
fact, this plot does not contain many significant features, only a 
peak at about 977 cm−1, which can be found in the atacamite 
spectrum, and a minimum in the region around 198 cm−1. 
Presumably, this component is used in the model in linear 

combination with the main two components only to improve the 
fitting of the most important peaks found in the other two 
components. 

The reason for the discrimination in separated clusters can be 
found by looking at the loadings associated with the first two 
components (Figure 6). In the PC1 loading, peaks associated 
with atacamite (811 cm−1 and 904 cm−1) are in the negative range, 
so a negative score is needed in order to fit the original spectrum. 
At the same time, peaks associated with clinoatacamite (for 
example, at 884 cm−1) are in the positive range. PC2 loading 
exhibits a different trend; here, it is possible to find a peak in the 
negative range (506 cm−1), which can be seen both in the 
atacamite and clinoatacamite spectrum. However, peaks 
associated with clinoatacamite (885 cm−1 and 922 cm−1) are in 
the negative range, thus justifying the reason for the negative 
scores in the samples of the first group, and an intense peak at 
970 cm−1 associated with atacamite is present. Therefore, the 
attribution of both positive and negative scores for atacamite 
samples in the second component can be explained by their 
features being in both ranges. Moreover, in samples with a 
negative PC2 score, the feature at around 970 cm−1 in the original 
spectrum can be reproduced by peaks at 962 cm−1 and 977 cm−1 
in the PC1 and PC3 loading. The goodness of fit for the two 
example spectra can be evaluated by looking at Figure 7: on top, 
a spectrum identified as atacamite is presented, while at the 
bottom, one associated with clinoatacamite is shown. The yellow 
line, representing the model, was computed as the product 
between the scores and the loading matrix: 

𝑋𝑀𝑂𝐷 = 𝑇 ∙ 𝑃𝑇  . (5) 

It correctly fits the black dots that represent the measured 
spectrum. Notably, the most important peaks in both spectra are 
correctly fitted by the model, and the residual error is low in the 
whole range. 

Thus, it is possible to state that the corrosion patina of the 
artefacts under study is mainly composed of copper 
hydroxychlorides, specifically atacamite and clinoatacamite. This 
agrees with the preliminary studies, which indicated the presence 
of chlorides in the excavation soil [28]. The presence of only two 
kinds of corrosion product suggests the existence of quite 
uniform conditions in the soil where the artefacts were buried, 
although, as discussed above, performing Raman spectroscopy 
with a different laser wavelength might reveal other compounds. 

 

Figure 5. Score plots of the first three components (PC1-PC2, PC1-PC3 and PC2-PC3). Percent variance captured by each PC is reported in parenthesis along 
each axis.  

 

Figure 6. Loadings associated with the first three components in PCA. 
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Atacamite and its polymorph clinoatacamite are generally 
considered as the final product of copper corrosion in 
environments containing chlorides. First, a layer of cuprite 
(Cu2O) grows on the metal; then, in the presence of water and 
chloride ions, cuprous chloride is formed (nantokite, CuCl), 
followed by copper hydroxychlorides. For this reason, 
conservation conditions of the investigated artefacts can be 
considered quite stable, even if chlorides are present. Finally, the 
morphology of the grown patina should also be taken in account. 
Only if this layer is sufficiently dense and continuous can it 
hinder the diffusion of the reactive compounds, otherwise the 
cyclic reactions related to copper corrosion would continue until 
the mineralisation of the metal is complete.  

4. CONCLUSIONS 

A non-invasive characterisation of bronze artefacts was 
carried out using Raman spectroscopy. Using multivariate 
analysis (PCA), it was possible to identify the main corrosion 
products present in the artefacts’ patina, namely atacamite and 
clinoatacamite. These results, coupled with the information from 
the soil characterisation, provides a deeper insight into the 
artefacts’ corrosion processes that occur during long-term 
exposure in a predominantly dry environment containing 
chlorides. Moreover, they can be used by restorers and 
conservators to define the most appropriate restoration strategy 
for these artefacts. 
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