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1. INTRODUCTION 

The concept of Internet of Things (IoT) was proposed as new 
paradigm for machine-to-machine communication, whereby the 
things (i.e. smart sensors/actuators) are augmented with internet 
connectivity in order to (i) observe/actuate upon various physical 
quantities, (ii) collect information, (iii) transmit and receive, (iv) 
store, and (v) analyse the acquired data [1], [2]. Nowadays, the 
IoT concept is successfully applied in several measurement 
applications [1], such as smart cities, intelligent transportation [3], 
and even biomedicine [1][3]. 

Biomedical systems adopting IoT (i.e. thus forming internet-
connected instrumentation for patient monitoring) are currently 
used in wearable health monitoring systems, thus allowing the 
implementation of personalised healthcare and telemedicine 
services [4].  

Patient mobility requires that many such biomedical 
wearables are battery powered and consequently connected 

health wearable instrumentation is strongly dependent on the 
energy costs of wireless internet communication [5][6]. To 
illustrate, bio-electrical signals like the electrocardiogram (ECG) 
are used for the identification of arrhythmia or irregular 
abnormalities [4][7]. This process of patient monitoring requires 
the transmission and storage of ECG records in the long term. 
In the literature, developments of IoT prototypes for ECG signal 
monitoring [8][9] and digital signal processing algorithms for 
ECG signal quality improvement have been reported in the 
literature [10]-[20]. The actual research direction is motivated by 
the aim of developing biomedical wearables that exhibit low-
power consumption in order to prolong their battery life [21]. 

The research activity presented in this article is part of the 
project entitled ‘Ambient-intelligent Tele-monitoring and 
Telemetry for Incepting & Catering over Human Sustainability’, 
ATTICUS, supported by the Italian Ministry of Education and 
Research. The project aims to develop a smart wearable device 
for the 

ABSTRACT 
This article presents an internet-of-things prototype consisting of a data acquisition device wirelessly connected to the internet via Wi-
Fi for continuous ECG monitoring. The proposed system performs a novel compressed sensing-based method on ECG signals, with the 
aim of reducing the amount of transmitted data and thus realizing an efficient way of increasing the battery life of such devices. For the 
assessment of the energy consumption of the device, an experimental setup is arranged, and its description is presented. The evaluation 
of the reconstruction quality of the ECG signal in terms of the percentage of the root-mean-squared difference is reported for several 
compression ratios. The obtained experimental results clearly demonstrate high energy efficiency and the usefulness of the Wi-Fi-based 
internet-of-things device adopting the considered compressed sensing method for the data compression of ECG signals. Furthermore, 
it allows for the reduction of the energy consumption of the internet-of-things device by increasing the compression ratio without 
significantly degrading the quality of the reconstructed ECG signal. 
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monitoring of several vital parameters by adopting novel 
technologies (i.e. hardware and software) for minimising power 
consumption [4][21][22].  

The general architecture of the ATTICUS system (see Figure 
1) consists of [4] (i) a smart wearable device (S-WEAR), (ii) an 
ambient intelligence device (S-BOX), (iii) a Decision Support 
System (DSS), and (iv) a monitoring station. In case of wearable 
devices, which are wirelessly connected to the internet, the main 
contribution to the overall power consumption is from the 
transmission of the acquired data (e.g. real-time ECG signals). In 
order to reduce this contribution, it is necessary to decrease the 
number of times that the wireless transceiver is transmitting data. 
To this end, several data compression algorithms can be adopted 
[16]. Thus, a data compression method implemented on a 
wearable device should exhibit low complexity, due to the limited 
processing capabilities of the device and good quality in the 
reconstruction of the original signal. Several data compression 
methods for ECG signals based on Compressed Sensing (CS) 
theory have been developed in the literature [5]-[7]. In [12], a 
novel method for the CS-based sampling of ECG signals for IoT 
systems is proposed. A first experimental evaluation of the 
method on hardware is presented in [21]. 

This article aims to present the experimental results of the 
hardware implementation of the proposed CS method, which is 
tested on a Wi-Fi System-on-Chip (SoC) module, with the aim 
of experimentally assessing the method in terms of the energy 
consumption of the wearable device and reconstruction quality. 

The article is organised as follows. A brief presentation of the 
state of the art concerning IoT-based patient monitoring systems 
adopting Wi-Fi data transmission is given in Section 2. Section 3 
describes the adopted CS-based method. In Section 4, the IoT 
prototype is presented. The experimental setup and the obtained 
results (in terms of the signal reconstruction quality and energy 
consumption of the implemented prototype) are described in 
Section 5. Several conclusions and recommendations for future 
work are reported in Section 6. 

2. STATE OF THE ART 

Nowadays, the health status of patients and real-time services 
for emergency notification are possible due to the advancement 
of IoT technologies [23][25]. Thus, the biotelemetry of ECG data 
represents an important task that helps to assist the cardiac 

activity of monitored patients [26]. Many studies have presented 
ideas and developments concerning remote cardiac monitoring 
systems, which could be used by even laypeople for multiple 
patient monitoring in a residential environment [23][26]. 

In [25], the authors describe a Wi-Fi-based ECG monitoring 
system using the Concerto IoT platform. The Concerto family 
of Microcontroller Units (MCUs) are multicore SoCs from Texas 
Instruments (TI). The proposal in [25] is built on a single chip 
ECG signal acquisition, a SimpleLink CC3000 Wi-Fi-based 
communication module, and a receiving peer – a smartphone. 
The low-energy feature of CC3000 is used for its advertising 
function, which sends messages for the establishment of the Wi-
Fi connection. Once the connection is established, a User 
Datagram Protocol (UDP) packet containing 7680 bytes is sent 
to the smartphone. However, in [25], there is no experimental 
evaluation of the energy consumption of the proposed IoT 
system for real-time ECG signal monitoring. 

In [27], an IoT-based portable ECG monitoring system for 
smart healthcare is presented. The authors developed an ECG 
wearable device comprising an (i) AD8232 as an Analog Front 
End (AFE) module for ECG signal acquisition, (ii) an Arduino 
Uno board for ECG sample transfer, and (iii) a Raspberry Pi 3B 
IoT platform for Wi-Fi data communication, which receives the 
ECG samples from the Arduino Uno board and sends them to 
a Wi-Fi peer receiver i.e. a smartphone. A similar approach is 
developed and presented in [28]. In the present work, the authors 
use (i) a classical ECG amplifier circuit built on AD620AN IC, 
(ii) an LPC2148 ARM7-based microcontroller for the analog-to-
digital conversion of ECG signals, and (iii) a Raspberry Pi 3 IoT 
platform for Wi-Fi data communication to a laptop computer. 

In [29], the design of seven lead ECG monitoring systems 
exploiting Wi-Fi data communication is presented. The proposed 
system is based on a sensing device comprising (i) an AFE 
module for ECG signal acquisition, (ii) an STM32F103 
microcontroller for data processing, and (iii) a Wi-Fi ESP8266 
module for data communication. 

Another work presenting IoT Wi-Fi-based real-time heart rate 
variability monitoring is [30]. The ECG AFE is built using 
AD8232 IC, is connected to the TI MSP430F5529 MCU, and 
sends data wirelessly by means of the TI CC3100 SimpleLink Wi-
Fi Booster pack evaluation board. The receiver is a laptop 
computer that receives the ECG data and streams it to an IoT 
cloud platform called PubNub. 

Other works dealing with IoT-based ECG monitoring 
exploiting data communication using Wi-Fi networks include 
[31]-[35]. From the prior research that we considered, [23]-[35], 
none presents an analysis regarding the energy consumption of 
Wi-Fi data transmission. For wearable IoT healthcare sensing 
devices, the instantaneous power consumption represents an 
important design parameter, allowing us to control the 
expectation of battery life. Moreover, in the surveyed literature, 
the adopted processing steps for ECG signal acquisition and 
transmission is like the one presented in Figure 2 (a), and as it 
was observed, there are no results presenting data compression 
and energy consumption measurements. 

In this work, the adopted processing steps for ECG signal 
acquisition and transmission is the one presented in Figure 2 (b). 
Thus, using a SoC-type MCU that embeds the Wi-Fi transceiver 
will gives an advantage in energy consumption optimisation 
compared to the existing proposals in the literature, which deal 
with systems like the one in Figure 2 (a). 

 

Figure 1. The architecture of the ATTICUS system [4]. 
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3. DESCRIPTION OF THE CS-BASED METHOD 

In this section, the implemented CS-based method for ECG 
compression in the proposed IoT system is briefly described. 
This method was firstly presented in [22], and it is based on a 
sensing matrix that contains information that is strictly correlated 
to the power of the ECG signal in a single frame. 

Usually, CS frameworks for the acquisition of ECG signals 
exploit sensing matrices, which are built up by using random 
sequences generated according to several probability density 
functions (e.g. Bernoulli and Gaussian) [12][13]. The 
reconstruction step, which operates on the compressed ECG 
samples, requires the definition of a dictionary matrix (e.g. Symlet 
4, Daubechies 6, and Mexican Hat wavelets), whereby the ECG 
signal can be considered sparse (i.e. it can be represented with a 
small number of coefficients). In these cases, by considering the 
same dictionary matrix, the reconstruction quality of the ECG 
signal strictly depends on the adopted random sequence used for 
defining the sensing matrix. In order to overcome this limit, in 
[12], the sensing matrix is built up by using a deterministic 
sequence. Moreover, this sequence depends on the power 
content of the ECG signal under observation. In this way, the 
information content (i.e. R-peak, QRS complex, and P-wave) on 
the compressed samples of the ECG signal is maximised, and 
then, the reconstruction quality is enhanced compared with 
classic approaches [12][13]. 

For one lead ECG signal compression, the adopted method 
performs the following steps (see Figure 3) [21][22]:  

1. A vector 𝒙 ∈ ℝ𝑁×1 of 𝑁 discrete samples, including at 
least one period of the ECG signal, is acquired. 

2. Based on this vector, the average value, 𝑥𝑎𝑣𝑔 , is 

calculated. 

3. The absolute value of the point-by-point difference 

between the 𝒙 vector and its average value, 𝑥𝑎𝑣𝑔 , is 

performed, thus obtaining the vector 𝒙𝒂. 

4. The vector 𝒙𝒂 is compared point-by-point with a fixed 

threshold value, 𝑥𝑡ℎ. 

5. The vector 𝒑 ∈ ℝ𝑁×1 of 𝑁 binary values is built as 

follows: (i) if the element of 𝒙𝒂 is higher than (or equal 

to) 𝑥𝑡ℎ, the value 1 is inserted into the corresponding 

vector position of 𝒑, and (ii) if the element of 𝒙𝒂 is lower 

than 𝑥𝑡ℎ, the value 0 is inserted in the corresponding 

vector position of 𝒑. 

6. Each row of the sensing matrix 𝜱 ∈ ℝ𝑀×𝑁 is obtained 

by the circular shifting of the vector 𝒑𝑻, where ⋅𝑻   
represents the transpose operation. The number of 

shifted samples is equal to the compression ratio, 𝐶𝑅 =
𝑁/𝑀, where 𝑀 is the number of compressed samples 

and corresponds to the number of 𝜱 rows. The circular 
shifting is performed in order to comply with the 
restricted isometry property and to reduce the coherence 
of the sensing matrix with the dictionary matrix, which 
are required for guaranteeing the signal reconstruction in 
CS theory [23]. 

7. The 𝑀-compressed samples, which are contained in the 

vector 𝒚, are obtained by multiplying the sensing matrix 

𝜱 by the vector 𝒙. 
The above operations do not require a large amount of memory 
and high-processing computational efforts. Thus, they could be 
performed on low-cost microcontrollers. 

In order to construct the vector 𝒙, which represents an 

estimation of the original signal 𝒙, from the compressed samples 

𝒚, the following steps are performed (see Figure 4): 

1. The dyadic Mexican Hat wavelet matrix, 𝜳 ∈ ℝ𝑁×𝑁+1, 

and the sensing matrix, 𝜱 are built. 
2. The Orthogonal Matching Pursuit (OMP) algorithm is 

used for estimating the  𝑅 coefficients that represent the 

𝒙 vector in the domain defined by the dyadic Mexican 
Hat wavelet, by solving the following minimisation 

problem: �̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜶

‖𝜶‖1, subject to 𝒚 = 𝜱 ⋅ 𝜳 ⋅ 𝒙, 

where �̂� is the vector containing the 𝑅 estimated 
coefficients. 

3. By multiplying the estimated �̂� vector with the dyadic 

Mexican Hat wavelet matrix, 𝜳, the vector 𝒙 is estimated. 
The above reconstruction operations are performed on a 
processing platform that does not have energy consumption 
constraints and size limitations. 

4. THE IMPLEMENTED IOT SYSTEM PROTOTYPE 

In this section, the architecture of the implemented IoT 
system performing the proposed CS method is described. The 

 

Figure 2. The processing steps of the ECG signal acquisition and transmission: 
(a) a generic overview of the proposals in the literature and (b) a generic 
overview of the adopted system in this work. 

 

Figure 3. The processing steps of the adopted CS-based data compression. 

 

Figure 4. The processing steps for the reconstruction of the ECG signals from 
the compressed data. 
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system consists of (i) an ECG data acquisition system, which 
embeds a Wi-Fi transceiver, (ii) a Wi-Fi router, and (iii) a laptop.  

The ECG data acquisition system acquires the ECG samples, 

performs the data compression for obtaining the vector 𝒚, and 

sends to the Wi-Fi router both vector 𝒚 and 𝒑 in a UDP packet. 
The router collects the received data and transmits them to the 
laptop.  

The laptop receives the compressed samples 𝒚 and the vector 

𝒑, and it executes the OMP algorithm in order to reconstruct 𝒙. 
The reconstructed samples are shown to the user through a 
graphic interface. In the following section, the hardware and the 
firmware of the implemented ECG data acquisition system are 
described. Furthermore, a LabVIEW application running on the 
laptop for data acquisition and reconstruction is developed. Its 
main tasks are described thereafter. 

4.1. ECG data acquisition system: hardware 

The ECG data acquisition system consists of a CC3200MOD 
LaunchPad evaluation board [37], embedding the CC3200MOD 
SoC. This SoC is a wireless microcontroller module that 
integrates an ARM Cortex-M4 core running at 80 MHz and a Wi-
Fi network processor to completely offload the host processor 
along with an 802.11 b/g/n radio, baseband, and MAC for 
secure WLAN internet connections. The network processor 
supports station, Wireless Access Point (WAP), and Wi-Fi direct 
connection modes. Moreover, it implements the IPv4 TCP/IP 
stack [36]. 

The microcontroller acquires the samples of the ECG signal 
by means of its embedded 12-bit Analog-to-Digital Converter 
(ADC) on the ADC-CH2 pin. The ADC works at a sampling rate 
of 500 Hz and has an input voltage range of [0, 1.4] V [36]. The 
AFE has not been designed in the implemented prototype, since 
its energy consumption is negligible in respect to the necessary 
power for Wi-Fi communication. 

In order to reduce the power consumption of the overall SoC, 
both the Cortex-M4 Application Processor (AP) and the 
Networking Processor (NP) can work in different power states. 
The user program controls the power modes of the AP, which 
can be in the following five states: (i) active, (ii) sleep, (iii) Low-
Power Deep Sleep (LPDS), and (iv) hibernate. During the active 
state, the AP executes the code at a 80 MHz clock rate. On the 
other hand, in sleep mode, the AP clocks are gated off, and the 
entire state of the device is retained. In that state, the AP can be 
configured to wake up by an internal fast timer or by activity 
from any General Purposes Input Output (GPIO) line. In LPDS 
mode, the state information is lost, and only certain AP specific 
register configurations are retained. The AP can wake up from 

external events or by using an internal timer with a wake-up time 
of around 3 ms. The lowest power mode in which all digital logic 
is power-gated is the hibernate mode. The Real-Time Clock 
(RTC) keeps running, and the AP supports wake up from an 
external event or from an RTC time expiry. In this state, the 
wake-up time is about 15 ms. The NP can be active or in LPDS 
mode. Furthermore, when there is no network activity, the NP 
sleeps most of the time and wakes up only for a Beacon packet 
reception. 

In Table 1, the current consumption in the different power 
states of both AP and NP, according to the datasheet [36], are 
summarised. For the implemented prototype, the AP alternates 
between the active and the idle states, while the NP works into 
the transmission (Tx), reception (Rx), and LPDS states. 

4.2. ECG data acquisition system: firmware 

A general overview of the firmware executed by the ECG data 
acquisition system is depicted in Figure 5. 

In the beginning, the AP initialises the NP and provides it 
with the Service Set IDentifier (SSID) and the password of the 
WAP. The AP waits until the connection has been established 
between the NP and the WAP. A timer working at a frequency 
of 500 Hz is initialised, and the interrupt signalling due to its 
overflow is enabled. Two global variables are initialised to zero – 
count and length (see Figure 5). The variable count contains the 
number of acquired ECG samples at any program instant, while 
the variable length contains the length of the data that will be 
sent to the router through a UDP packet. The AP is in an idle 
state until the number of acquired samples, performed during the 

interrupt routine of the timer, is equal to 𝑁.  

Vector 𝒑 is constructed according to the fixed threshold 𝑥𝑡ℎ 

and the vector 𝒙 containing the 𝑁 acquired samples. Data 

compression is performed on vector 𝒙 according to sensing 

matrix 𝜱, which is a circulant matrix in which the first row is 

vector 𝒑𝑻. Vector 𝒚 is evaluated as a multiplication between the 

sensing matrix and the vector 𝒙. Both the 𝒚 and 𝒑 vectors are 
coded in a vector called payload. 

The variable length is incremented according to the length of 
the coded data. The data compression procedure is performed 

for each frame of 𝑁 ECG samples until the length of the vector 
containing the coded data achieves the maximum value of the 
payload length, MAX, allowed by the UDP packet, 
corresponding to 1472 bytes. When the maximum payload 
length is reached, the UDP packet is sent to the laptop through 
the WAP. 

In order to reduce power consumption, due to the Wi-Fi 
transceiver, the NP is always in the LPDS state. It goes into the 
reception state for receiving the Beacon packet sent by the WAP, 

 

Figure 5. A general overview of the firmware executed by the ECG data 
acquisition system. 

Table 1: Current consumption of the AP and NP in the available states [23]. 
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and for responding to it every 2 s. The number of transmitted 

UDP packets depends on the 𝐶𝑅. Of course, by increasing the 

𝐶𝑅, the UDP packets will be sent by the ECG data acquisition 
system more and more sporadically, and the entire energy 
consumption of the data acquisition system will then reduce.  

4.3. Laptop: software 

The task of the laptop is to collect compressed samples 𝒚 and 

power vector 𝒑 sent by the ECG data acquisition system and to 

perform the OMP algorithm to reconstruct 𝒙. To this end, a 
LabVIEW application has been realised. 

In the beginning, the laptop waits for the reception of a packet 
containing MAX = 1472 bytes. When the packet is received, the 

vector of the compressed data, 𝒚, and vector 𝒑 are extracted. For 

each ECG frame of N samples, the length of 𝒚 is 2 ∙ 𝑀 bytes, 

and the length of 𝒑 is 𝑁/8 bytes. Thus, according to the 𝐶𝑅, 
several frames of ECG signals are enclosed in a UDP packet. For 

example, if 𝐶𝑅 = 4 and 𝑁 = 512, 𝑀 is 128. For each frame, 
256 + 64 = 320 bytes are required, and in a UDP packet, 

4 frames are enclosed. By considering that the sampling 
frequency of each ECG sample is 500 Hz, 4 frames of 
compressed ECG samples will be received by the laptop about 
every 4 s. 

Vector 𝒙 is reconstructed according to the OMP algorithm 
(see Figure 4), which is performed in real time for each frame 

contained in a UDP packet. Vector 𝒙 is finally shown to the user. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

An experimental setup has been implemented (see Figure 6) 
for (i) assessing the quality of signal reconstruction at different 

𝐶𝑅 values and (ii) measuring the energy consumption of the 

ECG data acquisition system for different values of 𝐶𝑅. 
In order to evaluate the quality of signal reconstruction, in the 

UDP packet, 𝒚 and 𝒑 are enclosed as well as 𝒙. In that case, the 
setup consists of an ECG signal provided by the Agilent 33220A 
arbitrary waveform generator connected to the ADC-CH2 pin of 
the SimpleLink Wi-Fi CC3200 Module LaunchPad [37]. The 
generated ECG signal has a high level of 950 mV and a low level 
of 100 mV, with a frequency of 1 Hz, which corresponds to a 
heart rate of 60 bpm. 

The LabVIEW application reconstructs 𝒙, which is compared 

with the original ECG signal contained in 𝒙. As a figure of merit, 
the Percentage of Root-mean-squared Difference (PRD) is 
computed as follows: 

𝑃𝑅𝐷 =
||𝐱 − �̂�||2

||𝐱||2

× 100% . (1) 

This figure of merit is widely used by the scientific community 
for comparing CS algorithms in terms of the reconstruction 
quality of ECG signals [23]. 

The 𝑃𝑅𝐷 value is evaluated along an acquisition time of  

1 minute of the ECG signal for the following 𝐶𝑅 values: 

{2, 4, 8}. Those 𝐶𝑅s have been chosen according to the results 
obtained in [21], where it is reported that with the proposed 

method, a good reconstruction quality is obtained for 𝐶𝑅 ≤ 8. 

For the experimental assessment, threshold, 𝑥𝑡ℎ, has been 
chosen at 20 mV. 

In Figure 7, a single frame reconstructed signal for each 

considered 𝐶𝑅 and the point-by-point absolute value of the 
difference between the estimates and the original signal are 
depicted. It is observable that the point-by-point differences 

increase along with the 𝐶𝑅. In particular, for 𝐶𝑅 = 4, the 

maximum difference is around 20 mV, while for 𝐶𝑅 = 8, it is 
60 mV [see Figure 7 (d) and (e)]. However, for all the considered 

𝐶𝑅, the reconstructed signal approximates the original one well. 
For assessing the energy consumption of the ECG data 

acquisition system for several 𝐶𝑅 values, the experimental setup 
depicted in Figure 7 is used. It consists of a power measurement 
system consisting of (i) a shunt resistor with a nominal value of 

1.2 Ω, (ii) the NI-DAQ 6036E, and (iii) a PC interfacing with the 
NI-DAQ. The shunt resistor is placed in a series on the power 

supply pin of the CC3200. Its drop voltage, 𝑣𝐼(𝑡), proportional 
to the current dissipated by the SoC, is measured by using a 
differential input of the NI-DAQ, while the voltage 

measurements, 𝑣𝑃(𝑡), are performed by means of a single-ended 
analog channel in the NI-DAQ. The current and voltage 
measurements are multiplied for measuring the instantaneous 
power consumption of the ECG data acquisition system. These 
values are acquired by the PC in continuous mode with a 
sampling frequency of 100 kHz.  

 

Figure 6. A general overview of the implemented experimental setup for assessing the quality of signal reconstruction and for measuring the energy 
consumption of the EGC data acquisition system. 
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The voltage and current measurements have been calibrated 
against the value provided by the FLUKE 5500A calibrator. The 
current measurements have been calibrated by imposing current 
values from 0 mA up to 500 mA with a step of 50 mA. For each 
imposed current value, a type A uncertainty evaluation is 
performed on 105 measurements. The obtained expanded 

uncertainty is 0.4 mA by considering a coverage factor 𝑘 = 2. On 
the other hand, the voltage measurements have been calibrated 
within a range of 0 V up to 5 V, with a step of 0.5 V. For each of 
the imposed voltage values, the type A uncertainty assessment is 
performed on 105 measurements.  

The obtained expanded uncertainty is 0.3 mV, by considering 

a coverage factor 𝑘 = 2. According to the law of the propagation 
of uncertainty, the expanded uncertainty for the power 
measurements is 1.5 mW. 

In Figure 8, the instantaneous power consumption of the 
ECG data acquisition system is depicted for a time window of 
15 s in the case of no compression, implemented on the data 
acquisition system [Figure 8 (a)], and data compression 

performed for 𝐶𝑅 = {2, 4, 8}, see Figure 8 (b), (c), and (d), 
respectively. The measurements have been evaluated by 
considering for both NP and AP, the LPDS current 
consumption values reported in Table 1. In Figure 8, the power 
consumption due to the UDP packet transmission and the 
packet due to the Beacon response are marked. As expected, by 

increasing 𝐶𝑅, the number of times that the Beacon response is 

sent and the UDP packet is transmitted reduce. In particular, for 

𝐶𝑅 = 8, it is observable that the Beacon response is sent every 
2 s and that the UDP packets are transmitted about every 5 s. 

The power consumption measurements are taken for 4 s and, 
for this time period, energy consumption is estimated. Those 
measurements are repeated 10 times, and the type A uncertainty 

assessment is performed. Furthermore, for the considered 𝐶𝑅, 

100 ECG frames of 1 s each are acquired, and the 𝑃𝑅𝐷 and its 
uncertainty are estimated. In Table 2, the energy consumption 

and the 𝑃𝑅𝐷 values when compression is not performed and for 

the 𝐶𝑅 values of 2, 4, and 8 are reported. For the expression of 

the expanded uncertainties a coverage factor, 𝑘 = 2 has been 

considered. From this Table, it can be noted that for 𝐶𝑅 = 2, 
there is no advantage in terms of energy consumption respect 
with the no compression case (the two energy consumption 

measurements are compatible). For the 𝐶𝑅 values of 4 and 8, the 
energy consumption decreases even if, as it was expected, the 

𝑃𝑅𝐷 increase. However, the obtained 𝑃𝑅𝐷 for 𝐶𝑅 = 8 is lower 
than the 9 %, which is usually considered the maximum 
acceptable limit value for medical diagnosis [22][23]. 

6. CONCLUSIONS 

In this article, an IoT prototype for continuous ECG 
monitoring that performs a novel CS-based method to reduce 
the amount of transmitted data was presented. The implemented 
prototype consists of a wearable device wirelessly connected to 
the internet via Wi-Fi, based on the CC3200 SoC. The hardware 
of the implemented prototype and the firmware and software 
executed on the wearable device and the laptop, respectively, 
were described. 

A description of the experimental setup used for the 
assessment of the energy consumption of the device for several 

𝐶𝑅 values and for the evaluation of the reconstruction quality in 

terms of 𝑃𝑅𝐷 was given. The obtained experimental results 

 

Figure 7: Single frame reconstructed signal for the following 𝐶𝑅 = {2, 4, 8}, a), b) and c), and the corresponding point-by-point absolute value of the difference 
between the estimates and the original signal, d), e), and f). 

Table 2: Energy consumption and PRD when the compression is not 
performed and for 𝐶𝑅 values of 2, 4, and 8. 

 Energy 
consumption in J 

PRD in % 

No compression (2.65 ± 0.09) − 

𝐶𝑅 = 2 (2.70 ± 0.08) (0.94 ± 0.50) 

𝐶𝑅 = 4 (2.49 ± 0.06) (1.21 ± 0.10) 

𝐶𝑅 = 8 (2.32 ± 0.04) (4.61 ± 0.55) 
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demonstrate that the tested IoT prototype, which implements 
the CS method presented in [22], allows for the reduction of the 
energy consumption of the wearable device by increasing the 
compression ratio, without degrading the quality of the 

reconstructed ECG signal. For 𝐶𝑅 = 8, the obtained energy 

consumption for 40 s is 2.32 J with respect to 2.65 J, obtained 

without compression, and the 𝑃𝑅𝐷 is 4.61 %. 
Further work in this area should test the method by using 

ECG signals from a patient collected by an AFE module. The 
implementation of an algorithm for the online evaluation of the 

threshold value, 𝑥𝑡ℎ, by considering patient specific ECG signals 
should be considered. 
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