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1. INTRODUCTION 

Various industries have been undergoing several 
modifications since the advent of the Internet of Things (IoT) 
concept, which is changing the way human beings interact with 
the world. This is accomplished through the information 
exchange between interconnected physical objects and 
platforms. These can communicate with each other as well as 
with users through smart sensors and software that transmit data 
through a given network [1], [2]. It essentially presents an 
emergent paradigm as it comprises hardware infrastructure, 
software, and services that enable physical objects, known as 
‘things’, to be connected to the Internet [3], [4].  

Due to the new logistical challenges faced within the industrial 
ecosystem, the concept of the Industrial Internet of Things 
(IIoT) has emerged, which is considered to be one of the main 
stimulus mechanisms of the current revolution in the field of 
industrial automation [5]]-[7]. This concept, in turn, relates to the 

notion of Industry 4.0, a term introduced in 2011 as an initiative 
of the German government with a focus on improving the 
efficiency in the manufacturing industry [8], [9].  

Industry 4.0 disseminates how business objectives, intelligent 
algorithms, analytics, predictive technologies, and cyber-physical 
systems should be combined to establish a new way of thinking 
about production management and factory transformation [10]. 
Furthermore, as [11]]-[13] note, Industry 4.0 is aimed at 
developing intelligent products that inherently collect and store 
information throughout their lifecycle, providing answers that 
can be used to improve the development and production 
processes.  

It is notable that the various mechanisms that make up the 
industrial and commercial matrix are becoming more intelligent. 
Here, the data generated at all levels of the production process 
can be used to improve product quality, flexibility and 
productivity [5], [9]. 

In this scenario, recent years have seen the automotive 
industry focus on the development of smart vehicles equipped 
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with various sensors [14], with interfaces also available to 
automatically capture and extract digital information through the 
sensors and the communication protocols present in the cars 
themselves [3]. It is expected that the vast majority of vehicles 
manufactured up until 2035 will have the capacity for wireless 
communication [14], with the vehicles connected via various 
types of devices (e.g. sensors, smartphones, cameras), wireless 
communication protocols and media broadcast systems [15]. 
These advancements can be categorised as the development of a 
new paradigm, that is, the IoIV paradigm [16], [17].  

As a result, the extracted data from the various vehicle 
systems can be used for interactions within a new processing and 
communication context, leading to a revolution in the way 
vehicles are used [3], [18], [19]. As such, a combination of the 
IoIV concept and Industry 4.0 can enable a more efficient and 
accurate decision-making process for vehicle manufacturing 
organisations [20]. As Industry 4.0 is focused on exchanging and 
collecting information throughout the entire product lifecycle 
[12], these results can be accomplished by promoting a feedback 
loop from the final users (the vehicle owners) and the 
manufacturers (i.e. a constructive return of the vehicle 
information to the industry). 

In order to enable services such as those previously 
mentioned, a number of solutions have been proposed in the 
existing literature [3], [18], [19], [21], which include the means to 
capture vehicular data within the context of the IoIV. These 
studies adopt a smartphone or a Raspberry Pi as a 
communication module alongside the vehicle's on-board 
diagnostics (OBD-II) system, a self-diagnosis system available on 
most vehicles currently in circulation [22] (Figure 1a). In this 
work, the Freematics One+ is adopted,1 which is a device that 
does not depend on a smartphone to communicate with the 
OBD-II interface, as shown in Figure 1b. In fact, the device 
operates autonomously with access to the vehicle's engine 
control unit (ECU), making it possible to perform computations 
on the device itself before sending data to the cloud. 

The Freematics One+ is an Arduino-based programmable 
vehicle telematics prototyping platform in the form of an OBD 
dongle. It plugs into a vehicle’s OBD port and works as a 
standalone device with access to the vehicle’s ECU, the high-rate 
Global Navigation Satellite System (GNSS), the 9-DOF 
(Degrees of Freedom) motion sensor and possibly a number of 
external sensors. The collected data can be processed in real time, 
stored in an internal Flash or micro SD card and transmitted via 
Bluetooth, WiFi or 3G connections. 

The autonomous operating mode of the Freematics One+ 
presents a direct benefit for the implementation of edge 
computing, a technology applied to devices that performs data 
processing and can ensure maximum security and reliability [23], 
[24], while it also provides the capacity of local storage and 
computing [23], meaning the device can operate even when not 
connected to the Internet. 

Due to these properties, an important factor that must be 
taken into account when using edge computing is the response 
time of the requests. Given that some of the current applications 
require a response time of around 20 ms, a substantial delay can 
cause serious damage to the driver or the machine [25], [26]. 
Within this context, this paper aims to evaluate the response time 
of the OBD-II parameter ID (PID) requests and proposes a state 
machine to model the driver behaviour while evaluating the CO2 
emission estimation. All the data were collected via an 

 
1 https://freematics.com/pages/products/freematics-one-plus/  

experiment involving vehicles that were selected in the city of 
Natal, Brazil for convenience. The results indicated that the 
request time of the PIDs depends on each vehicle and not on the 
type or quantity of the PIDs themselves. 

The remainder of the paper is organized as follows. First, 
section 2 outlines the OBD-II system. Section 3 then discusses 
the related works, while the experimental evaluation 
methodology is described in section 4. The results are provided 
in section 5, while section 6 outlines the issues with the validity 
of the study. Finally, the conclusions and the future directions 
are provided in section 7. 

2. OBD-II 

The OBD-II is a hardware that is connected to the vehicle's 
ECU, as shown in Figure 2. It provides access to the status of 
the various vehicle subsystems, allowing the reading and 
transmission of the data measured by the sensors and actuators 
of the vehicle in real time [27]. 

This interface allows for connection to the vehicle through 
various different protocols. However, generally, each vehicle 
implements only one of these protocols. The most commonly 
used protocol is the controller area network (CAN) created by 
Bosh in 1980. The main rationale behind its creation was to allow 
communication between different ECUs. Meanwhile, a variety 
of other widely used protocols exist, including SAE J1850 PWM, 
SAE J1850 VPW, ISO 9141-2 and ISO 14230 KWP2000 [28]. 

The OBD-II technology implements 10 operating modes, 
with each mode designed for a specific purpose. For every mode, 
there are distinct sets of available commands that are used to 
obtain data from the sensors and actuators of the vehicles [3]. 
Here, the data is requested using codes known as parameter IDs 
or PIDs. However, manufacturers are not required to implement 
all modes in their vehicles. Therefore, prior to any data request, 
it is necessary to check which commands are supported by the 
vehicle. 

The data collection and analysis system (OBD-II) is plugged 
into the vehicle’s OBD-II port and is subsequently configured 
(through its internal connection or via smartphones) to send the 
recorded data to the cloud database through mobile networks. 

 

(a) TRADITIONAL OBD-II (b) OBD-II FREEMATICS ONE+ 

Figure 1. Architecture overview. 

https://freematics.com/pages/products/freematics-one-plus/
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3. RELATED WORKS 

Following a systematic review of the literature, several papers 
were identified that influenced the research carried out and, 
therefore, contributed to the development of the proposed 
solution. 

A fleet management system based on the OBD-II was 
implemented in [29]. Here, an OBD-II reader was designed to 
measure the speed and mass air flow (MAF) from which the 
distance and fuel consumption were also calculated. Many tests 
were performed to assess the system functionalities, while none 
were related to the system performance. Similarly, a customer 
feedback platform for the automotive industry within the context 
of Industry 4.0 is described in [3]. Such a platform is capable of 
collecting and analysing data from sensors available in the 
vehicles through an OBD-II scanner. This platform aims to assist 
in the management, prevention, and mitigation of different 
vehicular issues. What differs from the proposed solution is that, 
much like with the previously mentioned work, the response 
time of the PIDs requests was not evaluated. 

Working along similar lines, a graph database solution to 
Industry 4.0 was proposed in [30] to manage the large amount of 
data generated by the sensors disseminated inside and around the 
vehicle in the urban environment. A number of benefits were 
recognised through the geo-localisation of the vehicles and the 
identification of specific events. However, this solution differs 
from the proposed solution in that it only evaluates the 
performance of the vehicle based on the data collected. 

Elsewhere, a platform was proposed in [22] with the aim of 
estimating the amount of CO2 emissions based on the readings 
of the vehicles sensors in order to monitor vehicular pollution. 
However, it was not applied to the context of Industry 4.0. 
Furthermore, a mobile measurement system for urban pollution 
monitoring that can be installed on public ground transportation 
vehicles was proposed in [31]. This system includes several 
important features that make it suitable for the specific purpose, 
namely, the low cost, the reduced dimensions, the autonomous 
power supply, and the measurement strategy capable of 
minimising the measurement uncertainty. However, it differs 
from the proposed work as it does not make use of the OBD-II.  

In fact, it is clear that the OBD-II reading performance in 
terms of all sensors has yet to be evaluated, which means there 
remains a gap in the literature that must be explored to promote 
the development of new solutions incorporating OBD-II and 
IoIV technology. 

4. EXPERIMENT 

This section describes the methodology used to plan and 
execute the experiments. 

4.1. Goal Definition 

The main objective of this paper was to evaluate the response 
time of the OBD-II PIDs requests. In addition, a state machine 
for modelling driver behaviour was proposed in order to clarify 
the results, while estimations of CO2 emissions were also 
performed. 

4.2. Planning and Evaluation Design 

This subsection details all the evaluation design aspects. In 
terms of context selection, the evaluation targeted vehicles 
manufactured in Brazil from 2010 on, since this was the year 
when the implementation of the OBD-II system in vehicles 
became mandatory. Meanwhile, in terms of research context, the 
questions we are attempting to address are as follows: 1) what is 
the driver behaviour during the test?; 2) what is the time 
distribution for the request of all supported PIDs in the vehicles, 
considering both real and simulated scenarios?; 3) what is the 
performance of the request response time when considering the 
same set of PIDs for each vehicle?; 4) what is the difference 
between the response time of the PIDs requests in relation to the 

CAN?; and 5) what is the estimated CO2 emission rate during the 
test? 

Finally, in terms of sample selection, this was based on 
convenience and the availability of the drivers and specific 
vehicles, as described in Table 1. 

4.3. Experimental Design 

The experiment was designed in relation to a route with urban 
and highway sections in the city of Natal, Brazil. The pre-shift 
route was 30 km long and the drivers took the same route in two 
schedules (13 h and 16 h) on different days. The experiment was 
conducted according to these schedules in order to obtain more 
variability in the data, given that the traffic in the urban section 
at 16 h is heavier than at 13 h. 

4.4. Instrumentation 

The process was initiated with the configuration of the 
environment for the experiment and the planning of the data 
collection procedure. The settings were coded into the 
Freematics One+ and were defined as follows: connection type 
to 3G, server hosting on the Amazon Web Service, PID set 
request interval configured to 500 ms, and the interval for 
sending data to the server set to 5 s intervals. 

4.5. Execution 

The experiment was performed according to the state 
machine presented in Figure 3. The initial state is with the engine 
off (‘Start’). Immediately after turning the vehicle on, the status 
of the state machine can switch to ‘Stopped’ or ‘Moving’. 
Ultimately, the driver can step on the brake at certain points 
without stopping the vehicle, only reducing the speed. In 
addition, the driver can stop due to a semaphore, a traffic jam or 

 

Figure 2. Communication interface between a typical OBD-II device and a 
vehicle.  

Table 1. Availability of vehicles. 

Model Year Motor Fuel PIDs 

Ford Ka 2019 1.5 flexible 21 

Nissan Kicks 2017 1.6 flexible 22 

Chevrolet Onix 2015 1.4 flexible 22 
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other similar situations. Finally, the execution of the experiment 
is completed when the car is turned off.  

Following this process, data was collected for around 180 km, 
with 30 km for each round of the experiment per vehicle. Of 
these, 60 % was collected on urban roads and 40 % on highways. 
The experiments totalled (after the cleaning process) 1.4 MB 
(8,557 samples) for the Ford Ka, 370 KB (2,152 samples) for the 
Nissan Kicks and 1.7 MB (10,230 samples) for the Chevrolet 
Onix. OBD-Emulator MK22 hardware was adopted for the 
simulation scenario. The simulation period was configured to run 
for 60 minutes, which was the average time of the real 
experiments. The collected samples were approximately 9,678, 
11,448, and 10,680 records, respectively, which corresponds to 
1.6 MB, 1.9 MB and 1.8 MB. 

5. RESULTS AND DISCUSSION 

This section aims to answer the research questions previously 
proposed in section 4. 

As noted in subsection 4.3, the experiment established a 
default route to be performed by all the drivers in their respective 
vehicles. Figure 4 shows the map of the first trip of each vehicle. 
It should be noted that the points are colour graded based on the 
speed of the vehicle at that specific time, red being slower and 
yellow being faster. It is also possible to see areas with large gaps 
in the readings, especially on the route performed by the Nissan 
Kicks, as can be observed in Figure 4b. These gaps may have 
been caused by a poor internet connection, resulting in the data 
not being sent to the remote server (hosted on the Amazon Web 
Service). In this specific case, the connection flaws were likely 
caused by the large rain precipitation at the time of the 
experiment, which may have interfered with the communication 
network.  

First, as Figure 5 shows, it was possible to compare different 
driving styles (e.g. stopped ratio) to address our first question. In 
addition, the average values of five PIDs were also analysed: 
speed, revolutions per minute (RPM), engine load, throttle 
position and battery voltage. With these six variables, we built 
two radar plots (one for the routes performed at 13 h and one 
for those performed at 16 h) to compare the drivers and the 
routes. Figure 5a summarises the results of the profiles of the 
drivers in relation to the route taken at 13 h. The drivers had 
virtually the same profile in terms of RPM and battery voltage. 
The stopped ratios for both the Ford Ka and Chevrolet Onix 

 
2 https://freematics.com/products/freematics-obd-emulator-mk2/  

vehicles were around six times larger than that for the Nissan 
Kicks. This clearly indicates the heavier traffic encountered by 
the drivers of the former. The experiment using the Nissan Kicks 
was carried out on a Saturday, when the traffic is generally lighter 
than on weekdays. The throttle position (position of the 
accelerator pedal) indicated that the Chevrolet Onix's driver had 
a more aggressive driving style, while the speed of the Nissan 
Kicks' driver was faster due to the lighter traffic. The increased 
engine load presented by the Ford Ka is justified by the fact that 
it was a brand-new vehicle, which means the engine is still 
adjusting. 

In terms of the 16 h route shown in Figure 5b, we obtained a 
profile similar to the one in Figure 5a, albeit with one notable 
difference: the stopped ratio for both the Chevrolet Onix and 
the Ford Ka were almost triple the value of the previous 
observation. This clearly indicates the heavier traffic encountered 
by the drivers at that time compared to the earlier routes. 
Meanwhile, there was no significant difference in the time for the 
Nissan Kicks to complete the route. This is due to the fact that 
the experiment using this car was, as noted above, carried out on 
a Saturday with lighter traffic. 

Regarding question 2, Figure 6 describes the reading time 
required to collect all PIDs supported by the vehicles, namely, 

 

Figure 3. State machine modelling the driver behaviour during the 
experiment.  

 
a) Ford Ka 

 
b) Chevrolet Onix 

 
c) Nissan Kicks 

Figure 4. Route performed by each vehicle. 

https://freematics.com/products/freematics-obd-emulator-mk2/
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maximum value, first quartile (Q1), mean (red diamond), median 
(grey line), third quartile (Q3), minimum value, outliers (grey 
diamond). According to Table 1, each vehicle used in the 
experiments has a different set of supported PIDs. The Ford Ka 
had an average response time for all 21 PIDs of 630 ms. These 
results are around 44 % greater than the simulation performance 
(438 ms). As expected, the simulation scenario had a better result 
given that it did not consider internal delays in the vehicle bus or 
communication errors, etc. The same behaviour was also verified 
in tests using the Nissan Kicks (22 PIDs, 39 % ratio) and the 
Chevrolet Onix (22 PIDs, 19 % ratio). 

A further interesting result obtained from Figure 6 is related 
to the dispersion of the response time in order to collect all PIDs. 
The interquartile ranges (IQR) for the Ford Ka, Nissan Kicks 
and Chevrolet Onix vehicles were very close: a) real scenario – 
7 ms, 7 ms, 4 ms, b) simulation scenario – 35 ms, 36 ms, 35 ms. 
The poorer result for the simulation scenario was due to the 
additional delay imposed by the serial connection between 
simulator and computer. These results demonstrated the 
response times involved a small variation and that they were 
concentrated around the mean. It is important to stress that 
during the experiments, transient communication failures 
occurred between the Freematics One+ and the vehicles. These 
delays generated a number of outliers in the results, while these 
were mainly related to the Nissan Kicks. 

In addition to the average reading time of the PIDs, the 
standard deviation for each car and for the simulator was also 
investigated. The obtained results indicate that the standard 
deviation of the Nissan Kicks was the largest at 27.9 ms. This 
implies that the reading time of the PIDs for the Nissan Kicks 
varied more between each sample than those for the Ford Ka 
and the Chevrolet Onix, which were 7.9 ms and 3.6 ms, 
respectively. Here, the reading times of each sample were closer 

to the respective mean for both cars. With these values, we 
calculated the minimum and maximum reading times of all PIDs 
per car and obtained the amplitude. As expected, the results 
exhibited the same trend as with the standard deviation values. 
The reading time amplitude for the Nissan Kicks, Ford Ka, and 
Chevrolet vehicles was 145 ms, 83 ms, and 29 ms, respectively. 
In contrast, the standard deviation for the simulator was around 
15.2 ms. In addition, the simulator presented a reading time 
amplitude for the PIDs of the Ford Ka of 42 ms, while for the 
Nissan Kicks and the Chevrolet Onix, we obtained a value of 43 
ms. 

A further point that must be highlighted is related to the 
PID/server request interval of 500 ms and 5 s, respectively. The 
experiments verified that it was only possible to achieve the 
metric of the PID request interval in the simulator. For clarity, 
let us look at the specific case of the Nissan Kicks, which had the 
longest PID request time of around 638 ms. As such, only eight 
packets could be sent to the server in the 5 s interval range. 
However, it was possible to send 10 packets in the same interval 
range with the simulator. 

Regarding question 3, we analysed the data response time for 
only the intersection of the PIDs supported by the Ford Ka, 
Nissan Kicks and Chevrolet Onix vehicles. This intersection 
resulted in a list of 17 PIDs. Figure 7 shows the cumulative 
distribution of response time for this set of PIDs. Even with 
using the intersection of the PIDs, the response times for the real 
scenarios differed and were greater than those achieved by the 
simulator. The response times obtained for the Ford Ka, the 
Nissan Kicks and the Chevrolet Onix were 513 ms, 492 ms and 
421 ms respectively. As expected, the simulation obtained the 
lowest response time (356 ms). Meanwhile, the average response 
rate was 30 ms for the Ford Ka, 28 ms for the Nissan Kicks and 
24 ms for the Chevrolet Onix. The average simulator response 
time was around 20 ms. Hence, it can be concluded that the 

 
a) 13 hour Route 

 
b) 16 hour Route 

Figure 5. Driver behaviour modelling by route.  

 

Figure 6. Response time distribution for all supported PIDs. 

 

Figure 7. Cumulative distribution of response time for the PID set intersection 
among the Ford Ka, Nissan Kicks and Chevrolet Onix vehicles.  
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response time of the PIDs depends on each vehicle and not on 
the type or quantity of the PIDs. 

To address question 4, we aimed to investigate whether or 
not there was a difference in the reading time of the PIDs with 
respect to the CAN. Here, we verified that the CAN for all the 
cars is ISO15765-4 CAN11/500, while it was observed that there 
were different response times even though all cars operate under 
the same protocol. As such, the CAN protocol may not be a 
relevant factor for the response time. 

Finally, to address question 5, we analysed the CO2 emission 
rate estimates. To perform the required calculation, it is necessary 
to ascertain the amount of air that enters the engine at any given 
time. This value can be obtained directly by the MAF PID. 
However, this sensor is not available in some vehicles. In such 
cases, the value can still be estimated using the approach used in 
[26]. 

The approach makes use of the following variables: P, which 
represents the pressure in the combustion chamber and can be 
obtained through the intake manifold absolute pressure (MAP) 
sensor in the unit kPa; V, which is the total volume of the 
vehicle's cylinder capacity in litres or cm³; R, which is the ideal 
gas constant with a value of approximately 8.3145 J/(mol·K); T, 
which is the intake air temperature and can be obtained by the 
absolute temperature (IAT) sensor in K; air molar mass, which 
is a constant value equal to 28.87 g/mol (in the following 
equations, the air molar mass will be abbreviated to mma); and 
RPM, which is the engine revolutions per minute obtained by 
the OBD-II. In addition to these variables, the volumetric 
efficiency (VE) is required, which is the ratio of the air-fuel 
mixture volume that each cylinder admits in relation to the 
nominal volumetric capacity of the cylinder. 

Thus, the calculation of mass air flow (MAF) can be written 
as in Eq. (1), which corresponds to a value equivalent to that 
obtained directly by the MAF sensor when it is available. 

𝑀𝐴𝐹 =
𝑃 × 𝑉 × 𝑉𝐸 × 𝑅𝑃𝑀 × 𝑚𝑚𝑎

120 × 𝑅 × 𝑇 × 1000
 (1) 

After obtaining the MAF value, the estimate of the 𝐶𝑂2 
emission rate emitted by the vehicle could be calculated. For this, 

it was first necessary to calculate the fuel volume (𝑉fuel) 
according to Eq. (2): 

𝑉fuel =
𝑀𝐴𝐹

𝐴𝐹𝑅 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (2) 

The values of the constants used in Eq. (2) vary depending on 
the type of fuel used, as described in Table 2. 

Finally, Eq. (3) could be used to calculate the estimated 𝐶𝑂2 
emission rate of the vehicle. In this formula, the Vfuel value is 
multiplied by the carbon dioxide mass generated after burning 

one litre of the fuel in question (𝐶𝑂2 PL) 

𝐶𝑂2 (
𝑔

𝑠
) = 𝑉fuel × 𝐶𝑂2 𝑃𝐿 . (3) 

 

With these equations at hand, it was possible to perform 
embedded processing in the Freematics One+ to obtain the 
results in real time.  

As stated above, not all vehicles have the same set of sensors 
and, as such, may lack the MAF of the MAP. Therefore, to 
validate the MAF estimation using the other vehicle sensors, we 
used data from the Chevrolet Onix, as it was the only vehicle 
analysed that had both sensors (MAF and MAP). The 
comparison between the real MAF sensor reading and the MAF 
estimation results can be seen in Figure 8. 

In addition, Figure 9 shows the comparison between the 
emission rate calculated directly from the MAF sensor and that 
calculated with the estimated MAF. Here, it is clear that the 
results are very close to each other, as was the case for the 
comparison presented in the previous figure. 

Finally, Figure 10 allows us to identify the places with the 

highest incidence of CO2 emission during the routes. The darkest 
points represent the places where the emission rate was higher.  

These analyses can contribute to identifying the emission 
indices presented by the vehicles during normal use and can help 
verify whether they are equivalent to those issued by the 
automakers. 

6. LIMITATIONS 

During the use of the OBD-II (Freematics One+), the chosen 
route incorporated urban areas as well as highways. Given that, 
it was noted that in certain sections of the route, the hardware 
did not capture the information related to the geolocation of the 

Table 2. Fuel conversion factors. 

Fuel 𝐂𝐎𝟐 Per Liter Air-Fuel Ratio (AFR) Density (𝓟) 

Gasoline 2310 g/L 14.7:1 737 g/L 

Diesel 2660 g/L 14.6:1 850 g/L 

Ethanol 1510 g/L 9.0:1 789 g/L 

 

Figure 8. MAF estimate. 

 

Figure 9. CO2 pollution estimate. 
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vehicles. This was due to the lack of GPRS or 3G signal, making 
it impossible to send the data to the cloud. In addition, further  
difficulties were encountered during the implementation of the 
application used in the study, including how, since it was not a 
controlled environment (as in the simulator), the connection was 
prone to errors, which is a factor that must be addressed. 

7. VALIDITY ISSUES 

The threats to the validity of the present study are as follows: 
a. Internal validity, driver behaviour: each driver has a 

unique driving profile, which may have affected the total 
time needed to complete the route. 

b. External validity, connection: connection failures can 
cause communication error with the server, resulting in a 
timeout that could have led to a loss of data. A further 
external threat relates to the varying traffic conditions, 
which could have increased the time needed to complete 
the route. 

c. Construction validity, appropriate instrumentation: the 
vehicles were evaluated on different days, since it was not 
intended to make any type of comparison regarding the 
day of the week, only a verification of the performance of 
the OBD-II. 

8. CONCLUSIONS 

The aim of this paper was to conduct a performance 
evaluation of an Edge OBD-II device (Freematics One+). The 
main requirements were driver behaviour modelling, PID 
request interval evaluation and CO2 emission estimation. For 
this, experiments were performed in terms of both real and 
simulation scenarios. The experiments involving the real vehicles 
present a differential contribution to the existing literature since 
they have the potential to highlight important issues within a 
customer feedback context (e.g. bottlenecking, delays, amount of 
data, profiles) which is a core part of Industry 4.0. The first 
requirement (driving profile) was satisfied using the proposed 
state machine, where, with the use of only five PIDs, aggressive 
and/or moderate behaviours were identified. The results related 
to the response time of the PIDs demonstrated that this depends 
on the specifications of each vehicle and not on the type or 
quantity of the PIDs required. In fact, this aspect is crucial to 
determining the amount of data that will be used in a given 
customer feedback vehicular application. In terms of the final, 
complementary, requirement (CO2 emission estimation), it was 
possible to identify the pollution and MAF estimations for 
vehicles that do not support the sensor. 

Future work should include investigating the dependability 
issues in order to address the faults of the OBD-II device and 
the communication issues with the cloud infrastructure. In 
addition, the following should be included: increasing the sample 
size, analysing why no data was written to the SD card at the 
point that it failed to communicate with the Internet, 
implementing a data compression algorithm (such as the 
‘swinging door’ algorithm), identifying the optimal request time 
for PIDs, and making use of Big Data and machine learning 
techniques to identify patterns in the collected data. 
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