
ACTA IMEKO
December 2013, Volume 2, Number 2, 34 – 40
www.imeko.org

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 34

GUM conformity of software products - a discussion from a
software tester’s perspective
Norbert Greif1, Heike Schrepf1

1 Physikalisch-Technische Bundesanstalt, Institute Berlin, Abbestraße 2-12, 10587 Berlin, Germany

Section: RESEARCH PAPER

Keywords: Measurement uncertainty; GUM conformity; measurement software quality; software validation

Citation: Norbert Greif, Heike Schrepf, GUM conformity of software products - a discussion from a software tester’s perspective, Acta IMEKO, vol. 2, no. 2,
article 7, December 2013, identifier: IMEKO-ACTA-02 (2013)-02-07

Editor: Paolo Carbone, University of Perugia

Received February 12th, 2013; In final form November 5th, 2013; Published December 2013

Copyright: © 2013 IMEKO. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Funding: Information not available

Corresponding author: Norbert Greif, e-mail: norbert.greif@ptb.de

1. INTRODUCTION

An increasing number of software products that claim to
offer a GUM-compliant calculation of measurement
uncertainties are available on the market. In order to ensure that
these products perform the calculations in accordance with the
GUM [1], a specific validation of the software products with
respect to the GUM is necessary.

Additionally, to guarantee comparability of the measurement
uncertainties calculated by different software products, a
defined comparability of the software products themselves is
required. Consequently, a reusable, automated test environment
has been developed which supports both a GUM-oriented
validation and GUM-related comparisons of different software
products by tracing back the product features to the rules and
requirements of the GUM (see figure 1). The paper presents the
benefit of the test environment, but also the limitations of
validation and product comparisons.

To bridge the gap between the GUM guideline and the
required test specification, an analysis of the GUM from the
perspective of software testing is presented. This detailed
analysis of the GUM has uncovered some issues and
inconsistencies within the GUM. Included are, for example,
non-testable GUM statements, alternative options of
implementations of GUM statements, and missing definitions.

To ensure unambiguous implementations of the GUM and
corresponding explicit test specifications, these ambiguities of
the GUM have to be overcome or minimised (see figure 1).

To be sound, first of all, the GUM guideline had to be
transformed into a formal specification. For the core clauses of
the GUM guideline, such a specification was already presented
in [6]. In this paper, the underlying specification is not the focal
point. Instead of that, the problems of deriving the
specification from the GUM guideline are dealt with.

For example, as outlined in section 3.3, the GUM often
allows several computations resulting in differing solutions. The
concept of the paper is that each of these possible solutions is
considered to be GUM-compliant as long as the solution itself
is computed correctly. Thus, several differing nominal results
are possible. In the paper, the tester’s procedures to deal with
different results are described in the clauses called accepted
solutions.

2. MOTIVATION AND AIM

For several years, the authors have been involved in the
evaluation of software products which implement the GUM [3,
4, 5]. Recently, three further software products were
comparatively evaluated concerning GUM conformity. During
this work, special experience was gathered and an

ABSTRACT
This paper describes how to assess GUM conformity of software products which claim to offer a GUM-compliant calculation of
measurement uncertainties. To bridge the gap between the GUM guideline and the required test specification, an analysis of the GUM
from the perspective of software testing is presented. Problems of testability and ambiguity of GUM statements are analysed in detail.
The benefit and the limits of the developed validation procedure and test environment are outlined.

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 35

implementation-oriented view on the GUM has emerged. One
aim of the paper is to outline this special experience.

For example, the following fundamental questions have
come up regarding an implementation of the GUM:

 Completeness
What does it mean when a software product claims to
implement the GUM? Is the GUM completely
implementable? Is it possible to reformulate each of the
GUM statements so that it can be represented as a
computational step?
Is a pocket calculator already compliant to GUM when
it correctly implements only one formula such as the
average of repeated observations (as described in GUM
4.2.1)?

 Correctness
What does it mean when a software product claims to
be correct?
Is the product able to calculate the correct values?
Or is it able to calculate the correct values, round
them with a correct rounding procedure, and display
them with a correct number of digits?

 Compliance
What does it mean when a software product claims to
be compliant (conforming) to the GUM?
The GUM guideline does not contain a conformity
clause. Thus, is it allowed to claim a conformity
statement based on completeness and correctness?

Already these few questions lead to one of the core
problems of both testing GUM software and comparing GUM
test results: The need to trace back each computational step and
each test result to a certain well-defined, well-understood and
uniformly interpreted GUM statement.

 Consequently, traceability should be the precondition for
the validation of a specific software product as well as the
comparison of different products.

To get repeatable, comparable, and traceable validation
results, the questions mentioned above and some further
queries have to be answered.

The corresponding answers have an important impact on
the set-up of the software test environment. For the software
specification step in between, specific introduction and
guidance is given in [6].

In summary, the objectives of the work are

 to prove a GUM-compliant calculation of
measurement uncertainties (to prove “conformity” of
GUM-supporting software products with the GUM
guideline);

 to provide comparability of measurement
uncertainties calculated using different software
products (useful for key comparisons);

 to provide comparability of test results and of the
software products themselves.

To achieve these objectives, the main tasks are
 to perform a detailed analysis of the GUM from the

software testing and software implementation point of
view;

 to trace back each computational step and each test
result to a certain well-defined GUM statement;

 to develop a GUM-oriented validation procedure;
 to develop a reusable, automated test environment;
 to support a GUM-related comparison of different

software products by tracing back the product features
to the requirements of the GUM.

This paper describes the analysis of the GUM (see section 3)
and gives a short overview of the validation procedure and the
test environment developed (see section 4).

Figure 1. Basic task: Bridging the gap between the ambiguous GUM guideline with inconsistencies or missing definitions, and an explicit test specification.

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 36

3. ANALYSIS OF THE GUM FROM THE PERSPECTIVE OF
SOFTWARE TESTING

In this main section of the paper, some problems of
testability and ambiguity of GUM statements are analysed in
detail. These issues have a straight influence on the traceability
and comparability of validation results belonging to different
software products.

In the following, the GUM issues under discussion are
classified according to these (non-disjunct) four main
categories:

 Testability of GUM statements
Non-testable statements are analysed with respect to
additional context information.

 Strictness of GUM statements
Diffuse statements with regard to the possibility to use
alternative options are analysed.

 Ambiguity of GUM statements
Ambiguous statements regarding informal wording are
discussed.

 Specific problems
Missing GUM statements, GUM inconsistencies and
the handling of calculation results not covered by the
GUM are analysed.

For each problem, the necessary decisions to guarantee
testability, the unambiguous definition of the validation
procedure, and the direct consequences for the development of
the test environment are derived (cf. the examples with
accepted solutions). Some solutions cannot be realised within
an automated test environment.

3.1. Testability of GUM statements

The GUM includes a series of statements which are not
testable, even in the core clauses 4 through 8. These statements
require additional decisions or context information to guarantee
the unambiguous definition of the test process. Software
packages should be able to ask for the necessary context
information. This has not been the case for all software
packages validated so far.

Example 1 (GUM 4.2.1, GUM 4.2.3):

The GUM describes the computation of an arithmetic mean
for an observation series and allows the use of the computed
mean as an estimator for the quantity’s value as long as certain
preconditions are met. One of these preconditions is the
repeatability of observations.

Being allocated a list of observation values, no software
package is able to decide whether the required repeatability
conditions have been met. If the repeatability condition is to be
tested, context information is necessary.
Accepted solution 1: The package asks the user to check the
conditions.
Accepted solution 2: The package always assumes certain
repeatability conditions. The user manual points out the
responsibility of the user.

Example 2 (GUM 3.2.3, GUM 3.2.4, GUM 8.1):

The GUM states that systematic deviations have to be

incorporated into the model equation in the form of correction
terms.

Being allocated a model equation, no software package is
able to decide whether the model equation is complete in this
sense.
Accepted solution: The package always assumes completeness of
the model equations. The user manual points out the
responsibility of the user.

Example 3 (GUM G.2.1):

The GUM states that the output quantity is approximately
normally distributed if its variance is “much larger than …”.

 A software package is not able to compare two values in
this informal way.
Accepted solution: The package offers all information necessary to
decide on distribution of the output quantity to the user
(distributions of all input quantities, their uncertainty
contributions, the linearity of the model equation). The user
should be able to decide whether the distribution of the output
quantity may be understood as normal or is “unknown”. In the
case “unknown”, the package should not calculate and report
the expanded uncertainty of that output quantity.

Example 4 (GUM 5.1.2, GUM 5.1.5):

The GUM states that “higher terms (of the Taylor series of
the model function) must be negligible”.

Should a software package neglect a term when its value is
1/20, 1/100, or 1/1000 of the sum of the low-order terms?
Accepted solution 1: The software package calculates results for
both, the standard GUM case (first order of Taylor series), and
the sophisticated case (including higher order). If the results for
uc(y) are equal after rounding and shortening, then the higher
order terms are negligible.
Accepted solution 2: Alternatively to solution 1, the package can
check the linearity of the model equation as long as the results
are the same as for solution 1.

Example 5 (GUM F.1.2.1 a) and c)):

The GUM explains that the covariance of two input
quantities may be treated as insignificant if certain conditions
are met.

The software package is not able to decide whether the
required conditions have been met.
Accepted solution 1: The software package calculates both, the
result with and without correlation. If the results for uc(y) are
equal after rounding and shortening, then the correlation is
negligible.
Accepted solution 2: The software package asks the user to check
the correlation values.

3.2. Strictness of GUM statements

The possibility to use alternative options requires additional
decisions or assumptions to ensure testability. Such options
have to be exercised, for example, in case of the formulation of
model equations, or in case of the evaluation of sensitivity
coefficients.

Example 6 (GUM 3.1.7, GUM 4.1.1, GUM 4.1.2):

GUM 3.1.7 mentions that the presented concept, although
only discussed for scalars, is applicable to vector results, too.
However, there is no further treatment.

GUM 4.1.1 presents the model relationship as an equation
solved for the scalar output quantity.

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 37

GUM 4.1.2 states that the relation between input quantities
and output quantities are not necessarily an explicit functional
relationship. Instead, an algorithm or a computer program
which is able to produce result values y for certain input values
xi may be used.
Accepted solution: The model equation may be represented by an
explicit functional relationship or not. It may be formed for
scalars or for vector results. Each variant is considered to be
compliant.

Example 7 (GUM 5.1.3, GUM 5.1.4):

GUM 5.1.3 describes the sensitivity coefficients as partial
derivatives of the output quantity with respect to the input
quantities at the point of the estimates of the input quantity
values. Note 2 of the same section states that the partial
derivatives may be calculated using common numerical
methods.

GUM 5.1.4 allows the experimental determination of these
sensitivity coefficients.
Accepted solution: Sensitivity coefficients may be determined
analytically, numerically, or experimentally. Each variant is
considered to be GUM-compliant.

Example 8 (GUM 4.1.4):

GUM 4.1.4 states, that the estimated value of the output
quantity is calculated using the estimated values of the input
quantities and the model equation.

The following note says that the estimate of the output
quantity may also be calculated as the average of several output
values, each of them calculated from a set of input values and
the model equation.
Accepted solution: The value y may be calculated as a function
value or as an average of function values.

Each variant is considered to be GUM-compliant. In case of
linear models, the results do not differ.

Example 9 (GUM G.4.1, Note 1):

GUM G.4.1 describes the treatment of a degrees-of-freedom
value calculated by the Welch-Satterthwaite formula. To derive
the coverage factor, two different methods are allowed,
interpolation or truncation (cf. figure 2).

Both computations result in significantly differing values.
Accepted solution: Each variant is considered to be GUM-
compliant.

3.3. Ambiguity of GUM statements

Ambiguity is caused by informal GUM wording. Usually, the
informal wording shall improve readability and
comprehensibility of the GUM.

Example 10 (GUM 7.2.6, GUM H):

GUM 7.2.6 explains that the uncertainty should be given
with "at most" two significant digits. More digits are allowed to
avoid rounding errors in subsequent calculations.

GUM annex H mostly uses two, in some cases only one digit
for uncertainty values (H.3, H.5, H.6).

What should the programmer of a GUM package do
regarding the question of digits? How should the tester of a
GUM package formulate the nominal output for a test case?
Accepted solution: The software package should use two digits by
default. It should allow a manual adjustment if necessary.

Example 11 (GUM 7.2.6):
GUM 7.2.6 states that "it may sometimes be appropriate" to

round uncertainties up rather than to the nearest digit. Two
examples are given: A value like 10.47 should be better rounded
up to 11 instead of rounding it to the nearest digit, i.e. 10. In
another case, a value like 28.05 should be rounded to the
nearest digit, i.e. 28, instead of rounding up to 29.

 The GUM obviously uses a rounding principle that is
describable as "rounding up or down with a fraction limit
somewhere between 0.1 and 0.4, instead of 0.5 as is usual".
Since this is not formulated explicitly, each programmer is free
to use rounding up or rounding to the nearest digit (and half
up).
Accepted solution: Concerning testing, the decision was made to
expect rounding to the nearest digit (and half up).

Example 12 (GUM G.6.6):

GUM G.6.6 explains that in certain cases one may use the
coverage factor values of 2 (to get a level of confidence of
nearly 95%) or 3 (to get nearly 99%). Afterwards, the GUM
discusses that in these cases significant over- and
underestimations of the confidence interval may occur and that
a better estimation may be necessary. The user is recommended
to choose a better estimation if the approximation is not
sufficient for his purposes.

The question arises whether a GUM package should use the
(GUM-compliant) approximation or the (GUM-compliant)
better estimation.
Accepted solution(s): The user decides on the kind of distribution
of the result quantity using the information delivered by the
software package (see Example 3).

If the result quantity may be considered normally
distributed:
Accepted solution 1: The user delivers the level of confidence p
and the package calculates the coverage factor t(ν) based on a t-
distribution, or
Accepted solution 2: The user delivers the level of confidence p
and the package calculates the coverage factor k based on a
normal distribution, and it delivers the deviation between k and
t(ν).

In all other cases:
Accepted solution 1: The distribution is unknown; the package
does not calculate the coverage factor.
Accepted solution 2: The distribution is known to the user; the
user delivers the coverage factor.

Example 13 (GUM F.2.3.3):

GUM F.2.3.3 discusses the case in which only a minimum
and maximum value (and therefore the half width a) for an
input quantity is available.

Figure 2. Illustration for example 9 (alternative implementation options).

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 38

The suggestions for the uncertainty of this input quantity
vary from a/√3 (for a uniform distribution assumption), to
a/√6 (for a triangular distribution assumption), and to a/√9 (for
a normal distribution assumption).

GUM S1 6.4.2.1 suggests to assume a uniform distribution,
based on the principle of maximum entropy [2].
Accepted solution: The package has to ask the user. He has to
decide which assumption holds.

3.4. Specific problems

Finally, some problems regarding missing GUM statements,
GUM inconsistencies, and the handling of calculation results
not covered by the GUM are considered.

Example 14 (GUM G.4):

The problem of effective degrees of freedom of the output
quantity is discussed in relation to the problem of the output
quantity’s distribution and other aspects (central limit theorem).
The given formula (G.2b) and the reference to section GUM
5.1.3 suggest that the formula is valid for uncorrelated input
quantities only, but this is not expressed explicitly or discussed
in detail.

In particular, there is no explicit prescription not to use
formula (G.2b) in case of correlated input quantities.
Accepted solution: The calculation of a degree-of-freedom value
for the output quantity in case of correlated input quantities is
not considered to be compliant. A value may be given, but its
calculation has to be documented, and it has to be marked as
outside the GUM scope.

Example 15 (GUM 4.3.8, GUM G, GUM F):

A topic which is discussed very roughly is the usage of input
quantities with asymmetric distributions. In this case, GUM
statements consist of a single section in the main text (GUM
4.3.8), a short discussion in annex G (GUM G.5.3), and the
discussion of a particular case in annex F (GUM F.2.4.4).

The question arises: How should the user deal with
asymmetrically distributed input quantities? They cannot be
omitted, since GUM does not prohibit their use.
Accepted solution: The distributions of the input quantities do not
influence the computation of the value of the output quantity y
and the standard measurement uncertainty uc(y). Displaying y
and uc(y), and omitting U(y) is considered GUM-compliant.

Example 16 (GUM 6, GUM G):

The problem of how to evaluate the expanded uncertainty of
an output quantity (which is in practice of greater interest than
the standard uncertainty) is only briefly discussed. GUM 6
suggests to use a coverage factor between 2 and 3, and
mentions that the selection of a proper value depends on
experience or, alternatively, on knowledge about the output
quantity’s distribution. The details of this discussion take place
in annex G.

For testers, the question arises whether a software product is
GUM-compliant if it uses an arbitrary coverage factor between
2 and 3 ignoring the statements of annex G.
Accepted solution: The statements of annex G are considered
relevant for achieving GUM-compliance.

Example 17 (overall GUM):

It is common sense that a correlation matrix should be
checked with respect to its being symmetric and non-negative

definite. Most of the GUM packages allow the user to do these
checks, but the definiteness is not discussed in the GUM.
Accepted solution 1: The software package checks the non-
negative definiteness of the correlation matrix.
Accepted solution 2: The software package does not check the
non-negative definiteness of the correlation matrix. Instead of
that, before the output of the standard measurement
uncertainty uc(y) of the output quantity, the package checks that
the expression for uc2(y) is non-negative.

Example 18 (overall GUM):

The experience from the GUM packages that have been
validated is that most of these packages compute

- confidence intervals for output quantities with rectangular
distribution,

- effective degrees of freedom in case of correlated inputs,
and
- confidence intervals for correlated output quantities,
irrespective of the fact that the GUM does not prescribe
anything in these cases.
Accepted solution: Because these calculation results are not
covered by the GUM, they do not belong to a validation of a
package with respect to GUM conformity. On the other hand,
however, these results are important in practice.

With regard to the test process, testing of these calculations
is performed, but the corresponding test cases are marked as
“outside GUM conformity testing”.

4. OVERVIEW OF THE TEST ENVIRONMENT

In this section of the paper, the test environment as it has
been developed for the validation and GUM-related
comparison of software products is described very roughly. A
schematic overview of the test environment is illustrated in
figure 3. A detailed presentation is given in [5].

The following description is restricted to the overall
understanding of the test concept and to some aspects which
are of importance for the analysis of benefits and the problems
mentioned above. Implementation details are omitted.

The objective to validate software products that implement
the GUM is best achieved by establishing a well-defined, GUM-
oriented test process supported by a reliable technical test
environment. The environment itself has to obey certain quality
requirements, for example, correctness and completeness.
Especially, the test cases must be designed in a way that they
generally fit for any GUM-supporting software product under
test. Consequently, comparability of certain validation results
and after all the comparability of the whole validation process
has to be ensured.

To meet these requirements, the test environment consists
of the following components:

 Data model defining the structure of information

necessary for uncertainty calculations and
corresponding tests. Main components of the model
are the test case identification, the test purpose with
classification (cf. figure 3) and GUM reference, the
inputs for the software under test, and the nominal
outputs which are criteria for the package’s results.

 Set of universal test cases which do not contain any
product-specific or technical information. The test case
repository is implemented based on the data model.

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 39

Each test case is represented by a separate file with a
unique identifier.

 Test case converter which translates universal test
cases into product-oriented specific ones. The
converter needs information about the package to be
tested, the underlying operating system, and the test
tool which will be used, for example. Depending on the
software under test and the validation task, the
converter has to filter the test cases.

 Several sets of product-oriented specific test cases,

each of which belongs to a specific software package to
be tested. These test cases contain, for example,
package-specific commands, input values, buttons to
push and menu items to select.

 Capture-replay test tools to operate the test cases and
to repeat automatically the overall test process.

The universal and package-specific test cases are arranged

concerning a well-defined classification scheme. This
classification hierarchy is based on the software quality
characteristics defined in the international software standard
ISO/IEC 25010 [7].

The respective position of a test case in the hierarchy
corresponds to the purpose of the test. In this way, the
classification scheme allows a certain control of completeness
and traceability of the validation process.

In accordance with figure 4, the main levels of the
classification hierarchy are:

 Assignment of the test cases to the set of software

quality characteristics according to the software
standard ISO/IEC 25010 [7], for example, functionality,
usability, and reliability.

 Subdivision of test cases into positive cases (prove that
the GUM is correctly implemented) and negative cases
(prove that in case of the non-applicability of the GUM
no calculation is carried out).

 Specific subdivisions depending on the value for the
first level.

An example for the third classification level is closely

connected with the software quality characteristic functionality
(see figure 4).

In this case, the classification hierarchy represents the
detailed calculation steps needed to prove the conformity of the
software packages to the core sections and formulas of the
GUM. The calculations are split into the following steps
(branches of the classification hierarchy, see figure 4):

 Calculations of Type A uncertainties (without

correlation of inputs);
 calculations of Type B uncertainties (without

correlation of inputs);
 interpretation of model equations and calculation of

sensitivity coefficients (SCs in figure 4);
 calculation of values, standard measurement

uncertainties, and coverage intervals of output

quantities without and with the correlation of input
quantities;

 calculation of the correlations between output
quantities (vector results);

 calculation of the examples from GUM Annex H.

For each of these calculation steps, further classification
levels depending on the degree of complexity of the test cases
can be defined. Normally, we use between five and nine
classification levels.

In addition to the quality characteristic functionality, the
characteristics usability and reliability were used to design and
implement test cases. In future, the characteristic efficiency might
become relevant to include response time evaluations of Monte
Carlo simulation engines.

5. CONCLUSIONS

A number of software packages which claim to implement
the GUM are on the market. However, they differ in
functionality and the have deficiencies which are not obvious.
Thus, a validation of these packages with respect to the GUM is
necessary.

The PTB test environment has been used successfully to
validate and compare three different GUM-supporting software
packages.

To bridge the gap between the GUM guideline and the
explicit test specification, a detailed analysis of the GUM from a
tester’s perspective and certain decisions regarding the test
process (cf. the accepted solutions of the examples in section 3)

Figure 3. Schematic overview of the test environment.

ACTA IMEKO | www.imeko.org December 2013 | Volume 2 | Number 2 | 40

were necessary. Based on the results of this analysis,
unambiguous and detailed test cases could be developed. The
benefits of the test environment and the validation procedure
are:

 General procedure usable for any GUM-supporting

software product;
 automated and reusable process;
 comparability of the validation procedure and,

especially, of the validation results;
 automated documentation process.

However, there are also limitations in the validation

procedure, and in the process of product comparison.
The current procedure includes sections 5.5 to 5.8, and 6 of

[2], but does not consider sections 5.9, 5.10, and 7 (Monte
Carlo simulations), and does not regard the handling of
complex numbers. The general limitation is, that several
obstructive characteristics of GUM statements (with regard to
software testing), such as ambiguities, missing or inexact
specifications/definitions, do restrict the applicability and the
objectiveness of the test environment.

Thus, some of the accepted solutions cannot be realised
within an automated test environment.

Concerning the software quality characteristics, up to now,
the validation procedure does not include efficiency testing (e.g.
duration of Monte Carlo simulations).

In principle, the test environment is prepared to realise the
extensions mentioned above. Some extensions concerning
Monte Carlo simulations and vector results are already under
construction.

The work reported reveal some problems regarding the
objectives of testing GUM-supporting software products and
the corresponding GUM statements. These problems, for
example, GUM inconsistencies or ambiguities, have to be
minimised. Directly, they concern the implementation of
GUM-supporting software products and the corresponding
product validations. The further discussion of these problems
would enhance the traceability of implementation and
validation results to the GUM and the comparability of
uncertainty calculations performed by different software
products.

REFERENCES

[1] ISO/IEC Guide 98-3:2008, Uncertainty of measurement - Part
3: Guide to the expression of uncertainty in measurement, 2008.

[2] ISO/IEC Guide 98-3:2008/Suppl 1:2008, Propagation of
distributions using a Monte Carlo method, 2008.

[3] N. Greif, H. Schrepf, D. Richter, Software validation in
metrology: A case study for a GUM-supporting software,
Measurement, Volume 39, 2006, pp. 849-855.

[4] N. Greif, H. Schrepf, Validierung von Software zur Bestimmung
von Messunsicherheiten, VDI-Berichte 1947, Messunsicherheit
praxisgerecht bestimmen, VDI, 2006, pp. 409-418.

[5] N. Greif, H. Schrepf, V. Hartmann, G. Kilz, A test environment
for GUM conformity tests, Physikalisch-Technische
Bundesanstalt (PTB), Braunschweig und Berlin, PTB Report, to
appear, 2013.

[6] M. G. Cox, P. M. Harris, I. M. Smith, Software specification for
uncertainty evaluation, NPL Report MS 7, March, 2010.

[7] ISO/IEC 25010:2011, Systems and software engineering -
System and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models, 2011.

Figure 4. Classification hierarchy of test cases (extract).

