
ACTA IMEKO
ISSN: 2221-870X
June 2019, Volume 8, Number 2, 80 - 87

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 80

On the performance of OPC UA and MQTT for data exchange
between industrial plants and cloud servers

Murilo Silveira Rocha1, Guilherme Serpa Sestito1, Andre Luis Dias1, Afonso Celso Turcato1, Dennis
Brandão1, Paolo Ferrari2

1 Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
2 Department of Information Engineering, University of Brescia, Brescia, Italy

Section: RESEARCH PAPER

Keywords: open platform communication-unified architecture; message queuing telemetry transport; machine-to-machine (M2M); IoT; Industry 4.0;
protocol comparison; data exchange

Citation: Murilo Silveira Rocha, Guilherme Serpa Sestito, Andre Luis Dias, Afonso Celso Turcato, Dennis Brandão, Paolo Ferrari, On the performance of OPC
UA and MQTT for data exchange between industrial plants and cloud servers, Acta IMEKO, vol. 8, no. 2, article 11, June 2019, identifier: IMEKO-ACTA-08
(2019)-02-11

Section Editor: Emiliano Sisinni, University of Brescia, Italy

Received July 30, 2018; In final form June 17, 2019; Published June 2019

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Laboratório de Automação Industrial, LAI, from the School of Engineering of São Carlos.

Corresponding author: Murilo S. Rocha; murilo.silveira.rocha@usp.br, Paolo Ferrari; paolo.ferrari@unibs.it

1. INTRODUCTION

The process of digital transformation known as Industry 4.0
is ongoing. Its main objective is the implementation of a more
advanced, flexible, and efficient manufacture [1]-[3]. In recent
years, the use of sensors, actuators, controllers and supervisory
systems has become common in industrial automation systems,
with a typical communication infrastructure organised like a
pyramid, where these layers can exchange data vertically from
layer to layer. Nowadays, on the contrary, the information flows
as in a mesh communication structure, where the industrial
automation devices are able to communicate with each other
without a strict hierarchy. This architecture is the basis for a
wider collection of information, with feature extraction, and

enhanced knowledge about the process by means of intelligent
systems and big-data techniques [4], [5].

The huge quantity of data to be exchanged between the
industrial devices deployed in the field and the cloud servers
imposes the use of new machine-to-machine (M2M) protocols,
oriented to be more efficient and reliable. Moreover,
determinism and low complexity are two important
characteristics required by embedded systems for industrial
applications [6].

It is common, for the most diffused industrial automation
protocols and networks to have some performance indicators
that show their suitability for the demanding communication task
in the industrial environment. Robustness and determinism have
been studied in general terms by several researchers. A specific
focus on the estimation of communication delays can be
commonly found [7]-[9]. The new M2M protocols that are now

ABSTRACT
The Internet of Things (IoT) is a key technology in the development of Industry 4.0. An increasing number of new industrial devices are
expected to communicate with each other by means of local (edge) and cloud computing servers. In this article, two well-known
protocols used for IoT and Industrial IoT (IIoT) are compared in terms of their performance when they are used to send/receive data
to/from cloud servers. Due to their wide diffusion and suitability, the considered protocols are open platform communication-unified
architecture publisher-subscriber (OPC UA PubSub) (purposely developed and maintained by industrial consortia) and message queuing
telemetry transport (MQTT), the most well-known message protocol originally developed by IBM. The performance comparison is
carried out considering the overall quantity of the data transferred (user payload plus overhead) and the roundtrip time required to
send in data and receive a feedback message in return. The experimental results include the evaluation of several cloud computing
server and application scenarios, highlighting how each protocol is particularly suitable for certain situations. Finally, conclusions about
the best choice for data exchange between devices are given.

mailto:murilo.silveira.rocha@usp.br
mailto:paolo.ferrari@unibs.it

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 81

starting to be used in industrial systems for Internet connection
with cloud servers should be evaluated with similar metrics,
related to time, in order to estimate communication
performance. A prime example of this approach is given in [10],
[11].

On this subject, the current article expands the work in [12]
about open platform communication-unified architecture (OPC
UA) and message queuing telemetry transport (MQTT) (two
widely used protocols in Industry 4.0 and IoT applications [13])
with the aim of comparing them in the publish/subscribe mode
of operation. The time characteristics of each protocol are
discussed, and the distribution of the round-trip delay for
sending and receiving messages is analysed in different scenarios.
Note that for OPC UA, only the transport part of the
specification is taken into account in this article.

The article is organised in five sections. Section 2 briefly
introduces the two protocols, showing basic operation concepts
for the sake of understanding the proposed tests. Section 3
describes the proposed tests and their purpose. Section 4 reports
the results. Finally, Section 5 shows the overall results of the
comparison between OPC UA and MQTT.

2. BRIEF INTRODUCTION TO MQTT AND OPC UA

This section describes the two protocols used in the proposed
tests (MQTT and OPC UA), together with a brief introduction
to the publish/subscribe model, which is used for data exchange
in both protocols.

2.1. The publish/subscribe general model

The publish/subscribe model has been introduced to
facilitate communication between two or more devices. Data
exchange is organised according to ‘topics’. The
publish/subscribe model is one of the most popular paradigms
in the Industry 4.0 environment [14]-[17], which is the reference
scenario in this article. In the publisher-subscriber model, there
are two kinds of stations:

1) the subscribers, which are interested in receiving the
information, may subscribe to the topic of interest and
then wait for new messages to come; and

2) the publishers, which wish to send information, may
publish a message identified by a topic [18].

The publishing and the message distribution to subscribers may
be done through a specific server, also called a broker [19], or by
using some services offered by the transport layer (e.g. multicast
communication).

2.2. Overview of MQTT

IBM designed a message protocol called MQTT for
applications in the consumer market. Currently, it is widely
applied, for instance, to office and home automation and
healthcare applications. MQTT is also attractive for low-power
and low-latency applications, especially those based on wireless
devices (e.g. smartphones) [20]. The protocol is designed for
‘transporting’ data; hence, no differentiation/organisation of
data type is provided in the protocol specification. The
coding/meaning/modelling of data is demanded by the
participants in the MQTT data exchange. The MQTT
architecture is completely built on the publish/subscribe model.
For instance, a client cannot freely read variables, but it must wait
until the information (topic) is published by the system [7].

In the MQTT specification, the device’s participation in the
data exchange can either be as a server or a client. The server is
the message broker who manages and delivers the messages. It is

the centre of the architecture, and all clients are related to it. The
MQTT server is also called the Broker. On the other hand, a
client can act as a publisher (sender) and/or subscriber
(destination) of messages.

MQTT defines the quality of service (QoS) modes. The
sender and the receiver of the messages can reach an agreement
about the certainty of the delivery. Three levels of QoS are
defined. QoS 0 does not guarantee that the message reaches the
destination, as shown in Figure 1(a). In this case, the reliability of
the data exchange depends only on the underlying transport
protocol (which is usually TCP). QoS 1 guarantees that the sent
message arrives at the destination at least once. Since the
transaction ends only when receiver responds with the
confirmation message back to the sender to acknowledge receipt
of the message (as shown in Figure 1(b)), it may happen that the
message is sent more times to the receiver.

Furthermore, QoS 2 guarantees that the message is delivered
only once to the receiver. This is also the most complex
transaction, since four messages are exchanged, as shown in
Figure 1(c). The message contains the data for the receiver; the
acknowledgement message that informs the sender about
receipt; the request for the sender to release the message; and
finally, the confirmation from the receiver that the sender can
release the message and close the transaction [8].

The MQTT overhead is expected to be minimal because since
its beginning, IBM’s goal was to minimise it. The MQTT
published message has a maximum of 9 bytes of overhead plus
the ‘topic’ string. The acknowledgement/confirmation messages
used for the QoS implementation have a maximum size of 2
bytes. The MQTT is transported over TCP/IP, so another
(20+20) bytes for the headers is required. The layer 2 overhead
is 18 bytes for Ethernet connections. In sum, a minimum
overhead of about 60 to 80 bytes per message is highly probable.

2.3. OPC UA in brief

The OPC UA is widely used in industry applications to
interconnect equipment present in different networks or at
different levels of the automation pyramid. This protocol
provides object-oriented data modelling as well as organisation
of the address space of these objects inside the server [21]. It
allows the creation of variables of certain data types within each
object on the server, allowing clients to read the variable values
or to subscribe to the variables for which it would like to receive
all updated values [22]. The transport layer of OPC UA is based
on TCP, and it allows for the binary encoding of data or the use
of HTTP with SOAP (Simple Object Access Protocol) (binary
and XML).

Figure 1. MQTT publish flow for different QoS (a) QoS 0; (b) QoS 1; (c) QoS 2.

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 82

The OPC UA was designed to use a client-server architecture,
but recently (2017), the OPC Foundation released the OPC UA
PubSub specifications that enable full support for the
publisher/subscriber model. The specification defines two
modes of operations depending on the way in which the
publisher/subscriber mechanism is implemented: the ‘Broker-
based model’ or ‘Broker-less model’. The former is based on
message protocols (like the advanced message queuing protocol
[AMQP] or even MQTT) while the latter uses UDP (User
Datagram Protocol) multicast. Binary or JSON (JavaScript
Object Notation) encoding of data can be used.

In this paper, only the OPC UA PubSub functionalities
implemented using the ‘Broker-based model’ have been
considered in order to be directly comparable with the MQTT.

However, despite that OPC UA offers many other
functionalities, the main objective of this article is data exchange
in the publish/subscribe model. Therefore, it will not consider
all the other features provided by the protocol. This choice, in
turn, also limits the scope of the considered overhead to what is
visible in the messages collected on the network at layer 2 (i.e. a
black-box approach).

In literature, [12] investigated the topic of an OPC UA client
server overhead, concluding that the encapsulation of data due
to the structured information model and the security coding can
cause an additional overhead (up to 15 times greater under some
conditions) with respect to straight TCP binary encoding. For
this reason, the overhead of OPC UA PubSub is expected to be
higher than MQTT, since the same OPC UA data structure is
maintained over the message protocol used by OPC UA PubSub.

3. THE PROPOSED MEASUREMENT METHODOLOGY

In order to achieve this study’s goal, the most recent
investigation about delay estimation for data exchange across the
cloud has been taken into account. Since IoT and Industry 4.0
are hot research topics, there are several important concepts that
must be considered: the estimation of Internet delay is
investigated in-depth in [23]-[26], and in particular, MQTT seems
to be one of the most studied protocols, as shown in [27]-[30].
This section describes the measurement methodology used to
compare the protocols by taking into account the previous
achievements described in [31]-[34]. All the designed tests have
been created to use only the publish/subscribe model to
exchange data using the same procedure. Regarding MQTT, all
three available QoS levels are used.

3.1. Experimental setup architecture for the tests

The experimental setup general architecture is shown in
Figure 2. It is composed by a sender-server machine connected
to the Internet. In the cloud, the virtual server implements the
MQTT broker and the OPC UA message distribution server.

The network connection is monitored (at layer 2) by means of a
network tap. All the traffic to and from the machine is recorded
by a monitoring machine. The round-trip delays are measured
using the local clock of the sender machine. Since the duration
of the measured delay is very small (a few hundreds of
milliseconds) the local oscillators can be considered stable for the
duration of the measurements (i.e. it is supposed that the short-
term stability of crystal oscillator is better than 10-5).

3.2. Test 1: Protocol overhead

This test analyses all the data transmitted by the source
machine in order to estimate the number of bytes to be
transferred for transmitting a given useful payload. The
monitoring station captures all the network frames and calculates
the total number of bytes exchanged to carry out the message
delivery for the transaction under test. Then, the metric related
to the protocol overhead can be computed as

𝑀1 =
𝑇𝑜𝑡𝑎𝑙 𝐵𝑦𝑡𝑒𝑠 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑃𝑎𝑦𝑙𝑜𝑎𝑑
 . (1)

The test is carried out several times in order to obtain
meaningful statistics, and the payload size can be varied in order
to achieve a deeper understanding of the protocols.

3.3. Test 2: Round-trip delay per telegram length

This test aims to determine the time required by a message to
reach a server/broker and then to be sent to a subscriber. Hence,
the overall delay is composed by two contributions that may
make it difficult to measure. For this reason, the proposed metric
is the round-trip time calculated by a client that publishes a
topic/variable to whom the client itself is also a subscriber. In
this way, all the necessary time references are taken by the same
client. The procedure requires that once the publication is done,
the T1 timestamp is saved in the source machine. Then, when
the message that comes back from the server/broker activates
the callback function of the subscribed topic, the T2 timestamp
is saved in the destination machine, which is also the source
machine. Finally, the round-trip time metrics are calculated by
means of equation (2):

𝑀2 = 𝑇2 − 𝑇1. (2)

3.4. Test 3: Round-trip delay for different regions of the world

The relationship between the location of the server and the
round-trip delay is studied in Test 3. The delay is expected to be
dependent on the packet routing over the Internet. This test
involves five servers created in different locations (i.e. in
different parts of the world) with the same architecture based on
Google Cloud Platform. In Test 3, the round-trip time has been
calculated with a message with a payload of 16 bytes. The metric
for this test is the same for Test 2, explained in Section 3.3.

The servers have been created in the following five locations:
São Paulo (Brazil), Oregon (USA), Frankfurt (Germany), Tokyo
(Japan), and finally, a local server in the same laboratory network,
São Carlos (Brazil) for comparison.

3.5. Test 4: Round-trip delay for multiple clients participating in
the publish/subscribe protocol

Test 4 is designed to highlight the effect of an increasing
number of subscribers. In order to verify if the server processing
time for the distribution of the message to all clients (subscribed
to the same topic/variable) varies when the number of clients
increases, a test with N clients has been designed. Given N
clients, the first client (C0) is a subscriber of topic A, and all other
clients (C1 to CN-1) are subscribers to topic B.

Figure 2. A proposed experimental setup for interaction with cloud servers.

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 83

In order to initiate one run of the experiment, client C0
publishes a 16-byte message on topic B and at the same time
saves the T3 timestamp. When clients C1 to CN-1 receive the
message from topic B, they instantly publish a message in topic
A. Client C0 waits for receiving all N-1 messages on topic A;
then, it saves the timestamp T4. The total round-trip delay
metrics can be calculated as:

𝑀4 = 𝑇4 − 𝑇3. (3)

4. EXPERIMENTAL RESULTS

The experimental setup described in Section 3.1 and shown
in Figure 2 is customised differently depending on the protocol
that is being tested.

The different scenarios use OPC UA and MQTT clients
executed on a Linux computer with a high-speed Internet
connection located at the University of São Paulo in the city of
São Carlos (approximately 200 km from São Paulo, Brazil). On
the contrary, the servers of both protocols are implemented by
means of a virtual Linux machine inside the Google Cloud
Platform. Most of the experiments are on the Google Cloud
Server located in São Paulo, Brazil. However, for some tests,

other locations of the Google Cloud Server have been used (see
the section on Test 3 for further details).

For the software implementation, Python 3 has been used as
a programming language. This article has used open-source
libraries. In particular, the OPC UA server and client (required
to create the publisher-subscriber architecture) are based on the
Python-OPC UA library with PubSub extensions. The MQTT
server (Broker) uses the HBMQTT library, while the MQTT
client is built with the PAHO-MQTT library.

The monitoring machine is a Linux machine running the
network capture software Wireshark. The network uses Ethernet
layer 2.

4.1. Test 1: Experimental results

Test 1 requires assessing the overhead of the protocols
varying the payload length. For the implementation, four
different payloads (10 bytes, 100 bytes, 1 kB and 1 MB) have
been considered. A graphical comparison of the results is shown
in Figure 3. The main point is that in the case of messages with
small payloads, the protocol overhead is dominant. Most of the
transmitted bytes on the network (Ethernet in the experiment
cases) are used by other supporting protocols (e.g. Ethernet, IP,
and TCP headers) or by headers/trailers and
acknowledgement/confirmation messages of MQTT and OPC
UA.

MQTT QoS 0 and 1 have clear advantages over the quantity
of the transmitted bytes compared to MQTT QoS 2 and OPC
UA. This is highly relevant in scenarios in which the main limit
of the connection is the amount of data transmitted; for instance,
when stations are using mobile network operators that charge
depending on the total exchanged bytes.

However, there are situations in which the behaviour of OPC
UA is very similar to that of the MQTT. It is in the case of
MQTT with QoS 2 in which the MQTT guarantees the message
delivery only once to the subscriber. Since this is the normal
behaviour of OPC UA, it is reasonable to expect the same value
for the considered metric. As matter of fact, the ratio of the
payload and the total size of the Ethernet frame is practically the
same in the two protocols.

Consequently, if the application scenario has poor quality
connection between stations, and messages can be lost, the use
of MQTT QoS 2 or OPC UA is strongly recommended, and
both methods are equivalent from the point of view of their

Figure 3. Overhead of the considered protocols as a function of the useful
payload size.

Table 1. Results of Test 1 with the cloud servers located in São Paulo. All values are in ms.

Payload size Protocol Mean Median St. Dev Max Min

100 bytes

MQTT QoS 0 6.08 6.08 0.57 28.63 5.42

MQTT QoS 1 54.50 54.07 9.02 636.33 51.97

MQTT QoS 2 65.91 65.50 5.76 512.41 62.78

OPC UA 67.22 67.07 1.06 553.90 60.31

10 kB

MQTT QoS 0 8.62 8.34 1.46 47.10 7.70

MQTT QoS 1 14.14 14.09 0.89 52.11 12.87

MQTT QoS 2 25.63 25.47 3.19 331.98 23.63

OPC UA 42.23 40.11 2.72 60.65 17.27

100 kB

MQTT QoS 0 35.60 35.21 5.00 385.32 33.56

MQTT QoS 1 34.79 34.30 2.55 89.07 31.10

MQTT QoS 2 46.57 46.15 2.44 88.47 43.72

OPC UA 58.01 55.40 5.86 85.04 37.97

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 84

measured performance. A typical situation in which these
conditions are met are the wireless connections (or even mobile
networks) with low received signal strength indicator (RSSI) and
unpredictable interference.

4.2. Test 2: Experimental results

Test 2 aims to calculate the round-trip time required by the
protocols. In this test, the round-trip time for a self-published
topic is calculated by changing the payload size between 100
bytes, 10 kB, and 100 kB. The round-trip times for the calculation
of the statistics are shown in Table 1, while the probability
density function estimates are reported in Figure 4, Figure 5, and
Figure 6. Each test considers 10000 samples, which means 10000
published messages with a 5 s wait interval between
transmissions.

The results show that the MQTT with QoS 0 has advantages
when transmitting smaller and medium packets of up to 10 kB.
With larger packets, MQTT QoS 0 and QoS 1 perform the same,
while MQTT QoS 2 are beneficial for transmitting larger packets
(more than 10 kB). The OPC UA protocol is slower than the
MQTT in all situations in terms of the round-trip time, and its
distribution has a long tail and several peaks, demonstrating the
presence of several sampling intervals and timeouts [35] inside
the OPC UA stacks. It should also be noted that the results for
OPC UA PubSub are in the same order of magnitude of the
results obtained in [36] and [37] for the OPC UA client-server
architecture, demonstrating the inherent complexity of OPC UA
protocol stacks.

In conclusion, for situations in which the speed in updating
variables is a decisive factor in the process, and the size of this
variable is small, the use of the MQTT protocol with QoS 0 is
suggested. It has round-trip time statistics with a lower mean, a
smaller standard deviation, and (most importantly) a distribution
with a single and narrow peak.

4.3. Test 3: Experimental results

Test 3 evaluates the influence of the cloud server location on
communication performance. As in Test 2, the same code was
used to create the OPC UA architecture and the MQTT broker
on different locations by means of virtual machine instances
hosted by Google Cloud Platform. The test measured the round-
trip time for each one of these cloud servers, as shown in Table
2, while the probability density function estimates are reported in
Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11.

Comparing the different servers, it is clear that for this test,
the delay is caused by the routing of the messages across the
world. The round-trip time increases with the distance and the
number of routers between the server and client.

Multiple peaks appear in the distribution of all the protocols
because the cyclical behaviour of Internet routers along the path
is now relevant. The presence of multimodal distributions is an
impairment in the use of such architectures in high-speed
industrial control loops.

It is clear that an MQTT with QoS 0 again has the best
performance for all the locations. The reason is that it does not
need any kind of confirmation of receipt. The MQTT with QoS
2 presented a similar result to OPC UA, but the latter has the
longest tails when the distributions are compared.

Figure 4. Distribution estimate for the round-trip time of a single variable with
a size of 100 bytes.

Figure 5. Distribution estimate for the round-trip time of a single variable with
a size of 10 kB.

Figure 6. Distribution estimate for the round-trip time of a single variable with
a size of 100 kB.

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 85

Table 2. Results of Test 3 with cloud servers around the world. All the results are in ms.

Location of the Cloud Server Protocol Mean Median St. Dev Max Min

Local Area Network

MQTT QoS 0 5.33 5.31 0.46 8.19 4.87

MQTT QoS 1 15.82 15.77 0.50 22.05 13.47

MQTT QoS 2 25.44 25.51 0.53 27.51 22.91

OPC UA 29.12 29.27 0.61 26.83 26.83

São Paulo

MQTT QoS 0 33.80 31.69 1.82 204.50 25.89

MQTT QoS 1 58.93 54.12 2.57 382.85 50.52

MQTT QoS 2 62.80 57.78 2.82 357.82 59.50

OPC UA 62.11 60.01 2.64 515.79 59.21

Oregon

MQTT QoS 0 175.39 173.79 3.44 610.21 152.44

MQTT QoS 1 210.02 211.52 3.17 759.37 189.17

MQTT QoS 2 238.90 232.16 4.85 749.84 215.75

OPC UA 251.61 241.11 4.11 812.40 222.65

Frankfurt

MQTT QoS 0 243.27 243.12 2.88 437.77 218.94

MQTT QoS 1 311.94 307.06 3.30 811.85 288.09

MQTT QoS 2 372.61 365.61 5.53 756.41 352.76

OPC UA 389.17 388.49 5.26 899.63 333.71

Tokyo

MQTT QoS 0 327.79 317.27 7.79 760.25 295.48

MQTT QoS 1 408.04 395.88 8.29 1025.10 385.04

MQTT QoS 2 416.40 401.98 9.76 1135.43 398.56

OPC UA 433.13 419.78 12.16 1235.61 401.58

Figure 7. Distribution estimate for the round-trip time of a server located in
the same local area network.

Figure 8. Distribution estimate for the round-trip time of a server located in
São Paulo (BRA).

Figure 9. Distribution estimate for the round-trip time of a server located in
Oregon (USA).

Figure 10. Distribution estimate for the round-trip time of a server located in
Frankfurt (GER).

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 86

4.4. Test 4: Experimental results

Test 4 has been designed to verify the impact of the number
of clients on the publisher/subscriber architecture of the two
protocols. In order to perform the test, the message payload has
been set to 16 bytes, and the number of clients connected to the
topics/variables A and B has been varied. The results are shown
in Figure 12 in the form of a box-plot graph. There are seven
groups depending on the number of clients used in the tests.
Each test uses 1000 samples, which means 1000 round-trip
transactions as explained in Section 3.5.

It is interesting to note that for ten clients, the time between
publishing on a topic and receiving the response of all clients on
a second topic is practically the same for the MQTT (any QoS)
and OPC UA. However, the behaviour changes as soon as the
number of clients (subscribers) increases. Starting from 100
subscribed clients, the considered metric begins to increase faster
with the OPC UA. The maximum value for OPC UA is a
response time of up to 1.2 seconds for 1000 subscribed clients,
while for the MQTT, the worst case was less than 500 ms.

In can be concluded that the current implementations of
MQTT the protocol are more efficient for the distribution of
messages in the publish/subscribe model when there is a large
number of clients subscribed to the same topic. Moreover, there
are no considerable differences between the available QoSs. On
the other hand, the available OPC UA implementations of the
PubSub architecture suffer when the number of subscribers
increases, showing once again the higher complexity of OPC UA
protocol stacks.

5. FINAL REMARKS AND RECOMMENDATIONS

The results of the proposed tests highlight that the MQTT
has the advantage of using less data to transmit the same payload
and slightly lower transmission times compared to OPC UA.

The most interesting result is the large difference between the
two protocols when the transmission of same message to
multiple clients is considered: The MQTT protocol has a great
advantage (at least three times faster) in sending the messages to
a large number of clients. When the topic/variable is small, the
MQTT is better. When a small delay is important for an
application, the MQTT has more advantages than OPC UA.

However, this paper has evaluated only the publish/subscribe
model. The view of the OPC UA protocol is therefore limited

only to the data exchange part. The OPC UA protocol stack is
complex, and it has several other services besides data exchange
(such as data modelling; address space; alarm and event
management; variable history; and access control), which will be
evaluated in future works.

On the contrary, the MQTT is basically unstructured, and it
implies the use of additional tools for the development of
methods, for the definition of data types sent between devices,
for the sequencing of messages, and for the creation of historical
data services.

Even if it is clear that the comparison of complete solutions
based on the MQTT or OPC UA must take into account all the
components and tools used, the results related to the data
exchange presented in this article are fundamental, since they
may constitute a reference for the best performance that is
obtainable.

6. CONCLUSIONS

Today, IoT is the most important technology for the
implementation of Industry 4.0. New industrial devices
communicate by means of local (edge) and cloud computing
servers. In this article, OPC UA and the MQTT (two well-known
protocols used for IoT and industrial IoT) are compared in terms
of performance when they are used to send/receive data to/from
cloud servers. The performance comparison is carried out
considering the overall quantity of data transferred (user payload
plus overhead) and the round-trip time required to send in data
and receive a feedback message in return. The measurement
methodology was fully described, and the experimental results,
including the evaluation of several cloud computing server and
application scenarios, were reported. Considering specific use
case studies, the MQTT protocol was found to be faster than
OPC UA for pure data exchange. OPC UA pays the complexity
of its stack, which is also designed for ancillary services.
Generally speaking, the data exchange between industrial plants
and cloud servers may take from less than 100 ms to more than
1 s depending on the Internet path length, with lower values
obtained by the MQTT QoS 0 and the small size of the
exchanged variables.

Figure 12. Comparison of performance with the multi-client test. OPC UA
performance quickly worsens when the number of clients increases.

Figure 11. Distribution estimate for the round-trip time of a server located in
Tokyo (JAP).

ACTA IMEKO | www.imeko.org June 2019 | Volume 8 | Number 2 | 87

7. REFERENCES

[1] L.D.Xu, W.He, S.Li, Internet of things in industries: a survey,
IEEE Transactions on Industrial Informatics, 10(4) (2014) pp.
2233-2243.

[2] F.Tao, Y.Zuo, L.D.Xu, L.Zhang, IoT-based intelligent perception
and access of manufacturing resource toward cloud
manufacturing, IEEE Transactions on Industrial Informatics,
10(2) (2014) pp. 1547-1557.

[3] Y.Liu, X.Xu, ‘Industry 4.0 and cloud manufacturing: A
comparative analysis’, J. Manuf. Sci. Eng., 139(3), (2016).

[4] Y.T.Chou, An integrated cloud-based smart home management
system with community hierarchy. IEEE Transactions on
Consumer Electronics, 62(1), (2016), pp. 1-9.

[5] S.Corbellini, E.Di Francia, S.Grassini, L.Iannucci, L.Lombardo,
M.Parvis, Cloud based sensor network for environmental
monitoring, Measurement: Journal of the International
Measurement Confederation (2017) (in press).

[6] H.D.Deventer, ‘Protocol interoperability of OPC UA in service
oriented architectures’, Proc. of the 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), pp. 44-50.

[7] F.A.Fernandes, G.Serpa Sestito, A.Luis Dias, D.Brandão. P.
Ferrari, Influence of network parameters on the recovery time of
a ring topology PROFINET network, IFAC-PapersOnLine
(2016) pp. 278-283.

[8] Y.C.Han A survey of emerging M2M systems: context, task, and
objective. IEEE Internet of Things Journal, 3(6), (2016), pp. 1246-
1258.

[9] L.Dürkop, B.Czybik, J.Jasperneite, ‘Performance evaluation of
M2M protocols over cellular networks in a lab environment’, Proc.
of the 2015 18th International Conference on Intelligence in Next
Generation Networks, 2015, pp. 70-75.

[10] P.Ferrari, E.Sisinni, D.Brandao, M.Rocha, ‘Evaluation of
communication latency in industrial IoT applications’, Proc. of the
IEEE International Workshop on Measurements and Networking
(M&N), 27-29 Sept., 2017, Naples, Italy, pp. 17-22.

[11] P.Ferrari, A.Flammini, E.Sisinni, S.Rinaldi, D.Brandão,
M.S.Rocha, Delay estimation of industrial IoT applications based
on messaging protocols, IEEE Trans. on Instrumentation and
Measurement, 67(8), (2018), pp. 2188 – 2199.

[12] M.Silveira Rocha, G.Serpa Sestito, A.Luis Dias, A.Celso Turcato,
D.Brandão, ‘Performance comparison between OPC UA and
MQTT for data exchange’, Proc. of the Workshop on Metrology
for Industry 4.0 and IoT, 2018, Brescia, Italy, pp. 175-179.

[13] B.C.Yin, Smart factory of Industry 4.0: key technologies,
application case, and challenges, IEEE Access (2017) p. 99.

[14] J.Wan et al., Software-defined industrial Internet of Things in the
context of Industry 4.0, IEEE Sensors Journal, 16(20) (2016) pp.
7373-7380.

[15] T.H.Szymanski, Supporting consumer services in a deterministic
industrial Internet core network, IEEE Communications
Magazine, 54(6) (2016) pp. 110-117.

[16] H.Derhamy, J.Eliasson, J.Delsing, IoT interoperability—on-
demand and low latency transparent multiprotocol translator,
IEEE Internet of Things Journal, 4(5) (2017) pp. 1754-1763.

[17] C.Yang, W.Shen, X.Wang, ‘Applications of Internet of Things in
manufacturing’, Proc. of the IEEE 20th International Conference
on Computer Supported Cooperative Work in Design (CSCWD),
2016, Nanchang, pp. 670-675.

[18] P.Bellagente, P.Ferrari, A.Flammini, S.Rinaldi, E.Sisinni,
‘Enabling PROFINET devices to work in IoT: Characterization
and requirements’, Proc. of the IEEE Instrumentation and
Measurement Technology Conference, I2MTC 2016, 2016.

[19] Industrial Internet reference architecture [Online] Available:
http://www.iiconsortium.org/IIRA.htm [Access date: 11/2017].

[20] O.Standard, MQTT Version 3.1.1, 2014 [Online] Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[21] W.a-H.Mahnke, OPC Unified Architecture, Springer Publishing
Company, Inc., 2009.

[22] T.Mizuya, M.Okuda, T.Nagao, ‘A case study of data acquisition
from field devices using OPC UA and MQTT’, Proc. of the 56th
Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), Kanazawa, 2017, pp. 611-614.

[23] C.J.Bovy, H.T.Mertodimedjo, G.Hooghiemstra, H.Uijterwaal,
‘Analysis of end-to-end delay measurements in Internet’, Proc. of
the ACM Conference Passive and Active Measurements, 2002.

[24] A.Pathak, H.Pucha, Y.Zhang, Y.C.Hu, Z.M.Mao, ‘A measurement
study of Internet delay asymmetry’, Proc. of the International
Conference on Passive and Active Network Measurement PAM,
2008, pp. 182-191.

[25] P.Mahadevan, D.Krioukov, M.Fomenkov, B.Huffaker,
X.Dimitropoulos, K.Claffy, A.Vahdat, The Internet AS-level
topology: three data sources and one definitive metric, ACM
SIGCOMM Computer Communication Review (CCR), 36(1)
(2006) pp. 17-26.

[26] M.Collina, M.Bartolucci, A.Vanelli-Coralli, G.E.Corazza, ‘Internet
of Things application layer protocol analysis over error and delay
prone links’, Proc. of the 7th Advanced Satellite Multimedia
Systems Conference and the 13th Signal Processing for Space
Communications Workshop (ASMS/SPSC), 2014, Livorno, pp.
398-404.

[27] N.Naik, ‘Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP, and HTTP’, Proc. of the 2017 IEEE
International Systems Engineering Symposium (ISSE), 2017,
Vienna, pp. 1-7.

[28] S.Lee, H.Kim, D.K.Hong, H.Ju, ‘Correlation analysis of MQTT
loss and delay according to QoS level’, Proc. of the International
Conference on Information Networking (ICOIN), 2013,
Bangkok, pp. 714-717.

[29] Y.Xu, V.Mahendran, W.Guo, S.Radhakrishnan, Fairness in fog
networks: Achieving fair throughput performance in MQTT-
based IoTs, Proc. of the 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC), 2017, Las
Vegas, Nevada, pp. 191-196.

[30] K.Govindan, A.P.Azad, ‘End-to-end service assurance in IoT
MQTT-SN’, Proc. of the 12th Annual IEEE Consumer
Communications and Networking Conference (CCNC), 2015, Las
Vegas, Nevada, pp. 290-296.

[31] S.Mijovic, E.Shehu, C.Buratti, ‘Comparing application layer
protocols for the Internet of Things via experimentation’, Proc. of
the 2nd IEEE International Forum on Research and Technologies
for Society and Industry Leveraging a Better Tomorrow (RTSI),
2016, Bologna, Italy, pp. 1-5.

[32] G.S.Sestito, et al. A method for anomalies detection in real-time
Ethernet data traffic applied to PROFINET, IEEE Transactions
on Industrial Informatics, 14(5) (2018) pp. 2171-2180.

[33] C.Pereira, A.Pinto, D.Ferreira, A.Aguiar, Experimental
characterization of mobile IoT application latency, IEEE Internet
of Things Journal, 4(4), (2017), pp. 1082 - 1094.

[34] S.Savage, A.Collins, E.Hoffman, J.Snell, T.Anderson, The end-to-
end effects of internet path selection, SIGCOMM Comput.
Commun. Rev., 29(4) (1999) pp. 289-299.

[35] P.Ferrari, A.Flammini, D.Marioli, A.Taroni, F.Venturini,
‘Experimental analysis to estimate jitter in PROFINET IO class 1
networks’, Proc. of the IEEE Conference on Emerging
Technologies and Factory Automation ETFA, 2006, Prague,
Czech Republic, pp. 429-432.

[36] S.Cavalieri, F.Chiacchio, Analysis of OPC UA performances,
Computer Standards & Interfaces, 36(1) (2013) pp. 165-177.

[37] S.Cavalieri, Evaluating overheads introduced by OPC UA
specifications, in Advances in Intelligent and Soft Computing, 98
(2012) pp. 201-221

