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1. INTRODUCTION 

The process of digital transformation known as Industry 4.0 
is ongoing. Its main objective is the implementation of a more 
advanced, flexible, and efficient manufacture [1]-[3]. In recent 
years, the use of sensors, actuators, controllers and supervisory 
systems has become common in industrial automation systems, 
with a typical communication infrastructure organised like a 
pyramid, where these layers can exchange data vertically from 
layer to layer. Nowadays, on the contrary, the information flows 
as in a mesh communication structure, where the industrial 
automation devices are able to communicate with each other 
without a strict hierarchy. This architecture is the basis for a 
wider collection of information, with feature extraction, and 

enhanced knowledge about the process by means of intelligent 
systems and big-data techniques [4], [5]. 

The huge quantity of data to be exchanged between the 
industrial devices deployed in the field and the cloud servers 
imposes the use of new machine-to-machine (M2M) protocols, 
oriented to be more efficient and reliable. Moreover, 
determinism and low complexity are two important 
characteristics required by embedded systems for industrial 
applications [6]. 

It is common, for the most diffused industrial automation 
protocols and networks to have some performance indicators 
that show their suitability for the demanding communication task 
in the industrial environment. Robustness and determinism have 
been studied in general terms by several researchers. A specific 
focus on the estimation of communication delays can be 
commonly found [7]-[9]. The new M2M protocols that are now 
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starting to be used in industrial systems for Internet connection 
with cloud servers should be evaluated with similar metrics, 
related to time, in order to estimate communication 
performance. A prime example of this approach is given in [10], 
[11]. 

On this subject, the current article expands the work in [12]  
about open platform communication-unified architecture (OPC 
UA) and message queuing telemetry transport (MQTT) (two 
widely used protocols in Industry 4.0 and IoT applications [13]) 
with the aim of comparing them in the publish/subscribe mode 
of operation. The time characteristics of each protocol are 
discussed, and the distribution of the round-trip delay for 
sending and receiving messages is analysed in different scenarios. 
Note that for OPC UA, only the transport part of the 
specification is taken into account in this article. 

The article is organised in five sections. Section 2 briefly 
introduces the two protocols, showing basic operation concepts 
for the sake of understanding the proposed tests. Section 3 
describes the proposed tests and their purpose. Section 4 reports 
the results. Finally, Section 5 shows the overall results of the 
comparison between OPC UA and MQTT. 

2. BRIEF INTRODUCTION TO MQTT AND OPC UA 

This section describes the two protocols used in the proposed 
tests (MQTT and OPC UA), together with a brief introduction 
to the publish/subscribe model, which is used for data exchange 
in both protocols. 

2.1. The publish/subscribe general model 

The publish/subscribe model has been introduced to 
facilitate communication between two or more devices. Data 
exchange is organised according to ‘topics’. The 
publish/subscribe model is one of the most popular paradigms 
in the Industry 4.0 environment [14]-[17], which is the reference 
scenario in this article. In the publisher-subscriber model, there 
are two kinds of stations: 

1) the subscribers, which are interested in receiving the 
information, may subscribe to the topic of interest and 
then wait for new messages to come; and 

2) the publishers, which wish to send information, may 
publish a message identified by a topic [18]. 

The publishing and the message distribution to subscribers may 
be done through a specific server, also called a broker [19], or by 
using some services offered by the transport layer (e.g. multicast 
communication). 

2.2. Overview of MQTT 

IBM designed a message protocol called MQTT for 
applications in the consumer market. Currently, it is widely 
applied, for instance, to office and home automation and 
healthcare applications. MQTT is also attractive for low-power 
and low-latency applications, especially those based on wireless 
devices (e.g. smartphones) [20]. The protocol is designed for 
‘transporting’ data; hence, no differentiation/organisation of 
data type is provided in the protocol specification. The 
coding/meaning/modelling of data is demanded by the 
participants in the MQTT data exchange. The MQTT 
architecture is completely built on the publish/subscribe model. 
For instance, a client cannot freely read variables, but it must wait 
until the information (topic) is published by the system [7]. 

In the MQTT specification, the device’s participation in the 
data exchange can either be as a server or a client. The server is 
the message broker who manages and delivers the messages. It is 

the centre of the architecture, and all clients are related to it. The 
MQTT server is also called the Broker. On the other hand, a 
client can act as a publisher (sender) and/or subscriber 
(destination) of messages. 

MQTT defines the quality of service (QoS) modes. The 
sender and the receiver of the messages can reach an agreement 
about the certainty of the delivery. Three levels of QoS are 
defined. QoS 0 does not guarantee that the message reaches the 
destination, as shown in Figure 1(a). In this case, the reliability of 
the data exchange depends only on the underlying transport 
protocol (which is usually TCP). QoS 1 guarantees that the sent 
message arrives at the destination at least once. Since the 
transaction ends only when receiver responds with the 
confirmation message back to the sender to acknowledge receipt 
of the message (as shown in Figure 1(b)), it may happen that the 
message is sent more times to the receiver. 

Furthermore, QoS 2 guarantees that the message is delivered 
only once to the receiver. This is also the most complex 
transaction, since four messages are exchanged, as shown in 
Figure 1(c). The message contains the data for the receiver; the 
acknowledgement message that informs the sender about 
receipt; the request for the sender to release the message; and 
finally, the confirmation from the receiver that the sender can 
release the message and close the transaction [8]. 

The MQTT overhead is expected to be minimal because since 
its beginning, IBM’s goal was to minimise it. The MQTT 
published message has a maximum of 9 bytes of overhead plus 
the ‘topic’ string. The acknowledgement/confirmation messages 
used for the QoS implementation have a maximum size of 2 
bytes. The MQTT is transported over TCP/IP, so another 
(20+20) bytes for the headers is required. The layer 2 overhead 
is 18 bytes for Ethernet connections. In sum, a minimum 
overhead of about 60 to 80 bytes per message is highly probable. 

2.3. OPC UA in brief 

The OPC UA is widely used in industry applications to 
interconnect equipment present in different networks or at 
different levels of the automation pyramid. This protocol 
provides object-oriented data modelling as well as organisation 
of the address space of these objects inside the server [21]. It 
allows the creation of variables of certain data types within each 
object on the server, allowing clients to read the variable values 
or to subscribe to the variables for which it would like to receive 
all updated values [22]. The transport layer of OPC UA is based 
on TCP, and it allows for the binary encoding of data or the use 
of HTTP with SOAP (Simple Object Access Protocol) (binary 
and XML). 

 

Figure 1. MQTT publish flow for different QoS (a) QoS 0; (b) QoS 1; (c) QoS 2. 
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The OPC UA was designed to use a client-server architecture, 
but recently (2017), the OPC Foundation released the OPC UA 
PubSub specifications that enable full support for the 
publisher/subscriber model. The specification defines two 
modes of operations depending on the way in which the 
publisher/subscriber mechanism is implemented: the ‘Broker-
based model’ or ‘Broker-less model’. The former is based on 
message protocols (like the advanced message queuing protocol 
[AMQP] or even MQTT) while the latter uses UDP (User 
Datagram Protocol) multicast. Binary or JSON (JavaScript 
Object Notation) encoding of data can be used. 

In this paper, only the OPC UA PubSub functionalities 
implemented using the ‘Broker-based model’ have been 
considered in order to be directly comparable with the MQTT. 

However, despite that OPC UA offers many other 
functionalities, the main objective of this article is data exchange 
in the publish/subscribe model. Therefore, it will not consider 
all the other features provided by the protocol. This choice, in 
turn, also limits the scope of the considered overhead to what is 
visible in the messages collected on the network at layer 2 (i.e. a 
black-box approach). 

In literature, [12] investigated the topic of an OPC UA client 
server overhead, concluding that the encapsulation of data due 
to the structured information model and the security coding can 
cause an additional overhead (up to 15 times greater under some 
conditions) with respect to straight TCP binary encoding. For 
this reason, the overhead of OPC UA PubSub is expected to be 
higher than MQTT, since the same OPC UA data structure is 
maintained over the message protocol used by OPC UA PubSub. 

3. THE PROPOSED MEASUREMENT METHODOLOGY 

In order to achieve this study’s goal, the most recent 
investigation about delay estimation for data exchange across the 
cloud has been taken into account. Since IoT and Industry 4.0 
are hot research topics, there are several important concepts that 
must be considered: the estimation of Internet delay is 
investigated in-depth in [23]-[26], and in particular, MQTT seems 
to be one of the most studied protocols, as shown in [27]-[30]. 
This section describes the measurement methodology used to 
compare the protocols by taking into account the previous 
achievements described in [31]-[34]. All the designed tests have 
been created to use only the publish/subscribe model to 
exchange data using the same procedure. Regarding MQTT, all 
three available QoS levels are used. 

3.1. Experimental setup architecture for the tests 

The experimental setup general architecture is shown in 
Figure 2. It is composed by a sender-server machine connected 
to the Internet. In the cloud, the virtual server implements the 
MQTT broker and the OPC UA message distribution server. 

The network connection is monitored (at layer 2) by means of a 
network tap. All the traffic to and from the machine is recorded 
by a monitoring machine. The round-trip delays are measured 
using the local clock of the sender machine. Since the duration 
of the measured delay is very small (a few hundreds of 
milliseconds) the local oscillators can be considered stable for the 
duration of the measurements (i.e. it is supposed that the short-
term stability of crystal oscillator is better than 10-5). 

3.2. Test 1: Protocol overhead 

This test analyses all the data transmitted by the source 
machine in order to estimate the number of bytes to be 
transferred for transmitting a given useful payload. The 
monitoring station captures all the network frames and calculates 
the total number of bytes exchanged to carry out the message 
delivery for the transaction under test. Then, the metric related 
to the protocol overhead can be computed as 

𝑀1 =
𝑇𝑜𝑡𝑎𝑙 𝐵𝑦𝑡𝑒𝑠 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑃𝑎𝑦𝑙𝑜𝑎𝑑
 . (1) 

The test is carried out several times in order to obtain 
meaningful statistics, and the payload size can be varied in order 
to achieve a deeper understanding of the protocols. 

3.3. Test 2: Round-trip delay per telegram length 

This test aims to determine the time required by a message to 
reach a server/broker and then to be sent to a subscriber. Hence, 
the overall delay is composed by two contributions that may 
make it difficult to measure. For this reason, the proposed metric 
is the round-trip time calculated by a client that publishes a 
topic/variable to whom the client itself is also a subscriber. In 
this way, all the necessary time references are taken by the same 
client. The procedure requires that once the publication is done, 
the T1 timestamp is saved in the source machine. Then, when 
the message that comes back from the server/broker activates 
the callback function of the subscribed topic, the T2 timestamp 
is saved in the destination machine, which is also the source 
machine. Finally, the round-trip time metrics are calculated by 
means of equation (2): 

𝑀2 = 𝑇2 − 𝑇1. (2) 

3.4. Test 3: Round-trip delay for different regions of the world 

The relationship between the location of the server and the 
round-trip delay is studied in Test 3. The delay is expected to be 
dependent on the packet routing over the Internet. This test 
involves five servers created in different locations (i.e. in 
different parts of the world) with the same architecture based on 
Google Cloud Platform. In Test 3, the round-trip time has been 
calculated with a message with a payload of 16 bytes. The metric 
for this test is the same for Test 2, explained in Section 3.3. 

The servers have been created in the following five locations: 
São Paulo (Brazil), Oregon (USA), Frankfurt (Germany), Tokyo 
(Japan), and finally, a local server in the same laboratory network, 
São Carlos (Brazil) for comparison. 

3.5. Test 4: Round-trip delay for multiple clients participating in 
the publish/subscribe protocol 

Test 4 is designed to highlight the effect of an increasing 
number of subscribers. In order to verify if the server processing 
time for the distribution of the message to all clients (subscribed 
to the same topic/variable) varies when the number of clients 
increases, a test with N clients has been designed. Given N 
clients, the first client (C0) is a subscriber of topic A, and all other 
clients (C1 to CN-1) are subscribers to topic B. 

 

Figure 2. A proposed experimental setup for interaction with cloud servers. 
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In order to initiate one run of the experiment, client C0 
publishes a 16-byte message on topic B and at the same time 
saves the T3 timestamp. When clients C1 to CN-1 receive the 
message from topic B, they instantly publish a message in topic 
A. Client C0 waits for receiving all N-1 messages on topic A; 
then, it saves the timestamp T4. The total round-trip delay 
metrics can be calculated as: 

𝑀4 = 𝑇4 − 𝑇3. (3) 

4. EXPERIMENTAL RESULTS 

The experimental setup described in Section 3.1 and shown 
in Figure 2 is customised differently depending on the protocol 
that is being tested. 

The different scenarios use OPC UA and MQTT clients 
executed on a Linux computer with a high-speed Internet 
connection located at the University of São Paulo in the city of 
São Carlos (approximately 200 km from São Paulo, Brazil). On 
the contrary, the servers of both protocols are implemented by 
means of a virtual Linux machine inside the Google Cloud 
Platform. Most of the experiments are on the Google Cloud 
Server located in São Paulo, Brazil. However, for some tests, 

other locations of the Google Cloud Server have been used (see 
the section on Test 3 for further details). 

For the software implementation, Python 3 has been used as 
a programming language. This article has used open-source 
libraries. In particular, the OPC UA server and client (required 
to create the publisher-subscriber architecture) are based on the 
Python-OPC UA library with PubSub extensions. The MQTT 
server (Broker) uses the HBMQTT library, while the MQTT 
client is built with the PAHO-MQTT library. 

The monitoring machine is a Linux machine running the 
network capture software Wireshark. The network uses Ethernet 
layer 2. 

4.1. Test 1: Experimental results 

Test 1 requires assessing the overhead of the protocols 
varying the payload length. For the implementation, four 
different payloads (10 bytes, 100 bytes, 1 kB and 1 MB) have 
been considered. A graphical comparison of the results is shown 
in Figure 3. The main point is that in the case of messages with 
small payloads, the protocol overhead is dominant. Most of the 
transmitted bytes on the network (Ethernet in the experiment 
cases) are used by other supporting protocols (e.g. Ethernet, IP, 
and TCP headers) or by headers/trailers and 
acknowledgement/confirmation messages of MQTT and OPC 
UA. 

MQTT QoS 0 and 1 have clear advantages over the quantity 
of the transmitted bytes compared to MQTT QoS 2 and OPC 
UA. This is highly relevant in scenarios in which the main limit 
of the connection is the amount of data transmitted; for instance, 
when stations are using mobile network operators that charge 
depending on the total exchanged bytes. 

However, there are situations in which the behaviour of OPC 
UA is very similar to that of the MQTT. It is in the case of 
MQTT with QoS 2 in which the MQTT guarantees the message 
delivery only once to the subscriber. Since this is the normal 
behaviour of OPC UA, it is reasonable to expect the same value 
for the considered metric. As matter of fact, the ratio of the 
payload and the total size of the Ethernet frame is practically the 
same in the two protocols. 

Consequently, if the application scenario has poor quality 
connection between stations, and messages can be lost, the use 
of MQTT QoS 2 or OPC UA is strongly recommended, and 
both methods are equivalent from the point of view of their 

 
Figure 3. Overhead of the considered protocols as a function of the useful 
payload size. 

Table 1. Results of Test 1 with the cloud servers located in São Paulo. All values are in ms. 

Payload size Protocol Mean Median St. Dev Max Min 

100 bytes 

MQTT QoS 0 6.08 6.08 0.57 28.63 5.42 

MQTT QoS 1 54.50 54.07 9.02 636.33 51.97 

MQTT QoS 2 65.91 65.50 5.76 512.41 62.78 

OPC UA 67.22 67.07 1.06 553.90 60.31 

10 kB 

MQTT QoS 0 8.62 8.34 1.46 47.10 7.70 

MQTT QoS 1 14.14 14.09 0.89 52.11 12.87 

MQTT QoS 2 25.63 25.47 3.19 331.98 23.63 

OPC UA 42.23 40.11 2.72 60.65 17.27 

100 kB 

MQTT QoS 0 35.60 35.21 5.00 385.32 33.56 

MQTT QoS 1 34.79 34.30 2.55 89.07 31.10 

MQTT QoS 2 46.57 46.15 2.44 88.47 43.72 

OPC UA 58.01 55.40 5.86 85.04 37.97 
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measured performance. A typical situation in which these 
conditions are met are the wireless connections (or even mobile 
networks) with low received signal strength indicator (RSSI) and 
unpredictable interference. 

4.2. Test 2: Experimental results 

Test 2 aims to calculate the round-trip time required by the 
protocols. In this test, the round-trip time for a self-published 
topic is calculated by changing the payload size between 100 
bytes, 10 kB, and 100 kB. The round-trip times for the calculation 
of the statistics are shown in Table 1, while the probability 
density function estimates are reported in Figure 4, Figure 5, and 
Figure 6. Each test considers 10000 samples, which means 10000 
published messages with a 5 s wait interval between 
transmissions. 

The results show that the MQTT with QoS 0 has advantages 
when transmitting smaller and medium packets of up to 10 kB. 
With larger packets, MQTT QoS 0 and QoS 1 perform the same, 
while MQTT QoS 2 are beneficial for transmitting larger packets 
(more than 10 kB). The OPC UA protocol is slower than the 
MQTT in all situations in terms of the round-trip time, and its 
distribution has a long tail and several peaks, demonstrating the 
presence of several sampling intervals and timeouts [35] inside 
the OPC UA stacks. It should also be noted that the results for 
OPC UA PubSub are in the same order of magnitude of the 
results obtained in [36] and [37] for the OPC UA client-server 
architecture, demonstrating the inherent complexity of OPC UA 
protocol stacks. 

In conclusion, for situations in which the speed in updating 
variables is a decisive factor in the process, and the size of this 
variable is small, the use of the MQTT protocol with QoS 0 is 
suggested. It has round-trip time statistics with a lower mean, a 
smaller standard deviation, and (most importantly) a distribution 
with a single and narrow peak. 

4.3. Test 3: Experimental results 

Test 3 evaluates the influence of the cloud server location on 
communication performance. As in Test 2, the same code was 
used to create the OPC UA architecture and the MQTT broker 
on different locations by means of virtual machine instances 
hosted by Google Cloud Platform. The test measured the round-
trip time for each one of these cloud servers, as shown in Table 
2, while the probability density function estimates are reported in 
Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11. 

Comparing the different servers, it is clear that for this test, 
the delay is caused by the routing of the messages across the 
world. The round-trip time increases with the distance and the 
number of routers between the server and client. 

Multiple peaks appear in the distribution of all the protocols 
because the cyclical behaviour of Internet routers along the path 
is now relevant. The presence of multimodal distributions is an 
impairment in the use of such architectures in high-speed 
industrial control loops. 

It is clear that an MQTT with QoS 0 again has the best 
performance for all the locations. The reason is that it does not 
need any kind of confirmation of receipt. The MQTT with QoS 
2 presented a similar result to OPC UA, but the latter has the 
longest tails when the distributions are compared. 

 
Figure 4. Distribution estimate for the round-trip time of a single variable with 
a size of 100 bytes. 
 

 
Figure 5. Distribution estimate for the round-trip time of a single variable with 
a size of 10 kB. 
 

 
Figure 6. Distribution estimate for the round-trip time of a single variable with 
a size of 100 kB. 
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Table 2. Results of Test 3 with cloud servers around the world. All the results are in ms. 

Location of the Cloud Server Protocol Mean Median St. Dev Max Min 

Local Area Network 

MQTT QoS 0 5.33 5.31 0.46 8.19 4.87 

MQTT QoS 1 15.82 15.77 0.50 22.05 13.47 

MQTT QoS 2 25.44 25.51 0.53 27.51 22.91 

OPC UA 29.12 29.27 0.61 26.83 26.83 

São Paulo 

MQTT QoS 0 33.80 31.69 1.82 204.50 25.89 

MQTT QoS 1 58.93 54.12 2.57 382.85 50.52 

MQTT QoS 2 62.80 57.78 2.82 357.82 59.50 

OPC UA 62.11 60.01 2.64 515.79 59.21 

Oregon 

MQTT QoS 0 175.39 173.79 3.44 610.21 152.44 

MQTT QoS 1 210.02 211.52 3.17 759.37 189.17 

MQTT QoS 2 238.90 232.16 4.85 749.84 215.75 

OPC UA 251.61 241.11 4.11 812.40 222.65 

Frankfurt 

MQTT QoS 0 243.27 243.12 2.88 437.77 218.94 

MQTT QoS 1 311.94 307.06 3.30 811.85 288.09 

MQTT QoS 2 372.61 365.61 5.53 756.41 352.76 

OPC UA 389.17 388.49 5.26 899.63 333.71 

Tokyo 

MQTT QoS 0 327.79 317.27 7.79 760.25 295.48 

MQTT QoS 1 408.04 395.88 8.29 1025.10 385.04 

MQTT QoS 2 416.40 401.98 9.76 1135.43 398.56 

OPC UA 433.13 419.78 12.16 1235.61 401.58 

 

Figure 7. Distribution estimate for the round-trip time of a server located in 
the same local area network. 

 
Figure 8. Distribution estimate for the round-trip time of a server located in 
São Paulo (BRA). 

 

Figure 9. Distribution estimate for the round-trip time of a server located in 
Oregon (USA). 

 
Figure 10. Distribution estimate for the round-trip time of a server located in 
Frankfurt (GER). 
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4.4. Test 4: Experimental results 

Test 4 has been designed to verify the impact of the number 
of clients on the publisher/subscriber architecture of the two 
protocols. In order to perform the test, the message payload has 
been set to 16 bytes, and the number of clients connected to the 
topics/variables A and B has been varied. The results are shown 
in Figure 12 in the form of a box-plot graph. There are seven 
groups depending on the number of clients used in the tests. 
Each test uses 1000 samples, which means 1000 round-trip 
transactions as explained in Section 3.5. 

It is interesting to note that for ten clients, the time between 
publishing on a topic and receiving the response of all clients on 
a second topic is practically the same for the MQTT (any QoS) 
and OPC UA. However, the behaviour changes as soon as the 
number of clients (subscribers) increases. Starting from 100 
subscribed clients, the considered metric begins to increase faster 
with the OPC UA. The maximum value for OPC UA is a 
response time of up to 1.2 seconds for 1000 subscribed clients, 
while for the MQTT, the worst case was less than 500 ms. 

In can be concluded that the current implementations of 
MQTT the protocol are more efficient for the distribution of 
messages in the publish/subscribe model when there is a large 
number of clients subscribed to the same topic. Moreover, there 
are no considerable differences between the available QoSs. On 
the other hand, the available OPC UA implementations of the 
PubSub architecture suffer when the number of subscribers 
increases, showing once again the higher complexity of OPC UA 
protocol stacks. 

5. FINAL REMARKS AND RECOMMENDATIONS 

The results of the proposed tests highlight that the MQTT 
has the advantage of using less data to transmit the same payload 
and slightly lower transmission times compared to OPC UA. 

The most interesting result is the large difference between the 
two protocols when the transmission of same message to 
multiple clients is considered: The MQTT protocol has a great 
advantage (at least three times faster) in sending the messages to 
a large number of clients. When the topic/variable is small, the 
MQTT is better. When a small delay is important for an 
application, the MQTT has more advantages than OPC UA. 

However, this paper has evaluated only the publish/subscribe 
model. The view of the OPC UA protocol is therefore limited 

only to the data exchange part. The OPC UA protocol stack is 
complex, and it has several other services besides data exchange 
(such as data modelling; address space; alarm and event 
management; variable history; and access control), which will be 
evaluated in future works. 

On the contrary, the MQTT is basically unstructured, and it 
implies the use of additional tools for the development of 
methods, for the definition of data types sent between devices, 
for the sequencing of messages, and for the creation of historical 
data services. 

Even if it is clear that the comparison of complete solutions 
based on the MQTT or OPC UA must take into account all the 
components and tools used, the results related to the data 
exchange presented in this article are fundamental, since they 
may constitute a reference for the best performance that is 
obtainable. 

6. CONCLUSIONS 

Today, IoT is the most important technology for the 
implementation of Industry 4.0. New industrial devices 
communicate by means of local (edge) and cloud computing 
servers. In this article, OPC UA and the MQTT (two well-known 
protocols used for IoT and industrial IoT) are compared in terms 
of performance when they are used to send/receive data to/from 
cloud servers. The performance comparison is carried out 
considering the overall quantity of data transferred (user payload 
plus overhead) and the round-trip time required to send in data 
and receive a feedback message in return. The measurement 
methodology was fully described, and the experimental results, 
including the evaluation of several cloud computing server and 
application scenarios, were reported. Considering specific use 
case studies, the MQTT protocol was found to be faster than 
OPC UA for pure data exchange. OPC UA pays the complexity 
of its stack, which is also designed for ancillary services. 
Generally speaking, the data exchange between industrial plants 
and cloud servers may take from less than 100 ms to more than 
1 s depending on the Internet path length, with lower values 
obtained by the MQTT QoS 0 and the small size of the 
exchanged variables. 

 

Figure 12. Comparison of performance with the multi-client test. OPC UA 
performance quickly worsens when the number of clients increases. 

 

Figure 11. Distribution estimate for the round-trip time of a server located in 
Tokyo (JAP). 
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