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1. INTRODUCTION 

The ability to accurately process images and video signals is 
an important skill in many research fields. One of the more 
widespread techniques used is the Fourier transform [1], [2]. In 
fact, Fourier’s theorem is not only one of the most impressive 
results of analysis and one of the most important mathematical 
tools available to physicists and engineers, but it may be 
considered an indispensable instrument in digital image 
processing. In this field, the Fourier’s transform and correlation-
based analysis are crucial elements of the pattern-matching 
process [3], [4]. In many image-processing applications, it is 
necessary to determine the correspondence between two or more 
images. The different images can either be images of the same 
object taken from different sensors or images of the same object 
taken at different times. This matching analysis is typically 
performed using either cross-correlation in the spatial domain or 
phase correlation in the frequency domain. In general, spatial 
cross-correlation [5], [6] yields several broad peaks and a main 
peak whose maximum is not always clearly defined; therefore, it 
is difficult to evaluate and locate it. On the other hand, 
correlation in the frequency domain is preferable in the case that 
the images are corrupted by noise.  

Figure 1 shows the correlation function between two images, 
one of which is corrupted by noise. 

In this figure, it is possible to note the difference between the 
cross-correlation in the spatial domain and the phase correlation 
performed in the frequency domain. 

  

Figure 1. Example of correlation between two images (a) Image ‘1’; (b) Image 
‘2’; (c) correlation in the spatial domain; (d) correlation in frequency domain. 

ABSTRACT 
The ability to process an image is a crucial skill in many measurement activities. In image processing or pattern recognition, Fast Fourier 
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The phase correlation in the frequency domain is efficiently 
performed by Phase-Only Correlation (POC) [7], [8]. This 
correlation method demonstrates high robustness and accuracy 
in pattern matching and in image registration. However, there is 
a disadvantage in terms of the required machine memory because 
of the calculation of 2D-FFT. The Fast Hartley Transform 
(FHT) can be a valid alternative to the Fast Fourier Transform 
(FFT) [9]. The Hartley transform resembles a Fourier transform, 
but it is free from the need to process complex numbers. The 
Hartley transform also has better properties and faster 
algorithms than the Fourier one; therefore, it can represent a 
valid alternative, particularly useful when a greater efficiency in 
memory requirements is needed. 

In this paper, we analyse the equivalence of the POC 
computation by means of FFT and FHT. The Hartley transform, 
in some cases, is a valid alternative to the Fourier transform, in 
particular in all those applications implemented on embedded 
systems or smartphones. 

The remaining of this paper is organised as follows. The 
definition of the POC function and its basic properties are 
described in section 2. The properties of the Harley transform 
and the definition of POC in Hartley space are given in section 
3. In section 4, we present a set of experiments for evaluating the 
performance of the proposed methods. Finally, conclusions are 
drawn in section 5. 

2. PHASE-ONLY CORRELATION (POC) 

POC is a digital image processing technique that is normally 
used to estimate the ‘similarity’ between two images. It is 
extensively used in many practical applications. In particular, 
POC is employed in image registration [10]-[12], fingerprint 
matching [13], [14], iris recognition [15], palmar recognition [16], 
PIV analysis [17], digital image stabilisation [18], and security 
applications [19]-[24]. 

Phase correlation is based on the well-known Fourier shift 

property [25]. If we consider two x yN N  digital images ( )1 ,I x y  

and ( )2 ,I x y . We assume that the index ranges are

, ,x xx M M= − , and , ,y yy M M= −  for mathematical 

simplicity. Hence, 2 1x xN M= +  and 2 1y yN M= + . Let ( )1 ,F u v  

and ( )2 ,F u v  denote the 2D Discrete Fourier Transforms of the 

two images ( )1 ,I x y  and ( )2 ,I x y . 

( )1 ,F u v  and ( )2 ,F u v  are given by: 
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where , ,x xu M M= −  , , ,y yv M M= −   

The cross-phase spectrum (or normalised cross spectrum) is 
defined as [26] 
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with ( )2

* ,F u v  being the conjugate function of ( )2 ,F u v . The 

POC function is the 2D inverse discrete Fourier transform of 
equation (3). In other words, the POC surface is defined as 
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If both images are similar, the POC function ( ),r x y  gives a 

distinct sharp peak. Conversely, if the two images are not 
similar, the peak significantly drops. The height of the peak 
gives a similarity measurement of the matching, and the 
position of the peak in the x e y axis shows the translation 
displacement of two images. The most remarkable property of 
POC compared to the ordinary correlation is that it is not 
influenced by brightness change, and it is highly robust against 
noise. 

POC, in some cases, is defined as [27], [28] 
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In equation (5), the coefficient α controls the correlation peak 
width. Optimum values range from α = 0 (for images 
characterised by high spatial frequency content and a high noise 
level) to α = 0.5 (for low-noise images with a less fine structure). 
For values greater than 0.5, the high frequency noise is magnified 
[29]. 

Figure 2 shows two examples of POC outputs. 
In some applications, instead of FFT, it is possible to use 

FHT. Using FHT, equation (4) and equation (5) can be 
computed efficiently and without loss of information [30]. 

3. THE HARTLEY TRANSFORM 

The Hartley transform, introduced in 1942 [31], became 
widely known after the publication of Bracewell’s study in 1983 
[32].  

It is an integral transform closely related to the Fourier 
transform; keeps all the useful properties thereof; and can be 
used to obtain the power spectrum and perform convolution 
directly through the output real-valued data without firstly 
calculating the real and imaginary parts. The use of the Hartley 
transform also reduces the processing time and needs less 
memory. Therefore, it is particularly well suited for application 
on mobile devices and embedded systems. 

The Hartley transform is one type of integral transformation 
that is closely related to the Fourier transform. It has the same 
integral core of the transform and the inverse transform, and it 
also has most of the characteristics of the Fourier transform. 

The Hartley transform can be obtained from the Fourier 
integral by replacing the exponential function  

 

Figure 2. Examples of the POC function.  
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( ) ( ) ( )exp 2 cos 2 sin 2j ux vy ux vy j ux vy  − + = + − +            

with ( ) ( ) ( )cas 2 cos 2 sin 2ux vy ux ux  + = +   . 

The Hartley transform ( ),HS u v  of a real signal ( ),s x y  and its 

inverse transform are defined as 

( ) ( ), ( , )cas 2HS u v s x y ux vy dxdy
+ +

− −

= +     (6) 

( ) ( ), ( , )cas 2Hs x y S x y ux vy dudv
+ +

− −

= +    . (7) 

The Fourier and Hartley transforms are very similar and share 
many properties. Consequently, many applications using the 
Fourier transform can be performed by the Hartley one [33].  

To derive the relationship between the Fourier and Hartley 
transforms, their symmetry must be considered. Let us split the 

Hartley transform ( ),HS u v  into its even and odd parts ( ),HE u v  

and ( ),HO u v , so that 

( ) ( ) ( ), , ,H H HS u v E u v O u v= + . (8) 

The even part of the function is what we get by reversing the 
function (changing u  to u−  and v  to v− ), adding the reversed 

function to the original and dividing by two, that is 
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The odd part is formed by subtracting the reversed function 
and dividing by two: 
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Any function may be split uniquely into even and odd parts 
and from the even and odd parts, if given, the original function 
may be uniquely reconstituted. 

Obviously, the Fourier transform can also be divided into 

even and odd parts: ( ),FE u v  and ( , )FO u v . Furthermore,  

( ) ( ), Re ,F FE u v S u v=    , (11) 

( ) ( ), Im ,F FO u v S u v=    . (12) 

By considering the definitions of the Hartley and Fourier 

transforms, we have ( ) ( ), ,H FE u v E u v=  and

( ) ( ), ,H FO u v O u v= − . Therefore,  

( ) ( ) ( ), Re , Im ,H F FS u v S u v S u v= −       , (13) 
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The generalisation of splitting single-variable functions into 
even and odd parts is the decomposition into symmetric and 
antisymmetric parts 

( ) ( ), ( , ) ,symm antisymmg x y g x y g x y= +  (15) 

with 
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The real part of a 2D Fourier transform is symmetrical, and 
the imaginary part is antisymmetric. Therefore,  
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with ( ) ( ) ( ), , ,F H HG u v E u v jO u v= − , which is the 2D extension 

of equation (14) 

The cross-correlation ( ),r x y  of the two functions ( ),p x y  

and ( ),q x y  is 

( ) ( ) ( ), , ', 'r x y p x y q x x y y dx dy

+ +

− −

= + +  , (20) 

where x  and y  are variable shift components along the x-

direction and the y-direction respectively. 
Evaluating the cross-correlation by means of the integral in 

equation (20) is complicated. This task can be significantly 
simplified in the Fourier space, where

( ) ( )*( , ) , ,F F FR u v P u v Q u v=  ; with ( , )FR u v , ( ),FP u v  and 

( ),FQ u v  being the Fourier transforms of ( ),r x y , ( ),p x y , and 

( ),q x y , respectively. Therefore, 

( )   ( ) ( ) -1 -1 *, FFT FFT , ,F F Fr x y R P u v Q u v= =  . (21) 

In general, the presence of noise makes the ‘exact’ localisation 
of the cross-correlation peak difficult. In other words, using the 
POC function, 
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and we obtain a good compromise between peak sharpness and 
noise tolerance. 

Using the Hartley transform, FR  can be written as [34] 
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where ( ),HR u v  is the Hartley transform of ( ),r x y . From 

equation (23), we obtain 
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and eventually 
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Therefore, the cross-correlation can be computed by means 
of the Hartley transform. Indicating with FHT, we have 
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(26) 

Introducing the POC function, we have 
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4.  RESULTS AND DISCUSSION 

A number of FHT algorithms have been developed [9], [35]-
[39]. To test the proposed technique, an FHT was implemented 
by using the algorithms reported in [40]. Furthermore, the 
application of the Hartley POC function, in comparison with 
Fourier POC, was tested. 

Figure 3 shows the POC obtained by two fingerprint patterns.  
In this example, the two images are each 512 × 512 pixels. 

The POC was computed in the Fourier space by means of 
equation (22) and in the Hartley space by means of equation (27). 
The FFT POC and the FHT POC are very similar, virtually 
identical. 

In banknotes and other documents, metal fibres are present, 
as security features, inside the paper pulp. These fibres can only 
be observed under ultraviolet light. After image enhancement 
and some segmentation processes, it is possible to obtain a binary 
controlling grid that indicates the position of the majority 
security fibres. The distribution of these metallic fibres is random 
and not reproducible; each banknote can be told apart from the 

others using this random distribution. Obviously, the captured 
image has residual geometrical distortion and noise. Therefore, a 
verification approach based on digital phase correlation 
calculation can be a good solution [20], [21]. 

Figure 4 shows the POC used in the banknote identification. 
In this example, the fluorescent fibres (embedded in the paper) 
of two different 20-Euro banknotes are compared.  

The POC functions obtained by means of FFT and FHT is 
practically identical. The examples illustrated do not prove that 
the FHT is superior to the FFT, but they do demonstrate that 
the FHT is fully compatible with the FFT. 

Figure 5 shows an example of a drug package watermark 
realised with florescent points printed with ultraviolent light-
sensitive ink. This watermark has a structure similar to the one 
used in speckle measurement [41]. In this example, the 
robustness of the POC approach against geometrical distortions 
and watermark partial disruption (also in the case of the Hartley 
transform POC) is highlighted. In particular, the correct 
watermark identification is highly relevant even in case c), where 
more than half of the watermark was unavailable. 

 

Figure 3. Examples of the POC function obtained from two fingerprint images.  

 

Figure 4. Examples of the POC function obtained from two different 
banknotes. In this example, the two images are each 512 × 1024 pixels.  

 

Figure 5. Examples of the POC functions obtained from two different 
acquisitions of drug package watermarks. In this example, it is possible to 
note the robustness of the POC approach against geometrical distortions.  
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In general, to perform FFT and FHT, the same number of 
operations are required. In other words, FHT requires a 
comparable number of steps to execute and is of comparable 
complexity to the FFT. 

In any case, the FHT algorithm requires only real arithmetic 
computations compared to complex arithmetic operations in any 
standard FFT. Therefore, the speed of performing an FHT 
should be about twice as fast as the FFT. However, it is hard to 
compare the run times of these two programs for the transform 
process itself because the programs used in this effort are 
implemented differently. 

On the other hand, the use of only real-value functions 
implies fewer computational resources and less computer 
memory; usually, the memory requirement by typical FFT 
algorithm is twice as high as for FHT. 

5. CONCLUSION 

In this paper, we have shown the correspondence between 
the POC function obtained by means of FFT and FHT.  

The Hartley transform is similar to the Fourier transform, but 
it is free from the need to process complex numbers. 
Furthermore, the FHT performs the transformation itself, and 
the convolution and the cross-correlation are undertaken with 
fewer additions and multiplications than FFT. Using FHT to 
compute cross-correlation, there is no loss of information, and 
the results are identical to those obtained by FFT. Unfortunately, 
the numbers of all other operations are the same. Differences in 
time consuming exist between FHT and complex-valued FFT, 
and in any case, even compared with newly real-valued FFT 
algorithms, the possibility to use an identical programming 
solution for forward and inverse transformation is still an 
important point for using FHT instead of FFT in image 
correlation. In addition, the fact that the Hartley transform does 
not use complex numbers leads to the need for less memory to 
store numbers than the Fourier one. The Hartley transform can 
therefore be considered a valid alternative to FFT, particularly 
useful when a greater efficiency in memory requirements is 
needed, as, for instance, in embedded systems and smartphone 
apps. 
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