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1. INTRODUCTION 

The continuous improvement of living standards has created 
new challenges for humanity: the average extended human 
lifespan is one of the major burdens on today’s healthcare 
systems. Estimations show that by 2050, we could expect the 
number of elderly persons living in their own homes but 
requiring assistance to triple [1]. Falls are one of the most 
hazardous scenarios [1], [2]. Approximately 33 % (range: 15 % to 
44.9 %) of elderly community-dwelling persons in the USA are 
older than 65 years, and up to 60 % of nursing home residents 
fall each year [3]-[5]. Falls (loss of balance resulting in coming to 
rest on the floor) are the one of the major causes of injuries 
resulting in death and of injury-related hospitalization among 
senior citizens.  

Different works have focused on the possibility of detecting 
a fall using portable systems [5]-[24]. The majority of the 
methods rely on wearable sensors [7]-[10] and vision techniques 
[11]-[18]. The main limitation of the wearable systems is that 

these methods are not effective when the sensor is not worn, and 
elders show a certain hostility versus new technologies and often 
forget to wear or recharge the sensor. Vision systems might fail 
in the presence of occlusions between the camera and the 
subject; consequently, the experimental setup might be complex 
if it is necessary to cover the entire house surface. The use of 
floor vibration as a diagnosis for the presence or fall of people 
inside a room has already been considered in the literature [19]-
[19]. Alwan et al. [19] observed that, as human activities cause 
measurable vibrations on the floor [25], it is possible to detect 
human falls by monitoring vibration patterns. The above 
hypothesis entails that the vibration signature of the floor differs 
from that of common daily life activities and from that of falling 
objects. The authors used piezoelectric accelerometers preloaded 
against the ground using a mass and spring system. The system 
includes battery-powered pre-processing electronics that start 
from the measured vibration, which produce a binary fall signal. 
We performed the tests in a controlled laboratory environment 
and concluded that it is possible to detect falls by using vibration 

ABSTRACT 
This work investigates the possibility of monitoring the activity and the falls of people in dwellings using three or more accelerometers 
fixed on the ground. The main difference between the proposed method and existing ones is the use of acceleration to estimate the 
impact force by using the apparent mass of the floor; the latter is experimentally identified in each room in which the tests were 
performed using the heel drop test. The study has two parts: 1. the apparent masses of different dwellings’ floors have been measured. 
2. the ground reaction force is studied using a purposely designed force platform with a surface of approximately 2 m × 1 m. The force 
platform allowed the measurement of the forces generated by the falls of 21 subjects, of a crash test dummy (falling in front or rear 
direction from seated and standing position, with or without the interposition of objects on the trajectory), and of common objects (e.g. 
dishes, water bottles, books). The impact location is estimated by triangulation, using a wavelet algorithm derived from the existent 
literature. The results show the possibility of identifying the presence of subjects inside the room and the fall of subjects in the majority 
of dwellings. We conclude that the proposed method allows a clear distinction between the fall of subjects and objects, given that the 
difference in terms of force (which is estimated from the floor’s apparent mass and from the measured acceleration) is at least of one 
order of magnitude. 
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patterns. The detection range was around 4.5 m on concrete slab 
floors. We consider that the results depend on the floor 
dynamics, which can be measured with the instrumented heel 
drop test proposed by Blakeborough and Williams [25], but no 
further details are reported in the paper. In the standard heel 
drop test, a subject with mass standing on the balls of his feet, 
with talons at approximately 8 cm from the ground, suddenly 
relaxes and lets the heels fall on the ground.  

Litvak et al. [20] and Ziegel et al. [21] proposed an automatic 
fall detection system based on floor vibration and acoustic noise. 
A pattern recognition algorithm was used to discriminate 
between falls and spurious events. Tests for human falls were 
simulated using a mannequin and were only performed in a 
laboratory environment; to date, no study has compared the 
force of dummies and of young subjects. Furthermore, the forces 
generated by older adults may be different from those of young 
subjects because of the elderly persons’ limited muscular force 
and their reduced mental alertness. The works of Alwan, Allen, 
and Ziegel are highly relevant in the field, but they did not analyse 
vibration transmissibility in residential buildings, nor did they 
consider that falls against objects or from seated positions may 
result in very low acceleration levels.  

In this work, we outline our study for the detection of 
people’s falls using an estimation of ground reaction force 
(GRF). The estimation is performed by measuring floor 
vibration by accelerometers attached to the floor and by 
characterising the floor’s apparent mass and the vibration 
transmissibility before starting the measurements. Preliminary 
tests for the discrimination between falls of objects and subjects 
were performed by using a purposely designed force platform. In 
addition to the validation of the method, this paper investigates:  

• the transmissibility of vibrations in different residential 
floors that have not yet been studied. Given that a fall 
generally occurs at variable distances from the sensors, it is 
necessary to identify the vibration transmissibility in order 
to assess building-dependent modifications of the signal;  

• the force generated by people fall is studied for the frontal 
and rear falls of young healthy subjects [27]-[29];  

The paper is structured as follows: the proposed method is 
described in section 2. Section 3 describes the experiments 
performed in the laboratory (falls of a crash test dummy, athletes, 
and objects), in dwellings (identification of vibration 
transmissibility), and in real conditions. Results are discussed in 
section 4, and the study’s conclusions are presented in section 5. 

2. MATERIALS AND METHODS 

The detection of subjects’ falls using the floor vibration 
measured on the ground is influenced by three phenomena: the 
vibration is modified by the floor transmissibility, the force 
generated by the impact is unknown, and there may be other 
events leading to vibration signals that might be similar to that 
deriving from a person’s fall.  

The proposed approach is presented in Figure 1: the vibration 
transmissibility through the different grounds and the force 
generated from the different impacts are studied separately in 
order to be able to predict the vibration generated by different 
falls on the different floors. In other words, with the separate 
characterization of the force generated by an impact on an 
infinitely rigid floor and of the vibration transmissibility through 
the floor, it will be possible to understand a variety of 
combinations between impact locations, fall types, and floor 
characteristics. The estimated force signals will be used in future 

works as training phases for the algorithms for event detection, 
similar to [30]-[32]. 

 Proposed method 

The dependence between the fall impact force and the 
measured floor vibration is constrained by the ground 
mechanical impedance, i.e. the ratio between the force and the 
velocity, or by the ground apparent mass, i.e. the ratio between 
the force and the acceleration [33]-[36]. If the behaviour of the 
ground is linear, both the apparent mass and the impedance can 
be estimated with impact tests similar to those described in [26]. 
The ground apparent mass (AM) can therefore be estimated at 
low frequencies with the heel drop test by knowing the force 
generated by the heel (F) and the acceleration (a) measured at 
position j when the heel drop test is performed at location i.  

𝐴𝑀𝑖,𝑗(𝑓) =
𝐹𝑖(𝑓)

𝑎𝑗(𝑓)
 (1) 

Given that this quantity is constant (if the ground behaviour 
is linear), if the subject falls close to location i, it is possible to 
estimate the force generated by the fall by multiplying the 
apparent mass of the ground AMi,j(f) times the measured 
acceleration during the real fall at position j. 

𝐹𝑖,fall(𝑓) = 𝐴𝑀𝑖,𝑗(𝑓) ∙ 𝑎𝑗,fall(𝑓) (2) 

With this method, it is possible to classify the fall events using 
the force instead of the acceleration as used in all the existing 
methods required by existing studies. The proposed approach 
requires knowledge of the impact location, which in this case, 
was identified using the wavelet method described in [37]. The 
method requires positioning at least three triaxial accelerometers 
on the ground in order to detect the plate longitudinal waves. 
The continuous wavelet transform, using the Gabor function as 
mother wavelet as suggested in [37], was used to identify the time 
of arrival of the waves to the different sensors. At each 
frequency, the time difference between the first arrivals to two 
sensors is related to the so-called wave group velocity through 
the known distance between two sensors. The group velocity 
Cg(f) was therefore computed as the ratio between the distance L 
and the difference between the times of arrival t1(f) and t2(f) 
computed from the wavelet scalogram at frequency f.  

𝐶𝑔(𝑓) =
𝐿

𝑡2(𝑓)−𝑡1(𝑓)
 (3) 

In this study, the time of arrival was evaluated by analysing 
only the fastest propagation mode identified by the scalogram 
maxima. 

 

Figure 1. Schematic of the proposed method. 
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Once the location of the impact was identified, the force time 
history could finally be computed using the inverse Fourier 
transform of equation (2). 

 Ground transmissibility 

The impact on the ground generates compressive and flexural 
waves that propagate through the floor from the impact position 
to the sensors’ location. The subjects’ fall can be identified by 
observing different features of the signal (in either the time or 
frequency domain) and by using information about the impact 
location (to discard, for instance, shocks occurring in specific 
positions). The first step for the feasibility study is the 
identification of the floor vibration transmissibility in residential 
buildings given that if the transmissibility tends to zero, it is not 
possible to also measure the vibration at small distances from the 
impact location. Therefore, we decided to analyse a group of 
houses with different characteristics in order to evaluate the 
possibility of locating the transducers in positions that are not 
critical for the daily activities of people. 

Since the vibration transmissibility depends on the mechanical 
and geometrical characteristics of the base and of the floor, 
experiments were performed in different conditions. For the 
purposes of this study, four IEPE accelerometers model 
Bruel&Kjaer 4508 B, with nominal sensitivity of 10 mV/(m/s2) 
measured the vibration at the positions indicated in Figure 2. 

Three accelerometers (indicated by green circles in Figure 2) 
were fixed at positions that depended on the room dimensions 
(longer room side a, shorter room side b). Another accelerometer 
was moved close to the impact location. The vibration signals 
were sampled using a National Instruments NI 9234 data 
acquisition board. The sampling frequency was 2048 Hz. The 
stimulus was given by the force generated in a heel drop test. The 
subject that performed these tests also performed the same tests 
on the instrumented platform described in section 2.3 (20 tests 
performed in repeatability conditions), in order to obtain the 
average excitation force together with its variability (the standard 
uncertainty was 13 % in our tests).  

The vibration transmissibility and the ground apparent mass 
were measured in 40 rooms, with surfaces between 2 m² and 50 
m², with different floor materials (wood, stones, tiles). The 
experimental results have been summarised by averaging the 
vibration transmissibility of different buildings. The latter was 
measured using the H1 estimator of the frequency response 
function, by averaging the results of five tests (lasting 2 s with a 
pre-trigger of 0.3 s). The ordinary coherence function has been 
computed as well.  

 Measurement of the ground reaction force 

Given that the proposed method is based on the computation 
of the GRF, we have designed a force platform with a surface 
large enough to perform fall tests. The platform was built with a 
sandwich honeycomb panel (2.5 m × 1.25 m) supported by four 
piezoelectric load cells PCB 211B. The sandwich thickness is 
100 mm, with a sheet thickness of 1 mm and a honeycomb 
thickness of 50 µm. The upper sandwich layer was covered by 
5 mm-thick compensated wood in order to protect the surface 
from the localised impacts generated by the dummy. The 
theoretical computations pointed out a resonance frequency of 
approximately 85 Hz. The dynamic behaviour of the force 
platform has been experimentally verified with an impact 
hammer, and we found that the frequency pass-band (± 3 dB) 
was 40 Hz. The first natural frequency of the unloaded plate was 
63 Hz. Furthermore, in this case, data was pre-triggered so that 
the first impact of the object on the platform occurred after 0.3 s. 

Three groups of simulations were performed: 

• Fall simulations performed by subjects falling forward and 
backward with complete fall arrest: tests were performed on 
the force platform by 21 healthy young subjects with a 
height between 1.65 m and 2.00 m and a body mass between 
45 kg and 95 kg (average 72 kg). Subjects were instructed on 
how to perform the simulation to avoid any injuries. Tests 
were performed in accordance with the ethical guidelines of 
Politecnico di Milano. The tests differed because of: 

• Direction of fall: front fall (F) or rear fall (R) 

• Subject body mass (in kg) 

• Subject height (in m) 

• Hip height (in m) 

• A fall simulation performed by a dummy (Humanetics 
pedestrian dummy, Hybrid III 50th Percentile, mass 104 kg) 
was used to identify the force generated by different fall 
configurations. Simulations were performed with and 
without limited fall arrest according to the following 
configurations: 

• Type of fall: rear, front, or side 

• Pre-fall posture: standing or sitting  

• Height of the hips before fall: 0.5, 0.6, 0.7, or 0.8 m 

• Limbs arrest posture: no arrest, one arm arrest, two arms 
arrest, and elbow arrest  

• Distance between the feet before the fall: 0.2 or 0.3 m 

• Description of fall trajectory: free trajectory or fall over 
the objects  

• Falls of common objects of different weights, sizes, and 
shapes from different heights: 

• Objects: plastic bottle, glass, glass bottle, dish, pot or 
box  

• Object weight 

• Height of the fall: 0.7 or 1.4 m 

• Number of falling objects 

 

Figure 2. Position of the accelerometers and of the impact in the 
transmissibility tests. 
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During the experiments, both the acceleration and the GRFs 
were recorded. Data was summarised using basic descriptive 
statistics. The ratio between the average mass of the subjects that 
performed the test and the mass of the dummy is 0.7, and the 
GRF should also be in a similar proportion if the fall 
configuration is similar.  

Not all the possible combinations between factors were 
included given that parts of them were meaningless: for instance, 
it is almost impossible in a frontal fall to have an elbow impact. 
Only realistic fall configurations were reproduced and analysed. 

 Method validation 

The proposed method for the localisation of the fall using 
wavelets and for the computation of the force is validated in two 
steps. The first validation was performed on the force platform: 
the expected vibration of the sensor was computed using 
equation (2) using the location of the impact (estimated using the 
wavelet triangulation) and the force measured by the load cells. 
The expected vibration has been compared with the acceleration 
measured at different locations. The difference between the 
estimated and the measured acceleration of all the tests was used 
in order to assess the method’s reliability. 

In the second step, an embedded system, based on MEMS 
accelerometers and a Raspberry PI board, was installed in a 
residential building, and the vibration was monitored inside a 
small bath and in the bedroom. The rooms were characterised 
using the method described in section 2.1. The tests aimed for 
the validation of the architecture and for detecting common 
activities of daily living. 

3. RESULTS  

 Method validation 

The method was validated by comparing the acceleration 
measured on the force platform, predicted using the measured 
GRF and the apparent mass of the force platform itself. Figure 
3 shows an example of the comparison in one of the tests 
performed by with the crash test dummy.  

The results, apart from a tonal component at the resonant 
frequency of the plate was not reduced by the digital filtration of 
data, show maximum errors that are lower than 20 %. Due to 

system linearity, the error is the same for the estimation of 
acceleration during the method validation (by finding the GRF) 
or for the estimation of the force during the real tests (by 
measuring the acceleration and the floor characteristics). 

The average error on the amplitude of the first acceleration 
peak is 23 %; the average was computed on the entire data set. 
The error is due to difficulties in the identification of the location 
of the impact, which in approximately 50 % of cases resulted in 
the choice of a point close to the one at which the impact 
occurred. In addition, the apparent mass of the plate was 
measured without the mass of the dummy/subject, thus leading 
to a biased compensation of the FRF. This aspect was confirmed 
by the spectral analysis of the error, which was dominated by 
components at frequencies between 55 Hz and 63 Hz. These 
values are close to the first natural frequency of the platform and 
vary between different tests depending on the position of the 
subject/object. 

The average error (Figure 4) decreased to 16 % when the 
accelerations were computed for the falls of the subjects and the 
crash test dummy (i.e. excluding the objects, for which the 
measured forces were characterised by a poor SNR). In these 
conditions, the error of magnitude of the largest 
acceleration/force peak decreased to 14 %; the average error, 
apart from the force peak, was lower than 5%. Furthermore, in 
this case, the spectral analysis evidenced the dominance of the 
frequency components close to the first resonance of the 
platform.  

 Ground transmissibility 

The average vibration transmissibility measured in 40 rooms 
is shown in Figure 5(a), and the average coherence between the 
input and output position (asterisks and circles in Figure 2) is 
shown in Figure 5(b). Plots include the effect of the different 
room sizes, of the floor mechanical characteristics, and of the 
different positions of the impact and of the sensors.  

The plots show that the modulus of the vibration 
transmissibility is, on average, lower than 1 in the band between 
0 Hz and 150 Hz. The average transmissibility has a minimum 
below 15 Hz, but the lower value (0.3) does not prevent 
measurements in that region. The coherence is, on average, 
larger: between 20 Hz and 50 Hz. This interval represents that in 
which the SISO system approximation is more reasonable. At 
lower frequencies, the effect of non-measured inputs (such as the 
vibration of the building induced by natural agents or by traffic) 
might be relevant. Above 50 Hz, the lack of energy in the 
stimulus might lead to a low signal-to-noise ratio. Further 
analyses evidenced that the vibration transmissibility and the 
coherence function depend on the floor type and on the room 
size: the transmissibility measured on the wooden floors is, on 
average, lower than that on the tiles and stones, especially at high 

 

Figure 3. Force signal (upper plot), measured vibration (black line), expected 
vibrations (red line) (middle plot), and the test error (lower plot). 

 

Figure 4. Average difference between the measured and the predicted 
acceleration generated by the falls of the dummy and subjects.  
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frequencies. As expected, the first resonance frequency depends 
on the room size, while the effect of the furniture is negligible in 
comparison with the effects of floor type and room size. Three 
examples of the effects of the room properties on the coherence 
and transmissibility are shown in Figure 6, Figure 7, and Figure 
8.  

Figure 6 shows that the transmissibility of the vibration with 
the parquet is smaller, on average, than the vibration 
transmissibility when the floor is covered with tiles. The average 
transmissibility between 1 Hz and 150 Hz with the tiles was 0.54; 
the value dropped to 0.26 when the floor was covered by the 
parquet. 

A similar effect was noticed for the room size, where the 
vibration transmissibility of small rooms (0.55 between 1 Hz and 
150 Hz) was, on average, larger than that of large rooms (0.38 in 
the same frequency range). The coherence between the stimulus 
(force) and the response (acceleration), shown in Figure 7, was 
independent from the room size, between 15 Hz and 50 Hz 
(0.87, 0.89, and 0.87 for large, medium and small rooms 
respectively). At higher frequencies (100 Hz to 150 Hz), the 
coherence measured in large rooms (0.61) was smaller than that 
of medium (0.70) and small rooms (0.79) because of the lower 
signal-to-noise ratio when the accelerometer was far from the 
impact location.  

The effect of the ratio between the room dimensions was 
small on both the transmissibility and coherence (Figure 8). The 
average coherence at frequencies between 15 Hz and 50 Hz was 
0.88 independently from the ratio between the room dimensions 

a and b. Between 100 Hz and 150 Hz, the average coherence was 
0.76 for rooms with a side ratio that was lower than 2 and 0.84 
for rooms with a ratio higher than 2. 

 Impact force 

The average GRF measured during the fall of the dummy, of 
the healthy subjects, and of the objects is shown in Figure 9.  

The results evidence that the force generated by the dummy 
is, on average, much larger than that generated by objects and 
healthy subjects. This is partially due to the larger mass of the 
Humanetics dummy in comparison with the average subjects’ 
masses. The ratio between maximum force generated (on 
average) by the fall of a dummy (close to 10 kN) and the 
maximum force generated by the fall of a subject (approximately 
1 kN) is 10, i.e. much larger than the ratio between the masses 
(1.4). This large difference can be explained by two factors: the 
first is that the dummy does not have any conscious reaction to 
the fall. This aspect is typical of elders, who usually do not 
protect themselves using their arms. The second factor is the 
difference between the biomechanical characteristics of the crash 
test dummy and the subjects. This factor is expected to be limited 
given that the dummy is designed to mimic the behaviour of 
subjects exposed to impulsive accelerations.  

A comparison between the average GRFs and the average 
accelerations generated by the falls of objects, subjects, and 
dummies is shown in Figure 10. 

The frequency content of the fall of subjects and objects is 
usually different, as shown by the wavelet transforms in Figure 
11. The plot shows that the impact of hard objects (b) creates 
vibrations at higher frequencies (over 70 Hz) while the 
bandwidth of acceleration generated by the impact of a soft 
object (paper box, a) is lower than 35 Hz. As a comparison, the 
spectrum measured during the fall of the dummy is reported in 
Figure 11(c).  

 

Figure 5. Average transmissibility of the room in which the tests were carried 
out (a) average coherence of the transmissibility tests; (b) solid line: test 
average; dotted line: maxima and minima measured during the tests. 

 

Figure 6. Influence of floor covers on signal transmissibility: floors covered by 
tiles (solid line) and by parquet (dashed line). 

 

Figure 7. Influence of room size on signal coherence: small-sized rooms (solid 
line), middle-sized rooms (dashed line), and large-sized rooms (dotted line).  

 

Figure 8. Influence of room dimensions ratio a/b on measured signal 
coherence: if ratio a/b is higher than 2 (solid line), if ratio a/b is lower than 2 
(dashed line). 
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The possibility of distinguishing between the falls of objects 
and people is confirmed by the wavelet transforms of the average 
GRF measured during all the tests (shown in Figure 12). 

Different to the falls of objects, the GRF has relevant 
components that are also at low frequencies. The dominating 
frequency components of observed during the falls of objects is 
close to 15 Hz, while the dominating frequency components of 
falls generated by subjects are typically below 5 Hz.  

Another characteristic that allows for distinguishing the falls 
of objects from those of subjects is the number of impacts. The 
falls of both subjects (b) and the dummy (c) usually generate two 
spectral peaks (the impact of two body parts, such as knees and 
hands or elbows and head) while falls of objects usually generate 
a single spectral peak. 

 Preliminary experimental results 

The last step in the research is the installation of the 
embedded measurement system in a residential building. To date, 
there have been no falls, and consequently, it has not been 
possible to validate the fall detection system or to obtain real fall 
data. Nevertheless, the results of this study have shown that the 
system detects activities of daily living, showing vibration levels 
much larger than floor noise during the day.  

4. DISCUSSION  

The results presented in this paper evidence the compatibility 
between the frequency of fall-generated excitations and the 
frequency region in which the vibration transmissibility is high. 
The vibration transmissibility suggests that it is possible to 
measure the vibration at any position of the room, independent 
of the impact location; therefore, theoretically, one 
accelerometer is enough for detecting the presence of people in 
the room or their fall. The simultaneous use of at least three 
transducers, however, allows for identifying the location of the 
fall and consequently for the estimation of the GRF that has 
generated the vibration. This parameter is, in principle, more 
reliable than the vibration generated by the fall, which depends 
on both the event that has generated the fall and on the distance 
between the impact location and the transducer.  

 

Figure 9. Time histories of the GRF measured during (a) the dummy falls; (b) 
object falls; and (c) healthy subject falls. Solid lines: averages, dotted lines: 
maximum and minimum.  

 

Figure 10. Comparison between the average GRF and acceleration signals 
obtained during dummy, subject, and object falls. 

 

Figure 11. Wavelet transforms of acceleration signals generated by falls of (a) 
a soft object, (b) a hard object, and (c) the crash test dummy. 

 

Figure 12. Wavelet transforms of the average of the (a) objects’ GRF; (b) 
subjects’ GRF; and (c) dummy’s GRF. 
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The uncertainty of the GRF is limited by the heel drop test 
used for the identification of the ground apparent mass. From 
this perspective, we have already performed tests by dropping a 
silicone ball from a constant height; the results are certainly 
repeatable and will be presented in future studies. 

The force generated by falls of subjects is larger than that 
generated by falls of objects, and the identification of a threshold 
is, in principle, easier than the identification of the threshold for 
the acceleration level, which depends both on the impact 
magnitude and on the position of the fall with respect to the 
accelerometer. The identification of thresholds has not been 
included in this work and deserves attention in forthcoming 
studies, in which we will try to use the techniques proposed in 
[23][32], using the force instead of the acceleration as the main 
feature for the recognition.  

The results show that the use of three accelerometers allow 
for estimating the location of the fall; however, in approximately 
50 % of laboratory falls, the impact location was identified at a 
point that was adjacent to the actual one (the error being lower 
than 1 m). The optimal transducer location will be studied in 
forthcoming studies, but thanks to the low cost of the MEMS 
accelerometers, it seems reasonable to put more than three 
sensors in each room in order to obtain a more reliable impact 
position estimation.  

The main limitation of this work is surely the lack of 
experimental validation in real conditions. During the scheduled 
experimental activities in the residential buildings for elders, 
there were no falls, and consequently, it was not possible to verify 
the proposed method. Nevertheless, the results of the tests 
performed in laboratory conditions were promising, and we 
expect to obtain more data in future experimental sessions. 

5. CONCLUSION 

In this paper, we have described a method for the detection 
of human falls in dwellings using GRF as a main parameter for 
the event classification. The method is based on the 
identification of the floor’s apparent mass using the heel drop 
test and on the computation of the impact location using at least 
three triaxial accelerometers. The method was validated on a 
purposely-designed force platform. Fall simulation tests were 
performed with a crash test dummy and young healthy subjects. 
The force generated by falls of objects was also measured as a 
term of comparison. Given that there is an order of magnitude 
between the GRF generated by the falls of objects and subjects, 
the parameter should be more reliable than the acceleration. 

Tests were also performed to identify the apparent mass and 
vibration transmissibility of common residential buildings. The 
results evidence that the transmissibility is larger than 0.3 up to 
150 Hz, thus showing that the vibration generated by the fall 
(which has a bandwidth close to 40 Hz) can be transmitted inside 
the room and can therefore be measured by the different 
accelerometers.  

Preliminary tests were not useful for the method validation, 
given that there were no real falls during the measurements. 
Future developments in this area will include a new series of tests 
in residential buildings, a more reliable method for the 
measurement of the ground apparent mass, and the simultaneous 
usage of more accelerometers in order to improve localisation 
accuracy. 
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