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1. INTRODUCTION 

To estimate heater operation from the data of room 
temperature change is a typical inverse problem [1], [2]. And it 
is a kind of ill-conditioned problem because a slight error in the 
data would extremely disturb the results [3]. However, such a 
problem is common for measurement and system diagnostics, 
and an important part of measurement. 

If the relation between input and output is linear, it is a 
problem of deconvolution and there are many studies including 
super-resolution [4]. Subtractive deconvolution [5] may be 
applied if available data are impulsive. Unfortunately, 
temperature change is a long trailing phenomenon and is very 
sensitive to measurement resolution and error [3]. Our idea to 
tackle this is to consider measurement resolution inevitable and 
to treat it explicitly by defining a range for each input or output 
signal. 

 
 

 
There are two ways to search deconvolution results for 

range signal models. One is a try and modify method to test 
some signal within a certain divided range and to judge whether 
it matches the given output data. It is a forward simulation 
because it requires many trials, regardless of whether a 
convergence method is used or not. The other is an inference 
method starting from the given output data to the input in 
backward direction. It is a normal method for problem solving, 
but it is not always possible to find a good solution. However, 
we may perform a backward simulation in a similar manner to 
the forward simulation, starting with a range divided output 
signal, if we can make a backward processing model. 

There are backward simulation applications in many fields 
such as process scheduling [6], initial position estimation of 
physical objects [7], and software debugging [8]. 

ABSTRACT 
We are developing a backward simulator, which determines the unknown system input from the system output by using a system 
model. However, its processing time would increase enormously if the simulation model requires the multiple case branching, which is 
typical for backward simulations. In some target applications, we can use forward simulation processing in the backward data flow 
with significant reduction of processing time. This paper shows an example of such application to determine system input of heater 
operation from measured data of room temperature. Although the resolution of measurement restricts the performance of the 
simulation result, we also used the model to improve the resolution of measured data and show its effect to simulation. Furthermore, 
we show the result of reduction of noise caused by quantizing LSB jitters. 
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There exist many difficulties in creating a backward system 
model. A typical backward simulation requires case branching 
when it has multiple possible conditions on its backward trace. 
However, we have experiences to cope with them, and have 
shown that some physical restriction may effectively reduce the 
number of case branches [9], [10]. We have been focusing our 
attention on utilizing temporal model and strict facts such as 
nonnegative property and causality that any current value must 
not affect past values. Under such conditions, we can perform a 
backward simulation effectively. 

In this paper, we show two methods for efficiently 
performing backward simulation and for effectively improving 
measurement resolution. The first method is for creating a 
backward simulator by incorporating a forward simulation 
model. It extremely suppresses case-branching processing in the 
example of this paper. The second method is for improving 
resolution of the given measured data by applying a strict model 
of the system. 

Hereinafter, we describe the concept of backward simulation 
and target simulation model in Section 1, hybrid 
implementation of backward integration loop in Section 2, 
measured temperature data and estimation of model parameters 
in Section 3, simulation results for error free temperature data 
in Section 4, effect of quantization error and countermeasure to 
it in Section 5, simulation results for real measurement data in 
Section 6, discussion in Section 7, and conclusion in Section 8. 

2. BACKWARD SIMULATION AND MODELS 

Here, we explain the concept of backward simulation with 
an example application of inference of heater activity. Figure 1 
shows the structure of our forward simulation model for room 
temperature change caused by an electrical heater. Black dots 
denote branching points, circles with plus sign denote 
summation points, and arrows denote the direction of physical 
information flow. A block with z-1 means one sampling time 
delay, which is a member of the integration loops. We adopted 
two integration loops because the room temperature increases 
even after the time the heater is turned off. The first integration 
loop corresponds to the neighbor of the heater that 
accumulates heat locally, and the second loop corresponds to 
the whole room heat reservoir. The parameters A, B are decay 
factors due to heat transfer, C is the specific heat of the room 
which converts heat to temperature. 

Figure 1 can be expressed by the following equation, 
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Figure 2 shows the implemented software objects and 
connection diagram for the simulation of Figure 1. Each object 
has a corresponding function, “heater” for heating for a 
specified time duration, “wsum” for summing heat with wattage 
input port, “csum” for summing heat, “br” for branching with 
the same output values, “dly” for one sampling time delay, “co” 
for coefficient multiplier, and “temp” for temperature 
recording. These objects are coded in Scala classes, which use a 
Java virtual machine, and dly1 and dly2 are instance objects of 
the class dly, for example. All the objects have independent 
GUI windows which accept local settings and display status and 
parameters of each object. 

Data flow on the connection links consist of time and 
values. As an example, heating power 800 W from “heater” at 
its output port “o” at the time of 10.0 s is shown in a XML 
style UCF (universal communication format) message [9], [10] 
<sim><s>heater<s>o</s></s><t>10.0</t>800.0</sim>, 
where sim is the simulation controller which redirects this 
message from “o” port of “heater” to “i” port of “sum1” as 
specified in the simulator’s connection table [10]. The <s> tag 
indicates the source of the message. The source tag is nested in 
this case to indicate the port “o” of “heater.”. 

In the backward simulation (Figure 3), UCF messages flow 
in the backward direction indicated by dashed lines with 
reversed arrows. The node “temp” is the starting object which 
sends the time sequenced temperature in the reversed order, 
one pair of time and temperature data in each UCF message. 
The temperature in the backward simulation is expressed by a 
value range which expresses the minimum and the maximum 
temperature as “0.0, 10.0”, which means that the temperature is 
in the range from 0.0 inclusive to 10.0 exclusive [10]. 

By narrowing the range, we can control the resolution of the 
simulation. Simulation parameter “ndiv” set by the starting 
block “temp” specifies the number of divisions. As an example, 
when the whole range is from 0.0 to 10.0 and ndiv is equal to 
10, the value 4.5 is expressed in the UCF message as “4.0, 5.0” 
as the divided range width is 1.0. 

3. HYBRID SIMULATOR AND IMPLEMENTATION 

Two important features of the simulator are time 
synchronization and hybrid backward simulation. Figure 4(a) 
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Figure 2. Forward simulation objects and connections corresponding to 
Figure 1. 
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Figure 1. Forward simulation model of room temperature. 
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Figure 3. Backward simulation model corresponding to Figure 1. 
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simplifies a forward integration loop in Figure 1. The 
summation node must gather the same time data from the two 
incoming links, the input x(i) and the feedback f(i)=y(i-1) to 
form the output y(i)=y(i-1)+x(i). 

A fully synchronized simulator will do the work naturally. 
However, we intend to perform our simulation in a distributed 
processing environment, and we prefer asynchronous 
processing as long as it is possible. Then, the summation node 
is designed to have an input record table which keeps time and 
value pairs received at the left input port (triangle arrowed port 
in Figure 1 up to Figure 13). The data message from the 
feedback port (from the delay node) triggers the summation 
process by picking up the data of the same time from the input 
record table. 

Figure 4(b) shows the backward version of Figure 4(a). We 
need to calculate two backward outputs from a single backward 
input at the summing point, satisfying y(i)=x(i)+f(i). The 
computation intensive solution is to simulate all the pairs of x(i) 
and f(i), matching the equation. A practical solution is to 
perform the simulation for a finite number of divided range 
pairs, e.g. {x,f} pairs of {0.0 to 2.5, 2.5 to 5.0} and {2.5 to 5.0, 
0.0 to 2.5} to match the output of 4.5 [10]. A case branching 
mechanism is needed for such processing. 

However, if we apply another solution which uses a forward 
simulation object in the backward simulation as in Figure 5, we 
can avoid the expansion of processing time caused by the case 
branching. In Figure 5, we can formulate the process as 
x(i)=y(i)–f(i) and f(i)=y(i+1). The branch node sends received 
backward data in time reverse order through the two links to 
the sum node and to the delay node. The same input record 
table used in Figure 4 can be utilized to keep y(i) required by 
the reverse delayed feedback signal of f(i)=y(i+1). 

We have to describe the detailed processing of the sum 
node. In the backward simulation, data flows are expressed as a 
range (the minimum and the maximum). Then, the backward 
calculation must handle the range information. If the range 
from the right is (a, b), which means that the minimum value is 
a and the maximum value is b, and the range from the bottom 
is (c, d), the output through the left port should be calculated as 
(a-d, b-c) to cover the broadest value range. However, x(i) must 
be positive or zero as it expresses heat. If a-d is less than zero, it 
must be substituted by zero. Furthermore, if b-c is less than 
zero, the case simulated is not a feasible one. 

Figure 6 shows the resulting practical hybrid backward 

simulator, and Figure 7 shows implemented objects and 
connections. The simulation objects in Figure 7 are the same 
objects as in Figure 2, with backward processing capability 
except dly. The objects “co1” and “co2” divide their incoming 
backward data by their coefficients, “br1” and “br2” pass 
through their incoming backward data to their two backward 
outputs. The simulator in Figure 7 needs three consecutive 
backward inputs to start as the first data stops at csum and the 
second data stops at wsum because there will be no matching 
time data coming from the other backward port. 

We describe here the mechanism of model mismatch 
detection in detail. Sum objects (wsum and csum) in Figure 7 
have two arriving inputs in the backward simulation. We note 
the backward input from the right of csum at the time sample 
of t as ( )v t , the other backward input can be expressed as 
B ( 1)v t −  because dly2 node delays the backward flow signal for 
one sample time and multiplied by a constant coefficient B. The 
backward output ( )u t  from csum can be expressed as 
equation (3) and must be positive or zero because it expresses 
heat. 

( ) ( ) ( 1) 0.u t v t Bv t= − − ≥                              (3) 

The backward output from wsum can be expressed as the 
following equation, 
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If the both inequalities are not satisfied for the maximum 
value of the range at any time point, the backward simulation is 
failed and the starting condition must not occur for the 
simulation model. 

4. REAL TEMPERATURE CHANGE AND MODEL SIMULATION 

At first, we verified the correctness of the simulator. Figure 
8 shows the result of a room temperature measurement when 
the infrared heater (800 W) on the floor was turned on for the 
duration from 0 s to 180 s in a tiny room of 3.6 m3. The sensor 
is a Sensirion’s SHT71, which has 0.01 degree resolution, placed 
near the heater at 1 m high in the room. 

Figure 8 also shows a simulated temperature change using 
the parameters A (0.095/10s), B (=0.9938/10s) and C (24200 
cal/deg). To determine these parameters, we assume that the 
heat loss rate of the room (B) is less than that of the heater 
appliance (A). Then the temperature decline after the  
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Figure 4. Forward integration loop (a) and backward integration loop (b). 
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Figure 6. Hybrid backward simulation model. 
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temperature peak is estimated by the following equation, 

log . ( )2q Bt const t ti= − + ≤ .  (5) 

We define t p  as the peak temperature time and estimate A 

by the following equation derived from equation (2) , 
( ) ( 1) / ( 1).p i iA B t At Bte e e−

= − −   (6) 
The heat capacity parameter C  is estimated as the 

magnification factor for fitting the measured data with the 
simulated temperature data which was calculated by using the 
simulator’s forward function with the estimated parameters A 
and B. Those parameters should be fine-tuned to closely fit the 
measured data. However, the rear part of the curve in Figure 8 
cannot be fit by our model. We may need the third heat 
accumulation loop for representing wall temperature change 
and heat release to the environment. As will be shown in 
Section 6, the above approximation was almost enough because 
large measured values around the peak are matched. 

Figures 9 and 10 are the results of the backward simulation 
when the simulated temperature change in Figure 8 was fed 
backwardly from “temp” node in Figure 7. The width of the 
resultant ranges are shown as the difference between min and 
max values in those figures. The ndiv parameter was set to 
1,000 and 10,000 for Figures 9 and 10, respectively. The larger 
ndiv is, the closer the result is to the actual heater operation 
(800 W for 0-180 s). As we calculated with a float resolution for 
the temperature data, we can successfully increase ndiv up to 
the desired resolution to narrow down the min-max difference. 

5. EFFECT OF MEASUREMENT RESOLUTION 

We may not obtain such a good result as in Figure 10 for 
usual resolution data. Practically, a good resolution of 
temperature measurement may be 0.01 °C. If we throw away 
digits smaller than 0.01 °C from the simulated data in Figure 8, 
the backward simulation will stop because of a model mismatch 
for ndiv larger than 108, which corresponds nearly to 0.01 °C 
resolution as the maximum temperature change is 1.2 °C 
(Figure 8). Figure 11 shows the backward result for ndiv 108. 

If we intend to obtain better results by increasing ndiv, we 
have to improve the resolution of the backward temperature 
data. Figure 12 illustrates our method to improve the 
resolution, where the value div1 is original resolution and value 
div2 is half of div1. Circular points indicate original A/D 
truncated values for the resolution of div1. If the resolution is 

 
Figure 8.  Measured and simulated temperature change caused by heating 
for 180 s from the start. 

 
Figure 11. Backward simulation result for ndiv=108 for the resolution 
limited data. 
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Figure 9. Backward model simulation result for ndiv=1,000. 

 

 

Figure 10. Backward model simulation result for ndiv=10,000. 
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improved to half of the original resolution, it is natural to raise 
the values at the times of 3 and 5 (indicated by triangle points). 
So, we wrote a shell script to raise the value when the backward 
simulation is stopped by detecting a model mismatch. 

As shown in Figure 13, if the backward simulation detects a 
negative value and stops when calculating (3) or (4), we raise the 
value by div2 at the corresponding time t of v(t) in the case of 
(3) and u(t) in the case of (4). The process is repeated to get the 
whole sequence of backward input data pass the model match 
test, which means until we get a valid backward result. To 
improve the resolution further, the repetition is to be done for a 
new resolution value. There may be a case in which the model 
match test was passed even if the data modification was not 
fully done as in Figure 12. In such cases, further repetition for 
resolution improvement needs to add more than one resolution 
value and requires a longer processing time afterward. 

Figure 14 shows the result for ndiv 10,000 after repeating 
resolution improvement. Value ranges other than the duration 
of heating converge to zero. Although values for the duration 
of heating do not converge to the correct value of 800 W, they 
clearly indicate heater activity and the average for the duration 
of 0 s to 180 s is 780 W. It shows that our method of data 
modification is to suppress the negative value points in (3) and 
(4), and not to have a resolution improvement effect at positive 
value points. This means that we will modify data when we 
detect steeper temperature falls, while we infer heating when we 
detect steeper temperature rises. 

6. REAL DATA AND BACKWARD SIMULATION 

We show the result of the backward simulator applied to the 
measured data in Figure 8. The backward simulator could only 

output a model conforming result up to ndiv=50 (Figure 15). It 
shows a large gap between possible minimum and maximum 
values. Still, the real heating power values reside within the min-
max pairs. As shown in the previous section, the min value will 
go up and the max value will go down when the resolution of 
temperature data improves. 

The repetitive processing of temperature data modification 
described in the above section improves the result, shown in 
Figure 16 for ndiv 10,000. We cannot expect further 
improvement even if we set ndiv larger, because the points of 
min and max are very close to each other at almost all sample 
times. 

Checking the detail of the measured data in Figure 8, we 
found that there are fluctuations like the sequence of circle 
points in Figure 17, which would be the result of sampling and 
truncating quantization of the solid line. Those may be LSB 
(least significant bit) fluctuations caused by noises around 
digital thresholds. Such setbacks are treated as the results of 

 
Figure 15. Backward simulation result for real data from Figure 17 for 
ndiv=50. 

 

 

Figure 16. Backward simulation result for real data from Figure 17 for 
ndiv=10,000 with resolution improvement. 
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some heating and the simulator making spontaneous wattage 
rise in the resultant heating estimation in Figure 16. 

If we suppress those fluctuations, we can eliminate 
spontaneous values. It is natural to estimate the original 
temperature change as the dashed line in Figure 17. Then, on 
probation, we eliminated them, judging by eye with adding only 
one LSB or subtracting only one LSB around fluctuation 
points, leaving the points where the fluctuation is more than 
one LSB. The result is shown in Figure 18, slightly smoother 
than the measured data in Figure 8, especially in the tail part.. 

Figure 19 is the result of the backward simulation of the data 
in Figure 18 for ndiv=10,000. It shows a better result than in 
Figure 16. Values are large for the period from 70 to 160 
seconds and almost zero after 170 seconds. The average heater 
power for the duration of 0 s to 180 s is 746 W. Further 
improvement with larger ndiv cannot be expected because the 
min and max points almost coincide for all sample times. 

7. DISCUSSION 

By using the hybrid simulation model in a feedback type 
simulation, no case branching is required in the backward 
simulation. The backward simulator we use is for functional 
evaluation and includes GUI for monitoring and manual 
operations. It performs a single simulation for about 3.0 s for 
100 sample data and about 3.6 s for 382 sample data. The 
processing time is not proportional to the number of samples. 

One cause for it may be the fact that we used multithread Java 
processing on a four-core eight-thread CPU (Intel i7-3770). 

Figure 20 shows the processing time for the total repetition 
of model mismatch and data modification relative to ndiv. 
Processing time in a case of model mismatch depends on the 
time when the mismatch is detected. Average processing time 
for one backward simulation is from 2.5 to 3 s. We modified 
the temperature data step by step, which means that we 
improved the resolution for ndiv 100, and then improved it for 
200 by using the result of ndiv=100, as an example. The 
coordinate of Figure 20 shows the total processing time up to 
the abscissa ndiv values. Roughly, the logarithm of the 
processing time is proportional to the logarithm of ndiv. 

Resolution improvement using model mismatch was 
successful. Although there are many possible methods for such 
data modification, our method to improve by half of the former 
resolution when a model mismatch is detected was shown 
effective. Indeed, the curve of Figure 18 is in agreement with 
the measured data in Figure 8. Our resolution improvement can 
be considered as a method to search feasible temperature data 
for a higher resolution. 

As the estimated parameters A and B may have some errors, 
they may cause effects on the results of the backward 
simulation. We have to evaluate such effect, though they may 
have little effect on the long range of time sequence because 
those parameters were determined by a relatively long part of 
the temperature data. 

Although we show here only one real data simulation result, 
the simulation model is simple, and the result for simulated data 
is perfect. Also, the result for real measured data is almost 
perfect even if our model and estimated parameters are not 
perfect. So, we expect similar result would be obtained for 
other measured data. 

To improve estimations at periods of heating, we need 
another simulation model, e.g. a model which restricts heater 
wattage to one of two ranges. In such case, we need to find the 
time point where the estimated heating is not feasible and to 
determine which temperature data should be modified. 

8. CONCLUSION 

We showed that a backward simulation incorporating model 
conformation and resolution improvement is very effective. It 
is also shown that the backward simulation can be efficiently 
performed by using our hybrid method (forward simulation 
objects in backward simulation structure) by eliminating case 

 
Figure 19. Backward simulation result of Fig.18 for ndiv=10,000 with 
resolution improvement. 

 
Figure 18.  Fluctuation eliminated temperture data correspoinding to the 
measure data in Figure 9. 

 
Figure 20. Processing time including resolution improvement vs ndiv for the 
cases in Section 5. 

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000

he
at

er
(W

) 

time(s) 

min max

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1000 2000 3000 4000

te
m

pe
ra

tu
re

(d
eg

) 

time(s) 

1

10

100

1000

10000

100000

100 1000 10000 100000

ac
cu

m
ul

at
ed

 p
ro

ce
ss

in
g 

tim
e(

m
in

) 

ndiv 



 

ACTA IMEKO | www.imeko.org April 2017 | Volume 6 | Number 1 | 19 

branches. Causal input changes can be practically determined 
for the simulated data and for the real measurement data. The 
internal state of any system can be determined by the backward 
simulation if we define the system’s model properly for 
backward simulation. 

In the case of data with high resolution, the backward 
simulator outputs almost perfect results. For cases of limited 
resolution, repetitive resolution improvement responding to 
model mismatches was successfully done. We also showed that 
the backward simulation with real measurement data can be 
effectively done, although noise elimination was needed for 
errors larger than quantising errors. 

The results suggest that we can separate noise from signal by 
using the backward simulation with a model conformation test. 
The backward simulation offers us a new method to infer 
causal inputs and internal states of various systems. We need to 
study the relation among the precision of simulation output, 
degree of model fitness and SNR of data for backward 
processing. 

ACKNOWLEDGEMENT 

This work was supported by JSPS KAKENHI Grant 
Number 25540006. We thank one of the reviewers who 
motivated us to improve the simulation. 

REFERENCES 

[1] J. V. Beck, B. Blackwell and C.R.S. Clair Jr., Inverse Heat 
Conduction Ill-posed Problems, John Wiley & Sons, 1985, ISBN 
0-471-08319-4. 

[2] Y. Jarny and D. Maillet, Linear Inverse Heat Conduction 
Problem – Two Basic Examples, 
http://www.sft.asso.fr/Local/sft/dir/user-
3775/documents/actes/Metti5_School/Lectures%26Tutorials-
Texts/Text-L10-Jarny.pdf. 

[3] K. Oguni, Inverse problem and instrumentation, Ohmsha, 
Tokyo, 2011, ISBN 978-4-274-06829-4. 

[4] T.B.Bako and T.Daboczi, Improved-Speed Parameter Tuning of 
Deconvolution Algorithm, IEEE Trans. Instrum. Meas., vol.65, 
no.1, pp.1568-1576, 2016. 

[5] A.Muqaibal, A,Safaai-Jazi, B.Woerner and S.Raid, UWB Channel 
Impulse Response Characterization Using Deconvolution 
Techniques, Proc. MWSCAS, 2002. 

[6] Chueng-Chiu Huang and His-Huang Wang, Backward 
Simulation with Multiple Objectives Control, Proc. IMECS 
(International MultiConference of  Engineers and Computer 
Scientist), Hong Kong, 2009. 

[7] C.D.Twigg and D.L.James, Back Steps in Rigid Body Simulation, 
ACM trans. Graph., vol. 27, no.3, article 25, 2008. 

[8] J.J.Cook, Reverse Execution of Java Bytecode, Computer 
Journal, vol.45, no.6, pp.608-619, 2002. 

[9] Y. Hiranaka and T. Taketa, DESIGNING, BACKWARD 
RANGE SIMULATOR FOR SYSTEM DIAGNOSES, Proc. 
XX IMEKO World Congress, 2012. 

[10] Y. Hiranaka., H. Sakaki, K. Ito, T. Taketa and S. Miura, 
Numerical Backward Simulation Model with Case Branching 
Capability, Proc. 4th International Conference on Simulation and 
Modeling Methodologies, Technologies and Applications 
(SIMULTECH 2014), pp.225-230, 2014. 

 
 


	Hybrid backward simulator for determining causal heater state with resolution improvement of measured temperature data through model conformation

