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1. INTRODUCTION 

In our daily lives, we are surrounded by computers and are 
sometimes forced to use complicated, user-unfriendly 
interfaces. These situations may, in some cases, be due to a lack 
of methods for measuring emotional response to usability. 
Therefore, there is a real need for establishing an objective and 
quantitative evaluation method for interfaces. 

Human activities can be modeled as a decision-making 
system defined by multiple parameters. A user decides on an 
action to interact with an interface, such as pressing a button or 
pulling  a  lever.  This  action  then  results  in  a  change  in  the  

 

 
 
 

interface’s state, such as a change on a screen or an action by a 
connected machine. This change, in turn, affects parameters for 
the user, who recognizes the interface change and plans the 
next action in response. Emotion is one such parameter for 
humans in this model [1]. Humans typically feel comfortable 
with an easy-to-use interface but frustrated with an ill-behaving 
one. If we could objectively and quantitatively evaluate these 
emotional states in response to an interface, it would be an 
effective measurement for usability and may yield an adaptive 
interface that can change its usability depending on the user’s 
concurrent feeling. 

 

ABSTRACT  
When a user interacts with an interface such as a computer, its effects on specific biosignals may reflect emotional responses to the 
interface, providing a means to evaluate usability. Towards the development of an interface that can adapt its usability based on the 
user’s emotions, here we decoded electroencephalography (EEG) activity occurring during interaction with a user-unfriendly interface. 
Participants performed target-reaching tasks while irregular transformations were applied to cursor motion to induce frustration. Our 
results showed that differential signals from the frontal electrodes (AF3-AF4) were sufficient to classify between brain activities during 
transformed (frustrated) and normal cursor motion (non-frustrated). Functional magnetic resonance imaging during the same tasks 
showed significant activations in the middle frontal gyrus, orbitofrontal gyrus, and inferior parietal cortex, areas found to be related to 
negative emotions. Altogether, these results suggest that the usability of an interface can be measured from EEG signals, which could 
aid in the development of adaptive interfaces that increase its intuitiveness.  
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Numerous studies have been performed on recognition of 
emotions from biological signals [2]-[8]. Among these studies,  
electroencephalography (EEG) has attracted particular 
attention [9], as it allows for a highly direct measure of 
emotional state, with the brain controlling the relevant 
mechanisms for emotion. Li and Lu focused on high gamma 
band EEG and showed that happiness and sadness can be 
distinguished with over 90 % accuracy [3]. Asymmetric activity 
in the frontal region is also known to occur when emotions are 
evoked [10], and Petrantonakis and Hadjileontiadis utilized this 
phenomenon to distinguish between six emotional states [5], 
[6].  Methods such as those applied in previous studies could 
also be used to detect emotional responses to user interfaces, 
providing a novel, objective measure of usability. 

The goal of this paper was to identify a user’s frustration in 
using a computer interface to objectively evaluate the user-
friendliness of the interface. To do so, we first sought to 
distinguish between states of frustration and calm. We induced 
frustration by transforming the user inputs to the interface that 
made the interface more difficult to use. We acquired EEG data 
while subjects used the normal (i.e. calm) and transformed 
(frustrated) interfaces, and applied a machine-learning method 
to classify between the tasks. To confirm that our EEG data 
were picking up the emotional signals of frustration, we 
performed a functional magnetic resonance imaging (fMRI) 
experiment using the same tasks to ensure that brain regions 
corresponding to negative emotions were elicited. 

2. METHODS 

2.1. Participants 
Three healthy individuals (two males and one female, 22-25 

years old, right-handed) participated in the EEG experiment. 
One healthy male (50 years old) participated in the fMRI 
experiment. Written informed consent was obtained from all 
the participants prior to the experiment. The experimental 
protocol was approved by the ethics committee of Tokyo 
Institute of Technology. 

2.2. Experiment tasks 
A red cursor, controlled with a trackball, was initially 

presented at the center of a computer screen. Participants were 
instructed to manipulate the trackball with their right hand to 
move the cursor to a target designated by a blue circle. (Figure 
1). 

Transformations were applied to the trackball output so that 
cursor movements differed from the trackball’s movements. 
We expected this transformation to elicit participants’ frustrated 
feelings as the interface became more difficult to use.  

We applied two types of transformations: “Rotation” and 
“Acceleration.” For Rotation tasks, a rotation around the origin 
was applied; when the trackball pointer was at (X, Y) and 
rotation angle was θ, the cursor was shown at (Xcosθ + Ysin
θ, Ycosθ − Xsinθ) (Figure 2a). For the Acceleration task, 
the speed of the cursor increased with distance between the 
trackball pointer and the origin. When the distance of the 
trackball pointer was 

𝑑 = �𝑥2 + 𝑦2, (1) 
the cursor was shown at (KdX, KdY), where K is an acceleration 
coefficient (Figure 2b). 

We used four transformations for the experiments: Rotation 
(θ= π/3), Rotation (θ= −π/2), Acceleration (K = 0.02), 

and Normal (no transformation). We chose these 
transformations specifically to elicit different emotional states in 
response to the user-unfriendly interface. As we found that 
rotation transformations were easy to learn after a few sessions, 
so we employed two Rotation tasks of different angles to avoid 
learning effects.  

2.3. EEG experiment 
EEG signals were recorded using 32 active electrodes 

(g.USBamp and g.LADYbird from g.tec medical engineering, 
Graz, Austria) from positions according to the extended 
international 10-20 system (Figure 3). Sampling frequency was 
256 Hz and a 50 Hz notch filter was applied during recording.  

 
Figure 1. Positions of the 8 reaching targets (a) and the three periods in a 
trial, Reaching task period (b), “Still” period (c), and Blinking period (d).  

 
Figure 2. Axis transformation between mouse pointer and cursor. (a) 
“Rotation” transformation, (b) “Acceleration” transformation.  

 
Figure 3. EEG electrode positions.  
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Five sessions were performed for each transformation, 
resulting in 20 sessions per participant. Each session consisted 
of eight trials for the eight target positions in random order 
(Figure 1a). The cursor was initially placed at the origin (a red 
point in Figure 1b). After each reaching task was completed, a 
2-second “Still” period immediately followed (Figure 1c). EEG 
signals during the Still period were used to decode their feelings 
elicited by the task to avoid the effects of motion intention. We 
expected that task-related emotional effects would remain 
during the period. During the Still period, participants were 
instructed to gaze at the same position until the reached target 
disappeared. Then a 3-second “Blink” period followed (Difure 
1d), during which participants were allowed to blink freely. We 
set the Blink period to prevent eye-blinking signals from 
contaminating the brain activity signals during the task period.  

2.4. fMRI experiment 
A 3.0-T Signa scanner equipped with a 9-channel array coil 

(General Electric Company, Fairfield, Connecticut) was used 
for the fMRI experiment. Functional data were acquired with 
an echo planar imaging sequence. 

A functional run consisted of 16 trials for the Normal 
condition, 8 trials for each of the two Rotation conditions, and 
8 trials for the Acceleration condition. We acquired twice the 
number of Normal trials because the participant could perform 
the reaching task much faster during the Normal condition than 
during other conditions. Five runs were performed. During a 
trial, a target position was randomly chosen from the eight 
points (Figure 1a), and all eight points were chosen twice (for 
the Normal condition) or once (for the other conditions) per 
run. The cursor was initially placed at the origin (Figure 1b). 
After each reaching task was completed, a Still (rest) period 
immediately followed (Figure 1c). The period for the rest was 
randomly chosen from 1, 2, or 3 s. Since eye movements and 
blinking were not restricted in the fMRI experiment, trials did 
not have a Blink period. 

2.5. EEG signal processing 
EEG signals during the 2-s Still period were used for further 

analysis. We used a feature extraction method based on [11]. A 
256-point FFT was applied to the EEG signals using a 250-ms 
window and a 125-ms window overlap. We then used the first 
40 bins (1-40 Hz) of the mean spectrum as features for 
classification. This feature extraction was performed for signals 
from single electrodes as well as differential signals between 
neighbouring electrode pairs. 

2.6. Classification analysis using EEG signals 
We conducted a classification analysis to determine if 

emotional responses to the user-unfriendly interface could be 
identified from the EEG signals. Data for each trial were 
labelled according to their axis transformations, and the labels 
were predicted using a machine learning technique. Since there 
were two types of Rotation trials, we mixed those trials and 
randomly eliminated half of them. Using a support vector 
machine [12], 10-fold cross validation was performed to 
calculate classification accuracy. Specifically, with 40 trials 
acquired for each condition, 36 trials  2 conditions (Normal 
vs. Rotation, or Normal vs. Acceleration) were used for training, 
and 4 trials  2 conditions were used for verification. 
Following previous studies on negative emotions [10], [13]-[15], 
we used only frontal and parietal electrodes for classification. 
Net accuracy was calculated by averaging classification accuracy 
across iterations. Welch’s t-test was conducted on the results to 

test significance. 

2.7. fMRI image processing and general linear model analysis 
fMRI data were pre-processed and analyzed using Statistical 

Parametric Mapping software, SPM12 (Wellcome Department 
of Cognitive Neurology, UK; available at 
http://www.fil.ion.ucl.ac.uk/spm). Pre-processing steps 
included slice-timing correction, motion correction, 
coregistration of the functional and anatomical images, 
normalization into standard Montreal Neurological Institute 
(MNI) space, and smoothing using an 8-mm Gaussian kernel. 
General linear model analysis was performed for three 
contrasts: (Rotations and Acceleration) > Normal, Rotations > 
Normal, and Acceleration > Normal.  

3. RESULTS 

3.1. EEG Classification results 
Classification accuracies for Normal vs. Acceleration are 

shown in Figures 4a and 4b. For all participants, accuracies 
using the differential signal for parietal electrodes (C3  
(minus) Cz) were significantly higher than chance level of 50 %. 
Feature vectors using (C3  Cz) worked well for all 
participants (Participant 1: 76.3 % (p = 2.97  10-4), Participant 
2: 86.3 % (p = 3.50  10-4 ), Participant 3: 80.0 % (p = 1.01  
10-4). The differential signal for frontal electrodes (AF3  AF4) 
also showed significantly higher accuracy than chance level for 
all participants (Participant 1: 75.0 % (p = 4.39  10--5 ), 
Participant 2: 77.5 % (p = 8.66  10--5), Participant 3: 65.0 % (p 
= 0.0330)). 

 
Figure 4. Classification accuracies using EEG signals. (a) Binary classification 
results comparing Acceleration and Normal conditions using differential 
signal C3 – Cz; (b) Binary classification results comparing Acceleration and 
Normal conditions using differential signal AF3 – AF4; (c) Binary 
classification results comparing Rotation and Normal conditions using 
differential signal C3 – Cz; (d) Binary classification results comparing 
Rotation and Normal conditions using differential signal AF3 – AF4.  *p < 
0.05, **p < 0.01, ***p < 0.001 by t-test. 
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Classification accuracies for Normal vs. Rotation are shown 
in Figures 4c and 4d). Participant 2 did not show significance 
for either differential signal (C3  Cz: 61.3 % (p = 0.0967), AF3 

 AF4: 50.0 % (p = 0.50 )). Other participants also showed low 
classification accuracies, except participant 3 for AF3  AF4 
(75.0 %, p = 1.96  10-4 ). 

3.2. fMRI activation areas 
Figure 5a shows three significant activation areas that were 

obtained by the contrast (Rotations and Acceleration) > 
Normal (p < 0.001, uncorrected for multiple comparisons). We 
expected the contrast to show the net effect of transformed 
cursor movement on brain activity. The largest cluster was 
located in the left middle frontal gyrus (MFG) (MNI 
coordinates: [-48, 44, 26], T=3.61), and the second largest 
cluster was in the right lateral orbitofrontal cortex (LOFC) 
(MNI coordinates: [36, 54, -10], T=3.53). The left inferior 
parietal lobe (IPL) also showed a small activated-cluster (MNI 

coordinates: [-52, -36, 58], T=3.13).  
Looking at the Rotations > Normal and Acceleration > 

Normal contrasts (Figures 5b and 5c), the Rotation condition 
showed activated areas in the left IPL (MNI coordinates: [-46, 
38, 30], T=4.02, p < 0.001, uncorrected) and right MFG (MNI 
coordinates: [28, 6, 56], T=3.24, p < 0.001, uncorrected). The 
Acceleration condition showed many activated areas, and the 
largest cluster was located in the left and right IPLs (MNI 
coordinates: left, [-62, -36, 46], T=4.63, p < 0.05, family-wise 
error corrected; right, [68, -24, 34], T=4.42, p < 0.001, 
uncorrected). The right LOFC was also the third largest 
activated area (MNI coordinates: [36, 54, -10], T=4.15, p < 
0.001, uncorrected).  

4. DISCUSSION 

Our results showed that significantly high classification 
accuracies especially in Acceleration vs. Normal classification 

 
Figure 5. Activation areas in general linear model analysis for contrasts (Rotations + Acceleration) > Normal (a), Rotation > Normal (b), and Acceleration > 
Normal (c). All activated areas shown are significant at a threshold of p<0.001, uncorrected for multiple comparisons.  
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were obtained for all participants using only two EEG electrode 
signals, suggesting that brain activity varied enough across 
cursor movement transformations to be discriminated. Since 
the EEG data were not contaminated by electrooculogram or 
motion artifacts, and all eight target positions were mixed in the 
classification analysis, the variance in brain activity can be 
interpreted as a reflection of activity elicited by the cursor 
transformation. 

4.1. Difference between Rotation and Acceleration  
As shown in Figure 4, classification performance for 

Rotation (c and d) was lower than that for Acceleration (a and 
b), though the participants reported that Rotation was more 
frustrating than Acceleration. We think this is due to the timing 
of the occurrence of the frustration. Rotation provided 
difficulty at the initiation of movement, while Acceleration 
posed difficulty towards the end of the task period because it 
was hard to stop the cursor exactly on the target. We used EEG 
data from the time period immediately after the reaching tasks 
were completed to evaluate frustration, to ensure that the data 
did not contain other effects such as motion and movement 
directions. Thus, it is possible that the time period used 
included more frustration elicited by Acceleration than by 
Rotation. 

4.2. Validity of the electrode positions providing high accuracies 
Under the Pleasure-Arousal-Dominance (PAD) model [16] 

and its two-dimensional variation [17], [18], which employs 
arousal (intense  calm) and valence (positive  negative) as its 
orthogonal axes, emotions related to user-unfriendliness of 
interfaces could be considered as high arousal and low valence. 
In Acceleration vs. Normal (Figure 4a), C3  Cz showed high 
accuracies for all participants. This is comparable with results 
from previous studies that showed a relation between 
unpleasant image stimulation and parietal regions [14], [15]. 

Electrodes in frontal regions, AF3  AF4, were also found 
to be effective for classification (Fig. 4b). Kostyunina and 
Kulikov [13] reported that alpha wave power significantly 
increased at F3, T4, and O1 when feeling anger, which is 
considered a stronger emotion than annoyance or irritation [19]. 
Disgust, which also has high arousal and low valence, also can 
be distinguished from a calm state using right frontal electrodes 
[10]. That may be the reason why AF3  AF4 showed relatively 
high accuracy in our results; the differential signal enhanced 
activity difference between the right and left hemispheres. 

4.3. Comparison of fMRI and EEG results 
Although fMRI was performed for only one participant, we 

believe the data, as it compares with existing findings, does 
provide some insight into the emotional responses elicited by 
the tasks. Even if we could not obtain high classification 
accuracies in Rotation vs. Normal condition due to the time lag 
between task period and rest period (i.e. data used for analysis), 
fMRI analysis revealed if negative emotions were elicited by 
both of the cursor transformations. Our fMRI analysis showed 
activation mainly in the left and right MFGs, right lateral 
orbitofrontal gyrus, and left and right IPLs. The left and right 
MFGs, that were mainly activated in the Rotation condition, are 
associated with frustration [8] as well as negative feelings of 
sadness and anger [7]. The right LOFC is associated with 
negative feelings elicited by angry face observation [20] and 
stress induction [21] as well as regulation of negative emotions 
[22]. The IPL relates to various cognitive functions, including 
attention [23], language [24], action processing, and emotional 

action observation [25]-[28]. Considering our experimental 
tasks, emotional action observation is unlikely to have been the 
cause. Rather, the IPL activation might have been due to 
reorienting and spatial attention [23], [29], which are motor 
planning and action-related functions [30]. Controlling the 
cursor under transformed motion required motor planning for 
the entire duration of the task. Furthermore, IPL activation was 
lower in the merged contrast (Rotation and Acceleration) > 
Normal than the other contrasts. This may have occurred 
because the coordinates of the activated voxels in IPL were not 
exactly the same between Acceleration and Rotation, suggesting 
different strategies were employed for the reorienting or motor 
planning.   

Comparing the relevant activation areas in fMRI with the 
EEG electrodes positions used for classification, differential 
signal AF3-AF4 may have included brain activity around the 
right and left MFG and right LOFC, and C3-Cz may have 
included activity around the right and left IPL. To prioritize 
activity related to emotional response, it might be better to 
focus on AF3-AF4 differential activity in future work. Further 
investigation with an increased sample size and EEG source 
localization analysis is also needed before more definitive 
interpretations can be made.  

5. CONCLUSIONS 

In this study, we used EEG to evaluate the usability of a 
human interface. We employed target-reaching tasks with 
transformations applied to cursor motion to introduce user-
unfriendliness. FFT-based feature extraction and support vector 
machine classification revealed that two electrode signals from 
frontal regions were sufficiently effective in discriminating 
between user-friendly and user-unfriendly conditions. An fMRI 
experiment using the same tasks further revealed activation in 
the left MFG and right LOFC, which were previously reported 
as areas relevant to negative emotions. These results support 
our future plans to develop an interface with the ability to adapt 
its usability based on the user’s emotional response.  
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