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1. INTRODUCTION 

“It is unanimously agreed that statistics depends somehow 
on probability. But, as to what probability is and how it is 
connected with statistics, there has seldom been such complete 
disagreement and breakdown of communication since the 
Tower of Babel. Doubtless, much of the disagreement is merely 
terminological and would disappear under sufficiently sharp 
analysis.”, [1]. 

This paper, after a short introduction concerning the several 
meanings of the terms ‘uncertainty’ and ‘probability’, aims at 
limiting the illustration to a couple of interpretations of 
probability, discussing whether application of this concept to 
dice throwing has exactly the same meaning when it is used for 
measurement results, or there are differences. 

The concept of probability is historically born from the 
speculation about the prediction in gambling problems, like that 
of the occurrence of a specific face of a fair dice in subsequent 
throws or of a fair coin in subsequent tossing. 

In experimental science, when scientists realised that it is 
impossible to get ideally perfect and full information from 
measurement [2], the use of the concept of probability 
proposed itself as the most natural way to circumvent the 
difficulty and to model chance.  

The paper illustrates why and how, in general, the conditions 
of its application are basically different, by reviewing a range of 
positions. Some consequences are drawn. 

 

2. UNCERTAINTY INTERPRETATIONS 

The term ‘uncertainty’ has several meanings.1  One can find 
a discussion on this issue from an epistemological point of view 
in [6]: “Uncertainty is pervasive in most of the fields of science 
and technology (as it is also in real life and ordinary thinking), 
and in all cases it seems that what really matters and worries is 
the quantification of the ‘amount’ of uncertainty in some sense 
attributable to the considered statements, or events, be them 
possibly submitted to repetition (random events) or not 
(singular events). All that is done, in general, under a very 
unclear concept of what the word uncertainty could actually 
mean, but it is almost always done by aiming at the 
measurement of the variables affected, in very different 
contexts, by some kind of uncertainty.” 

According to that approach, “the linguistic term uncertainty 
is not only imprecise, but has a very broad applicative spectrum 
in both ordinary life and Science. To scientifically approach 
what it could mean, it seems necessary to previously capture 
how their, also imprecise, mother-predicate U = uncertain, the 
opposite of certain, is used in different contexts and with 

                                                           
1 Often the terms "uncertainty" and "error" are used 

interchangeably, or one of the two is rejected (the second in 14). 
"We find it convenient to distinguish them thus: ’Error’ is the actual 
difference between a measurement and the value of the quantity it is 
intended to measure, and is generally unknown at the time of 
measurement. ’Uncertainty’ is a scientist’s assessment of the 
probable magnitude of that error". 22 

ABSTRACT 
The paper summarises the main differences between the process of throwing dices and the measurement process, and draws some of 
the consequences on the meaning and use of the probability concept in the two cases.



   

 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3 | 4 

different purposes, and where can consequently be represented 
by a fuzzy set”. 

Limiting to the scientific field, it actually did not only bring 
to the concept of ‘probability’, but also to the many other fields 
of chance, often called “imprecise probability”, first of all to the 
possibility and fuzzy type of reasoning [7], [8], but also to 
others, like previsions, lower and upper probabilities, or interval 
probabilities, belief functions, possibility and necessity 
measures, lower and upper previsions, comparative probability 
orderings, partial preference orderings, sets of desirable 
gambles, p-boxes, robust Bayes methods (see references, e.g., in 
[9]). 

In particular, uncertainty measures are not necessarily 
additive [6], [10]-[12]. 

In measurement, that attribute is added to uncertainty to 
specify the intended meaning: “measurement uncertainty: non-
negative parameter characterizing the dispersion of the quantity 
values being attributed to a measurand, based on the 
information used” (term 2.26 in [13]). It is useful to recall here 
also its Note 1: “Measurement uncertainty includes components 
arising from systematic effects, such as components associated with 
corrections and the assigned quantity values of measurement 
standards, as well as the definitional uncertainty. Sometimes 
estimated systematic effects are not corrected for but, instead, 
associated measurement uncertainty components are 
incorporated” (emphases added), useful in the subsequent 
discussion.  

3. PROBABILITY INTERPRETATIONS 

Probability is one of the concepts born to accommodate the 
concept of uncertainty, intrinsic in chance, as opposed to the 
term ‘certainty’ [2].  

There are two broad categories of probability 
interpretations, which can be called "physical" and "evidential" 
probabilities (the following synthesis is taken from [3], for a full 
discussion see [4], [5]). 

Physical probabilities, which are also called objective or 
frequency probabilities, are associated with random physical 
systems such as roulette wheels, rolling dice and radioactive 
atoms. In such systems, a given type of event (such as the dice 
yielding a six) tends to occur at a persistent rate, or "relative 
frequency", in a long run of trials. Physical probabilities either 
explain, or are invoked to explain, these stable frequencies. 
Thus talking about physical probability makes sense only when 
dealing with well-defined random experiments. The two main 
kinds of theory of physical probability are frequentist accounts 
(such as those of Venn, Reichenbach and von Mises) and 
propensity accounts (such as those of Popper, Miller, Giere and 
Fetzer). Evidential probability, also called Bayesian probability 
(or subjectivist probability), can be assigned to any statement 
whatsoever, even when no random process is involved, as a way 
to represent its subjective plausibility, or the degree to which 
the statement is supported by the available evidence. On most 
accounts, evidential probabilities are considered to be degrees 
of belief, defined in terms of dispositions to gamble at certain 
odds. The four main evidential interpretations are the classical 
(e.g. Laplace's) interpretation, the subjective interpretation (de 
Finetti and Savage), the epistemic or inductive interpretation 
(e.g., Ramsey, Cox) and the logical interpretation (e.g., Keynes, 
Carnap).  

Some interpretations of probability are associated with 
approaches to statistical inference, including theories of 

estimation and hypothesis testing. For example, the physical 
interpretation is taken by followers of "frequentist" statistical 
methods, such as R.A. Fischer, J. Neyman and E. Pearson. 

 
Statisticians of the opposing Bayesian School typically accept 
the existence and importance of physical probabilities, but also 
consider the calculation of evidential probabilities to be both 
valid and necessary in statistics. This article, however, focuses 
on the interpretations of probability rather than theories of 
statistical inference. 

The terminology of this topic is rather confusing, in part 
because probabilities are studied within a variety of academic 
fields. The word "frequentist" is especially tricky. To 
philosophers it refers to a particular theory of physical 
probability, one that has more or less been abandoned. To 
scientists, on the other hand, "frequentist probability" is just 
another name for physical (or objective) probability. For those 
who promote Bayesian inference view, "frequentist statistics" is 
an approach to statistical inference that recognises only physical 
probabilities. Also the word "objective", as applied to 
probability, sometimes means exactly what "physical" means 
here, but is also used of evidential probabilities that are fixed by 
rational constraints, such as logical and epistemic probabilities. 

4. THROWING DICES OR TOSSING A COIN 

The needed approach in this case is a purely mathematical 
one, since the dice (or coin) is assumed to be ‘fair’ (perfect) and 
no interaction effect is assumed to occur from the way the 
throw is performed or with the environment of the dice and of 
its impact with a surface—nothing about the physics of the 
process. There are no influence factors affecting the outcome 
of a toss, which is not even dependent on time. Thus, the throws are 
assumed to be strictly a repeatable ideal process for an 
indefinitely long time, whence the certain, equal probability of 
getting each face. In addition, each face is mutually exclusive, 
and each throw is independent of any past or future throw. 
This type is also called ‘discrete probability’. 

The meaning of uncertainty in this framework is that the 
prediction of the result of the subsequent throws is uncertain 
because the throwing process is strictly stochastic. No 
definitional uncertainty exists—for the ideal case. Speculations 
also exist about the effects of deviations on the long run from 
the strictly ideal assumption, but they enter the arena of 
experimental science. 

Instead of dices or coins, many other frames are born that 
can be assimilated to the previous ones (cards, …).  

5. THE EXPERIMENTAL FRAME 

The experimental frame of science is characterised by, at 
least, two facts:  

a. the concept of repeatability of the samples is subject 
to limitations, namely in time, so limiting also the justification to 
always consider the process as (only) a stochastic one;  

b. the concept of uncertainty applies not only to the 
unpredictability—within given (almost always finite) limits—of 
the next measurement result, but also to the possibility of 
occurrence of systematic effects, e.g. those born from epistemic 
reasons. 

As to a., the VIM3 definition of “repeatability condition” is 
term 2.20 [13]: “condition of measurement, out of a set of 
conditions that includes the same measurement procedure, 
same operators, same measuring system, same operating 
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conditions and same location, and replicate measurements on 
the same or similar objects over a short period of time” (emphasis 
added). 

In fact, it is basically a tautology, because the expression 
“short period of time” means ‘so short that the conditions for 
repeatability hold’. Some kind of independent verification of 
the trueness of the condition is deemed necessary—when 
possible—concerning two features: (i) the stability in time of 
the measurand (same or similar objects); (ii) the repeatability of the 
operating conditions (all the remaining conditions).2  On the 
contrary, these conditions are both assumed as true for fair dices 
or coins. 

As to b., systematic effects induce uncertainty components 
that are absent, by definition, in the case of fair dices or coins. 
They are also called ‘bias’,3 indicating the deviations of the 
measured values from a set of reference values forming what 
can be called a ‘reference condition’. For example, for a single 
additive bias Bi affecting a quantity Xi, is Xi = Xi + Bi (the 
symbol of ‘standard state’  is borrowed here, for analogy, from 
physical chemistry to indicate the reference condition for which 
E(Bi) =: 0), and Xi + Bi = Xi – Ci , where Ci is the so-called 
‘correction’.4, [15]. 

A different category of systematic effects is what is causing 
the often-called epistemic uncertainty, [16] i.e., the one due to 
insufficient knowledge of known effects, which reflects onto an 
imperfect model of the experimental conditions.  

Actually, this category is not exhaustive, and should better 
be spilt into two distinct categories of uncertainty: 

– epistemic (imperfect knowledge, namely in science and 
technique), [17]-[19]; 

– ontological (ignorance about (some parts of) the 
phenomenon under study), [20].  

The former occurs when an influence quantity is mis-
evaluated or mis-modelled. The latter comprises, e.g., the case 
where an influence quantity is omitted from the model because 
the existence of its effect was missed. In both cases, it results 
into an imperfect modelling. 

Still a distinct category of uncertainty comes from the 
“definitional uncertainty” [13], [14], which should not be 
confused with any of the previous ones. It concerns the non-
uniqueness of (known) definitions of the measurand: different 
definitions. It cannot be considered epistemic when it concerns 
known issues, but it is up to the judgment of the experimenter 
to take some of the cases into account in the model, or not: this 
is a model non-uniqueness, not an imperfection of it. 

Ontological, epistemic and definitional uncertainties are not 
of stochastic nature. 

Figure 1 summarises the different components of 
uncertainty in experimental science (see, e.g., [20]). 

The possible time dependence of the process under 
investigation is another feature of the experimental frame that is 
useful to consider separately. 

It can be due to fluctuations in time series, or it may be due 
to non-repeatability of compounded data series taken 
subsequent in time. 

                                                           
2 Repeatability can be associated to the term “Type A 

uncertainty” of GUM, 14 not using the “error approach“. 13 
3 “Measurement bias: estimate of a systematic measurement 

error“ (term 2.18 in 13). 
4 Notice that, in general, E(Ci) is what is intended for 

‘correction’. 

In the first case, the terms used to indicate a dependence on 
time (drifting, dynamic, … systems), or invariance from time 
(static, stationary, …) may be different in different scientific 
and technical frames, or be semantically different. About the 
risk of consequent confusion, the reader is directed to the 
review performed in [34]. 

The time scale itself can be a reason for different random 
effects showing up: an example can be seen in the two-sample 
variance (Allen variance) studies of frequency standards. 
However, one cannot construe from it that always the 
fluctuations with time are of random nature: a mixed effect can 
build up, like in the very common case of a ‘drifting’ 
characteristics of an instruments from its initial calibrated state. 

6. DIFFERENCES BETWEEN THE TWO FRAMES AND SOME 
CONSEQUENCES 

“Aleatory uncertainty represents an absolute limit. To use 
the coin toss example, having thrown the coin a thousand times 
we would be able to express with confidence the probability of a 
heads occurring, but that is all we can say about the next coin 
toss” (emphasis added) [20]. 

Probability cannot have the same meaning in experimental 
science, outside the aleatory components of uncertainty. 5 

A useful classification of uncertainty components can be 
found in [21]: 

(i)   Uncertainty in influence quantities, 
(ii)  Uncertainty in model, 
(iii) Uncertainty in model parameters. 
Components (i) can be either epistemic if referred to 

influence quantities properties, or random if referred to their 
measured values, or both. The influence quantities are normally 
subdivided into two groups: the “basic” ones (called “input 
quantities” in [14]) and the “derived” ones (i.e., the ones 

                                                           
5 One can even argue if probability is the only concept that can 

be used to deal with chance. 

 
Figure 1. Different  components of uncertainty  in experimental  science,  in 
the four possible combinations of known and unknown information. 
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responsible for ‘bias’ [13] and needing ‘corrections’) [14]. The 
former are measured in indirect measurements (thus having at 
least one Type A uncertainty component), while the latter can 
be measured, or their values are obtained or inferred from 
previous knowledge (thus having in the first case at least one 
Type A uncertainty component, or only Type B components in 
the second). 6 

Component (ii) can be epistemic if referred to model 
imperfection, or ontological if referred to missed quantities. It 
also includes the definitional uncertainty. 

Component (iii) can be stochastic if the values are obtained 
from measurement, or epistemic if the values are computed or 
inferred. 

Ontological uncertainty is generally not included in the 
budgets of experimental science,7 and definitional uncertainty is 
generally resolved by specifying the relevant type of 
definition—otherwise it becomes an ontological uncertainty 
component, excluded from treatment in the new GUM [32]. 

Epistemic uncertainty is often ‘randomised’, i.e. transformed 
into a stochastic component, by assuming ignorance about the 
position parameter, e.g. by assuming a null mean and estimating 
a range for the resulting uncertainty component. The latter can 
be set as an interval (e.g. “Maximum Permissible Error” (MPE, 
term 4.26 in [13]) or “Worst Case Uncertainty” (WCU) [33], or 
as a non-probabilistic interval, or as the standard deviation, or a 
multiple of it, set by the chosen confidence interval (or degree 
of believe), [14]. 

7. AN EXAMPLE AND FINAL REMARKS 

From the previous review it turns out that the case of dices 
and similar are, in experimental science, an over-simplification 
of a much more complex structure of uncertainty, such that the 
former concerns only the intrinsic stochastic component of it.  

In the latter case, instead, the systematic effects are, in 
general, the major concern. Though they may have a stochastic 
component, they mainly involve, after all, the need of an 
assessment that involves basically a subjective judgment 
requiring a decision. A particularly useful discussion of this 
situation can be found in [22], where the seminal case (but a 
wider range of similar cases in measurement applies) of the 
treatment of uncertainty in the assessment of the values of 
fundamental constant of physics, is treated from the viewpoint 
of psychology of measurement and decision theory—an 
interesting viewpoint basically ‘external’ to the metrology field. 

Different reasons for ‘bias’ in the judgment are considered 
there, bringing to what is called “overconfidence”: “In several 
sets of analyzed measurements of physical constants, we have 
found consistent replication of a robust finding of laboratory 
studies of human judgment: reported uncertainties are too 
small. How could this apparent overconfidence arise? 
Experimental studies of human judgment have shown that such 
biases can arise quite unintentionally from cognitive strategies 
employed in processing uncertain information”. 

However, not always this attitude in unintentional: one case 
“concerns the procedures chosen to assess the uncertainty. The 
recommended practice in physics is to consider all possible 
sources of systematic uncertainty when reporting results. 

                                                           
6 Prior and posterior are not used in this paper necessarily in the 

Bayesian sense. 
7 Several decades ago, this was done sparingly but systematically 

by the USSR school, as “undetected systematic errors”. 

However, without specific guidelines regarding what to 
consider and explicit recognition of the subjective elements in 
uncertainty assessment, one cannot be sure how 
comprehensively individual scientists have examined the 
uncertainty surrounding their own experiments. Conceivably, 
some of the apparent overconfidence reflects a deliberate 
decision to ignore the herder-to-assess sources of uncertainty” 
(emphasis added); “A second possible source of bias is that, 
unlike laboratory experiments on judgment, which can take 
great care to ensure that subjects are motivated to express their 
uncertainty candidly, real-world settings create other pressures”. 

In the latter respect, precisely, “having a pre-existing 
recommended value may particularly encourage investigators to 
discard or adjust unexpected results, and so induce correlated 
errors in apparently independent experiments”. This has been 
observed in several circumstances, according to these authors 
[22], namely for the speed of light in vacuum, c0 , the basis for 
the unit of length,8 and the inverse of the fine structure 
constant, –1, the basis for the value of the electron change e, so 
of the unit of electrical current. 

The analysis in [22] in centred only on the uncertainties 
associated to the recommended values, while the aim of the 
actual CODATA Task Group [23] is also to adjust the values of 
the constants using the Least Squares Analysis (LSA) method, 
instead of the use of the mean—or another strictly statistical 
parameter—of the experimental values (based on probability), 
[24]. 

The accent on the subjective side of the uncertainty analysis, 
(see also [25]) may seem to rule out ‘frequentist’ methodology; 
however, this does not necessarily mean that the Bayesian one 
can always be better used instead. In Chapter 1 of [22], pages 
30-31, the authors say: “Bayes theorem is an uncontroversial 
part of probability theory. Bayesian inference is more 
controversial, because it treats probabilities as subjective, 
thereby allowing inferences that combine diverse kinds of 
evidence. Frequentistic probabilities requires evidence of a 
single kind (e.g. coin flips). Subjective judgements are only 
probabilities if they pass coherence tests. Thus, probabilities are 
not just any assertion of belief” (emphasis added). 

 Actually, CODATA position had oscillations in the years, 
starting from a position where its major asset was not the use of 
the specific analytical treatment (the LSA) [26], but the 
preliminary critical review of the data and their screening. Later 
they shifted to a position where all the available data were used 
[27]. That is the position since 2010. Possibly, in addition to the 
criticism about the subjective nature of the screening, an 
abundance of data prompted the last decision, since a few 
outlying data could not anymore critically affect the resulting 
value and associated uncertainty. 

In [22] a statistical analysis is performed on the reliability of 
the estimates of the constants values, namely of 40 
recommended values for the period 1928-1973. A “surprise 
index” is computed (percent which fall outside the assessed 
98% confidence interval, or outside 2.33s) and found to be an 
impressive 57%. In more recent times, the studies have 
dramatically lowered the experimental uncertainty, so the 
former statistics could have improved a lot. However, the 
already cited “bandwagon” effect of the recommended values 

                                                           
8 Notice that the history of the numerical values of c0 stopped in 

1983 with the ‘stipulation’, misinterpreted as a definitive value. 
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could now have increased in importance, deserving an urgent 
update of analyses of this type. 

In [22] the conclusions about that specific case are: “The 
underestimation of uncertainty in measurements of physics 
constants and compilations of recommended values seems to 
be pervasive. This evidence extends previous findings of 
overconfidence in laboratory studies of human judgment to a 
task domain of great practical importance. If reported 
uncertainties do not reflect the magnitude of actual errors, 
whether due to incomplete analysis or to judgment biases, the 
usefulness of those measurements is significantly diminished”. 
This is critical, e.g., for use in the “New SI” [24].  

 
In general, it results that the use of examples concerning the 

case of dices, coins and similar, has very little value in studying 
the treatment of experimental uncertainty, and can even be 
deceiving, so, in general, it should be avoided. 

8. APPENDIX: FALSIFICATION IN EXPERIMENTAL SCIENCE 

The hereinbefore-asserted subjectivism in experimental 
sciences, with the need of judgment and decision, entrains the 
need of “verifications” (from Wittgenstein on) or of 
“falsification” (from Popper on) criteria.  

The first method was later prevalently considered an 
impossible goal to reach in the lack of a general criterion about 
the sufficient number of verifications, and the difficulties 
arising from unavoidable epistemological limitations.  

The second method was born basically in an uncertainty-free 
context: however, we learned that in measurement a single 
occurrence of falsification, even if reasonably proved, cannot be 
considered sufficient in the frame of uncertain knowledge. Not 
only repeated occurrences are needed, but “falsification is not 
possible without some threshold deviation which would be 
considered sufficiently unlikely to reject the theory” [28] — also 
[29] is interesting, though one not necessarily always may share 
author’s opinions.  

Early Popper (1936) said: “With the idol of certainty 
(including that of degrees of imperfect certainty or probability) there falls 
one of the defences of obscurantism which bar the way of 
scientific advance“, and “The relations between probability and 
experience are also still in need of clarification. In investigating 
this problem we shall discover what will at first seem an almost 
insuperable objection to my methodological views. For 
although probability statements play such a vitally important role in 
empirical science, they turn out to be in principle impervious to 
strict falsification” (emphases added), [30]. Later he managed 
reconciling the probability concept by proposing first the 
theory of “propensity”, a further interpretation of probability, 
[31]. 
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