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1. INTRODUCTION 

For the mass measurement of a weight, the ABBA cycle on 
a mass comparator is used, in which A is the reference 
(standard) mass weight and B is the test mass weight. The mass 
comparison is usually carried out in air, based on the difference 
of the gravitational force caused by the standard or test weight 
on the mass comparator. The air bouncy can contribute a big 
uncertainty especially in the high accuracy mass measurement 
such as the prototype level or E1 class level. Thus the mass 
standard’s volume needs to be precisely determined for the air 
buoyancy correction [1]. 

There are many measurement technologies such as the 
hydrostatic method, the dimension measuring method and the 
acoustic method. Although the measuring accuracy cannot be 
on the same level as the hydrostatic method (usually with 
relative combined uncertainty as low as 1×10-6 (k=1)), the 
acoustic method is a promising volume measuring method 
because there is no contact with mass standards during the 
whole volume measuring procedure, especially for the weights 
with non-regular shape and 3D curved surfaces. Both the 
standard weights and test weights don’t need to be immersed in  

 

 
any liquid.  

M. Ueki et al. firstly developed an acoustic measuring system 
to determine the volume of mass weights ranging from 1 g to 
10 kg at the National Metrology Institute of Japan (NMIJ) [2]-
[6]. For the weights with nominal value ranging from 100 g to 
10 kg, a relative uncertainty of 1×10-3 (k=2) is achieved. For 
weights ranging from 1 g to 100 g, the measuring combined 
standard uncertainty is below 0.0021 cm3 [2]-[5]. An acoustic 
volume measuring system has also been designed at the 
National Institute of Metrology China (NIM) to extend the 
measurement range of the nominal value of mass weights up to 
20 kg [7]. However, since the air inside the chamber does not 
change perfectly adiabatically (necessary to get a high measuring 
accuracy), the ratio of shape and volume of the reference 
weight needs to be similar to that of the test weight. Otherwise 
a large non-linearity measurement error will be introduced to 
the measuring process. 

To investigate the non-linearity contribution in the acoustic 
measuring method, an acoustic measuring system with two 
measuring chambers is designed by the National Institute of 
Metrology China. The volumes of mass standards ranging from 
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200 g to 5 kg are tested to evaluate the non-linearity errors of 
the acoustic measuring process. 

2. EXPERIMENTAL APPARATUS AND MEASURING 
PROCEDURE 

2.1. Experimental apparatus 
The acoustic method is based on gas compressibility laws. 

Assuming the gas changes adiabatically, the air pressure, P, has 
a constant relation with the volume of air, V, as expressed in 
(1): 

P V consγ× =  (1) 
Here, γ is the ratio of the specific heats, which is 1.40 at 

atmospheric pressure and room temperature. The newly 
designed measuring apparatus made of aluminum alloy with 
two measuring chambers is shown in Figure 1. 

A sinusoidal drive signal from a signal generator is applied to 
a loudspeaker between the two measuring chambers. This will 
alternately generate a compression wave with inverse phase in 
the left chamber and the right chamber.  

Two sound pressure sensors (also called microphones) are 
used to separately measure the pressure changes, that is, ∆P1 in 
the left chamber and ∆P2 in the right chamber, respectively, as 
shown in (2) and (3), where P0 is the air pressure in the 
chamber. The output signals from two microphones, e1 and e2, 
are converted into digital signals and sent to a computer for 
sound pressure calculation. The resulting sound pressure ∆Px is 
measured. The ratio of the pressures Rn can be calculated as 
∆P1/∆P2 [3]. 

010

1

V
V

P
P ∆

=
∆

γ   (2) 

020

2

V
V

P
P ∆

=
∆

γ  (3) 

2.2. Measurement Results 
When measuring the volume with the acoustic method, it is 

assumed that air changes adiabatically in the two measurement 
chambers [2]-[7]. However, air near the surface of the test 
weight or reference weight and the wall of the containers 
changes isothermally [3]. Thus, during the measurement, the 
actual displaced volume in the chamber by the test weight,Vt0 
and the reference weight, Vr0 can be expressed with (4) and (5). 

0t t tV V dS= −  (4) 

rrr dSVV −=0  (5) 

where St and Sr are the surface area of the test weight and 
reference weight, and d is the thickness of the air isothermal 

layer [5]. 
The effect of surface area to the volume measurement is not 

considered firstly, and it means that Vt0≈Vt, and Vr0≈Vr. 
Based on the measuring sequence in Figure 2, (6)−(8) can be 
derived. Thus, the volume of the test weight, Vt, can be 
calculated with (9). This equation is used to evaluate the non-
linearity error caused by the effect of the weight’s surface [3]. 
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3. MEASUREMENT RESULTS AND UNCERTAINTY ANALYSIS 

3.1. Measuring Results 
According to (9), the amplitude ratio R is the key parameter 

for the acoustic volume measurement. As the driving signal to 
the loudspeaker showed in Figure 3, the amplitude and 
frequency of the sinusoidal signal should be carefully chosen to 
achieve the best measurement of sound pressure and the 
amplitude ratio R.  

Figure 4 shows the relationship between R and the 
amplitude and frequency of the sinusoidal signal using two 
measuring chambers. For each amplitude and frequency, 100 
samples of sound pressure are acquired. It can be seen that to 
obtain a repeatability of R better than 1×10-4, the amplitude of 
the sinusoidal drive signal should be between 1.6 V and 1.9 V, 

  
a) b)   

 

 
c) 

Figure 2. The schematic of procedures (a, b, c) of  the measuring 
process , in which 1: Bottom of measuring chamber; 2: Side walls of 
measuring chamber; 3: Left measuring chamber; 4: Sound pressure 
sensor 1; 5: Connecting tube; 6: Sound pressure sensor 2; 7: Right 
measuring chamber; 8: Separating wall; 9: Loudspeaker; 10: Reference 
weight; 11:Test weight.  

  
a) b) 

Figure 1. Schematic and pictures of the new measuring apparatus with two 
measuring chambers.  
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and the frequency should be 43 Hz. The parameters used for 
the mass volume measurement are shown in Table 1. 

According to (9), as shown in Figure 5 to evaluate the non-
linearity errors, a nominal mass weight of 100 g is used as the 
reference weight, and nominal mass weights ranging from 200 g 
to 5 kg are measured with the 3-step method showed in Figure 
2. The non-linearity error is expressed as the deviation of the 
measurement value from the acoustic method to the volume 
measuring value from the hydrostatic method. With the same 
reference weight, the non-linearity error of the measured 
volume of the test weight increases with its nominal value. 

As also shown in Figure 6, a test weight with a nominal 
value of 2 kg is used as the test weight, and weights ranging 
from 100 g to 1 kg are used as the reference weight. The non-
linearity error of the measured volume of 2 kg weight decreases 
when the nominal value of the reference weight increases. 

Based on the analysis in Figure 5 and Figure 6, it can be 

concluded that the larger the difference between the volume, 
surface or the ratio of volume and surface of the reference 
weight and the test weight, the higher the non-linearity of the 
acoustic measuring method can be introduced. If the effect of 
the weight surface can be compensated, the accuracy of the 
acoustic volume method can be improved significantly. 

To evaluate the effect of the weight surface and to improve 
the volume measuring accuracy, certain artefacts were put into 
both measuring containers separately as shown in Figure 7(a) to 
reduce the volume of air remained in the two containers. The 
tests weights ranging from 100 g to 5 kg are measured with a 1 
kg reference weight. The non-linearity errors were evaluated to 
investigate the effects of weights’ surface. The non-linearity 
error was defined as the deviation between the volume 
measured by the acoustic method and the volume measured by 
the hydrostatic method. The results are shown in Figure 7(c). 
From 100 g to 5 kg, the non-linearity error shows no significant 
difference when the surface ratio between the test weight and 
reference weight changes. 

3.2. Uncertainty Analysis 
According to (9), describing the calculation of the volume, 

there are four main uncertainty contribution factors which are 
the reference weight’s volume, R1, R2 and R3. The uncertainty 
budget of the volume of the 200 g weight using the 100 g 
weight as reference weight is shown in Table 2.  

With the same uncertainty evaluation method, the volume 
uncertainty evaluation results of weights ranging from 200 g to 
5 kg are shown in Table 3, and the relative extended 
uncertainties show no significant differences for the big 
contribution of the non-linearity error during the volume 
measuring process. The volume uncertainties of the 2 kg weight 
using different reference weights are shown in Table 4. The 

 
Figure 3. Schematic of the connection of the signal generator to the 
loudspeaker.  
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Figure 4. Relationship between R and the amplifier or frequency of the 
sinusoidal signal. 
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Figure 6. The reference weights ranging from 100 g to 1 kg and test weight 
of 2 kg (a) and the measurement results (b). 
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Figure 7. Artefacts in the chamber (a) to reduce the remaining air in the 
chambers, the picture of  1 kg reference weight and test weights ranging 
from 100 g to 5 kg (b) and the measuring results (c). 

 

 

Table 1. Parameters used for the volume measurement. 

Parameters Configuration of the sinusoidal 
signal  

Gain of left chamber (dB) 20 

Gain of right chamber (dB) 20 

Sinusoidal signal frequency (Hz) 43 

Sinusoidal signal voltage (V) 1.6 ~ 1.9 
 

 
 

100 g 200 g 500 g 1000 g 2000 g

Reference weight Test weight

 0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

40 Reference weight: 100 g

No
n-

lin
ea

rit
y 

er
ro

r (
cm

3 )

nominal value of test weight (g)

 Non-linearity error

 
a) b) 

Figure 5. The reference weight of 100 g and test weights ranging from 200 
g to 5 kg (a) and the measuring results (b). 
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relative expanded uncertainty decreases with the reference 
weight’s nominal value, and this indicates that the non-linearity 
errors decrease in the same trend. 

However, when the volume of air in both measuring 
chambers is reduced as shown in Figure 7(a), the measuring 
accuracy improved immediately, as shown in Table 5. All the 
relative expanded uncertainties are below 7.8×10-4(k=2). The 
volume of 5 kg weight is 500 times that of the 100 g weight. 
However there is no big difference between the volume 
measuring accuracy of the test weights with different nominal 
values ranging from 100 g to 5 kg using the same 2 kg weight as 
the reference weight. 

4. CONCLUSIONS 

To investigate the non-linearity contribution in the acoustic 
measuring method, an acoustic measuring system with two 
measuring chambers is newly designed. The optimization of 
measurement parameters was investigated by analyzing the 
relationship between R and the amplitude or frequency of 
sinusoidal signal. The volumes of mass standards ranging from 
100 g to 5 kg are tested to evaluate the non-linearity errors of 
the acoustic measuring method. 

When the air in the container is not adjusted, a poor volume 
measuring accuracy is achieved, the shape or surface/volume 
ratio will greatly influence the acoustic volume measuring 
accuracy. 

The residual air in the measuring chambers has a big 
influence on the acoustic measuring accuracy. When the 
volume of air in the measuring chamber is reduced to a proper 
volume by using the new designed experimental setup, the 
measuring accuracy improved immediately, and the shape or 
surface/volume ratio is no longer the main uncertainty 
contribution during the volume determination using the 
acoustic method. 
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