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1. INTRODUCTION 

Several applications with dynamic torque excitation require 
traceable measurement. At present, only standards and 
procedures for the static calibration of torque transducers exist. 
Static calibration is an insufficient base for an analysis of 
dynamic measurements in terms of measurement uncertainties 
and influences from dynamic signal components. To be able to 
describe the dynamic influences of a torque transducer on a 
measurement set-up and vice versa, a corresponding calibration 
is mandatory [1]. Therefore, a measuring device and procedures 
for a dynamic characterisation of torque transducers were 
developed in the context of a joint European research project 
[2]. 

This paper is a substantially extended version of a 
contribution to the XXI IMEKO World Congress 2015 [2] and 
includes additional measurement results and analyses for the 
validation of the correctness of the identified parameters. 

 

 
 
 
The focus of this contribution is to demonstrate that a 

model parameter identification technique can be applied to 
identify parameters of a torque transducer from measurement 
data. For this purpose, parameter estimation results are 
validated by means of independent measurements and 
additional measurements with a modified set-up. 

A measurement uncertainty evaluation for the identified 
parameters will be covered in a separate publication, as it would 
be significantly beyond the scope of this article. 

2. DYNAMIC TORQUE MEASURING DEVICE 

The measurement principle of the dynamic torque 
measuring device (depicted in Figure 1) is based on Newton's 
second law. The product of a known static mass moment of  
inertia  of a body and a measured time-dependent angular 
acceleration  	  equals the time-dependent torque: 
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⋅ 	 	 	.  (1) 

The measuring device consists of a rotatable vertical shaft 
assembly, on which all essential components are arranged in 
series. 

At the bottom, a rotational exciter generates a forced 
excitation by means of sinusoidal oscillations. The torque 
transducer under test (device under test, DUT) is arranged on 
top of the exciter between two coupling elements. These 
couplings are designed to be both torsionally stiff and 
compliant for parasitic bending moments and axial loads 
simultaneously. At the top, the arrangement of the DUT and 
the couplings is followed by an angular grating disk for the 
angular acceleration measurement and an air bearing to prevent 
axial loads acting on the components of the drive shaft. 

The angle position at the top ( ) is measured by means of 
a laser Doppler vibrometer and the radial grating disk. The 
angular acceleration at the bottom (  is measured by an 
angular accelerometer embedded in the rotor of the rotational 
exciter. 

3. MODELLING 

The dynamic behaviour of the transducer under test is 
described by a linear time-invariant (LTI) model. It is based on 
the mechanical design of typical strain gauge torque 
transducers. The model consists of two rigid mass moment of 
inertia elements (MMOI) which are connected by a massless 
torsional spring and damper in parallel. A sole modelling of the 
transducer under test is not sufficient, because of the fact that 
the dynamic behaviour of torque transducers can be influenced 
by the coupled components. Torque transducers are always 
coupled to their mechanical environment at both sides which 
causes a bidirectional influence on the dynamic behaviour of 
the torque transducer and the coupled mechanical components 
(which are always arranged in some type of drive assembly). 

To be able to identify the model parameters of the DUT, the 
modelling was expanded from the model of the transducer to a 
model of the whole measuring device, which is the mechanical 
environment in the case of the calibration. The model again 
consists of mass moment of inertia elements, torsional springs 

and dampers, assuming the LTI behaviour of the measuring 
device. It is based on the mechanical design of the components 
of the drive shaft. The representation of the model components 
and the corresponding components of the measuring device are 
given in Figure 2.  

This model can be described by a set of inhomogeneous 
ordinary differential equations (ODEs). With the mass moment 
of inertia matrix , the torsional stiffness matrix  and the 
damping matrix  there follows 

⋅ ⋅ ⋅ 		. (2) 

The angle vector  describes the angle excitations at 
different positions in the model; its derivatives  and  
represent the angular velocity and angular acceleration, 
respectively. The load vector  describes the excitation of the 
rotational exciter. 

Based on this equation system, the model parameter 
identification will be carried out.  

The excitation signals chosen are monofrequent sinusoids. 
With these harmonic waveforms, not all necessary angle 
position, angular velocity and angular acceleration data has to 
be derived independently or by numerical differentiation / 
integration but can be calculated as follows: 

⋅ e 	,  

	 ⋅ e 	 	 , (3) 

	 ⋅ e 	 	 ,  

where √ 1 denotes the imaginary number.  
Measurements are not possible at all angle positions given in 

(2) and depicted in Figure 2. Technically, measurements at the 
positions  and  cannot be carried out, because sufficiently 
precise measurement components would require elaborating 
adjustments after each mounting and dismounting of the 
transducer under test. To gather the information necessary for 
parameter identification, the output signal of the transducer 

 is used as an indicator for the difference in the torsion 
angle above and below the transducer. This assumption is valid, 

 
Figure 1. Dynamic torque measuring device with the different components
arranged vertically on top of the exciter.  

Figure 2. Dynamic torque measuring device (left) and corresponding model 
representation (right) of the measuring device (blue) and the DUT (orange). 
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because it is assumed that the output signal of the transducer is 
proportional to its torsion Δ  giving 

∝ 	Δ 	. (4) 

During calibration, three measurement signals are acquired 
simultaneously: The angle position  at the top, the angular 
acceleration  at the bottom, and the voltage output 

 of the transducer under test. These signals will be 
processed to determine the magnitude and phase of each 
harmonic and monofrequent signal by means of a sine fit. 

4. KNOWN AND UNKNOWN MODEL PARAMETERS 

A prerequisite for the model parameter identification of the 
unknown parameters of the transducer under test is a 
sufficiently low number of unknown model parameters of the 
system. To this end, the necessary parameters of the measuring 
device were determined in advance. The properties of the 
measuring device will not change for different transducers, and 
therefore needed to be determined only once. Three auxiliary 
measurement set-ups for the measurement of the mass moment 
of inertia, torsional stiffness and rotational damping were 
developed [3]-[5] and the corresponding properties of the 
measuring device's components were determined. The only 
model parameters to remain unknown prior to the model 
parameter identification are the parameters of the transducer 
under test. 

5. MODEL PARAMETER ESTIMATION 

The model parameter identification is carried out based on 
transfer functions. Generally, a transfer function i  
describes the relation between input i  and output i  of 
a system as follows 

i 		. (5) 

A model parameter estimation based on such a transfer 
function is carried out by approximating a best set of 
parameters of the model function to the measured data. This 
set of parameters is characterised by giving the lowest 
deviations of model assumptions and measurement data. 

However, due to measurement uncertainty deviations, which 
will always occur, an exact measurement of the different input 
quantities i , i  will not be possible. The measured data 
will always be disturbed randomly due to measurement errors. 
The measurement data i , i  is therefore modelled as 
multivariate random numbers with estimated state of 
knowledge probability density functions (PDF). Figure 3 
depicts the relation of the measured input and output quantities 
and a model transfer function for the general example from (5). 

Applying this general approach to the dynamic torque 

calibration, two complex transfer functions of the system are 
calculated based on the three available signals acquired during 
calibration measurements. One transfer function i  
describes the dynamics of the top part of the measuring device 
giving 

i
⋅

 (6) 

with the (still unknown) proportionality factor  linking the 
voltage output of the transducer to its torsion (cf. equation (4)). 

The same applies to the bottom part of the measuring device 
giving the transfer function: 

i
⋅

		. (7) 

The two transfer functions are illustrated in Figure 4. The 
underlying ODE system gives the corresponding equations for 
both transfer functions. Each transfer function contains the 
unknown parameters of the transducer under test. The 
parameters , , , , can be derived from , while  
contains all the wanted parameters: , , , , and . The 
derivation of the model parameters from the ODE system and 
the relations with the two transfer functions is thoroughly 
described in [6]. The model parameter identification is carried 
out based on both of the two transfer functions.  

The more information is taken into account for the model 
parameter estimation, the more reliable the outcome can be. 
Based on the chosen estimator, knowledge about the input 
quantities, the output quantities, and about the parameters to be 
identified prior to the estimation (so-called a priori knowledge) 
can be considered. 

Three typical estimators are compared regarding their 
demand of knowledge of the different quantities in Table 1. A 
‘ ’ indicates necessary information about the distribution of a 
quantity; a ‘ ’ indicates that it is not necessary to know the 
distribution. 

 
Figure  4.  The  two  calculated  transfer  functions  based  on  the  acquired 
measurands.  

 
Figure  3.  Schematic  illustration  of  a  transfer  function  and  its  relation  to
input and output.  
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The classical frequentist approach to a model parameter 
estimation takes no uncertainty contributions in terms of PDFs 
of input quantities into account. Therefore, the estimated set of 
parameters consists of the estimated values, but not of 
information about their distribution. The least squares (LS) 
estimator and the maximum likelihood estimator are frequentist 
estimation approaches. 

The least squares estimator minimises the squared sum of 
residuals of the measured transfer function data , , 
	 , 	and	of a model function . The data of the two transfer 
functions is merged in a data vector 

, i , , i , , , i  for each  of  data 
points, the same applies to the model function  which consists 
of the model representations of the two mentioned transfer 
functions i , ,  and i , ,  accordingly, 
giving the least squares estimator: 

arg	min ∑ , i i , , 		 . (8) 

The estimation result is denoted with a hat 	 	⋅	 . In the case of 
the model parameter estimation of torque transducers, the 
model function consists of a vector of parameters of the 
measuring device , which is known, and the vector of 
unknown parameters of the transducer under test , which is 
estimated. No weighting of the different values is applied with 
this estimator. 

The likelihood function ℓ for a vector of samples 
, , … ,  with the sample’s PDF ,  for the 

estimation of the parameters  is the joint PDF of all samples 
giving  

ℓ ∣ ∣ ∏ ∣∣ 		. (9) 

Assuming normally distributed and independent input 
quantities for the dynamic torque application described (i.e. for 
all of the measurement channels merged in the data vector and 
therefore for both, input and output quantities of the measured 
transfer functions); the likelihood function becomes 

ℓ , 	 i ∝ ∏ e
, , ,

		. (10) 

with the measurement data vector ,  at the corresponding 
angular frequency  of each data point, the corresponding 
measurement uncertainty vector , and the model function . 
The likelihood function is maximised for the parameter 
estimation. The estimated parameters  are given by 

argmax ℓ , 	 i 			. (11) 

The maximum likelihood estimator with a likelihood 
function as given in (10) can be reduced to a weighted least 
squares (WLS) estimator [7]. Then, the parameter estimation 
can be carried out as follows 

argmin ∑ , , ,
 , (12) 

applying one of the widely available WLS estimators. For the 
given application, the induced errors are based on the different 
measurement quantities and need to be quantified by a 
measurement uncertainty evaluation. Based on this analysis, a 
correct weighting of the input measurement channels can be 
carried out.  

The uncertainties of the estimated parameters cannot be 
calculated directly for the frequentist approaches. The 
calculation of lower uncertainty limits or of confidence intervals 
is not applicable for the dynamic torque calibration, because the 
influences of the uncertainties of the parameters of the 
measurement 1  and influences due to mounting and 
dismounting of the DUT are invisible for the estimator.  

Therefore, the uncertainty evaluation of the estimated 
parameters will be carried out according to the 
recommendations of the Guide to the expression of uncertainty in 
measurement [8] (GUM) and its Supplements 1 [9] and 2 [10], 
respectively. A Monte Carlo simulation with all input PDFs will 
be carried out to evaluate the uncertainty of the estimated 
parameters. The estimation of the uncertainties will not be 
described in this contribution, but will be part of a dedicated 
publication. 

Differently from the frequentist approach, a parameter 
estimation based on Bayes’ statistics assumes all parameters to 
be uncertain. Based on Bayes’ theorem, the a posteriori PDF 
follows from the a priori PDF, the evidence's PDF and the 
likelihood (cf.(9)) giving 

a	posteriori 	
	⋅	 	

	. (13) 

For the parameter estimation of torque transducers, the 
latter equation leads to 

, ∣∣ i
ℓ , 	 	 	

	
			.                 (14) 

It becomes obvious that uncertainties are inherent in a 
parameter estimation by means of a Bayes’ estimator, including 
uncertainty contributions of the parameters of the measuring 
device 	 , the contributions of the uncertainty of the 
measurement data, and contributions of prior knowledge of the 
parameters to be estimated . The prior distribution of the 
parameters to be estimated does not need to be known exactly 
prior to the estimation (although this is mentioned accordingly 
in literature [7]); instead reasonable initial PDFs should be 
available. 

Despite all of its advantages, the Bayes’ estimator is still 
rarely used for parameter estimation of mechanical systems. It 
requires much more effort than LS approaches to be 
implemented, because it has to be developed individually for 
each application, whereas for the least-squares-based 
approaches, an application of the widely available LS algorithms 
is possible. This effort is the reason why this paper focuses on 
the least squares approaches in a first step. However, it is 
planned to develop a Bayes’ estimator for the application to 
dynamic measurements of mechanical quantities in the future. 

6. IMPLEMENTATION OF THE MODEL PARAMETER 
ESTIMATION 

The parameter estimation based on the measurement data is 
implemented in Mathworks Matlab and in the open source 
scientific computing software GNU Octave. The parameter 
estimation uses a maximum likelihood estimator. This estimator 
is implemented as a weighted least squares estimator assuming 
normally distributed and independent input quantities (cf. 
equation (12)). 

Table 1. Requirements of different estimators.  

knowledge about → 
estimator ↓ 

distribution of 
input quantities 

distribution of the 
(unknown) 
parameters 

Bayes’ estimator     

maximum likelihood 
estimator 

   

least squares estimator   
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Both transfer functions (see equations (6), (7)) are used 
jointly for the parameter estimation, i.e. one set of parameters is 
estimated based on the two measured transfer functions. 

Due to the fact that the inverse transfer function equations 
are more handy than the non-inverted equations (cf. [6]), the 
implementation of the parameter estimation is based on 

i  and i . 
The weighting of the different data points of each transfer 

function is based on two conditions: 
1. Each transfer function is weighted inversely proportional to 

its measurement uncertainty. This measurement uncertainty 
is based on the uncertainty contributions of the 
incorporated measurement channels. The uncertainty  of 
each transfer function is calculated by means of a quadratic 
summation of the two different uncertainty contributions of 
the input quantities for the transfer function calculation 
giving . These uncertainty contributions were 
estimated for magnitude and phase of the transfer 
functions. 

2. The uncertainty of each measurement value is taken into 
account by evaluating the covariance-variance-matrix as 
outcome of each sine approximation applied to the time 
series data. The variances for the approximated parameters 
(the diagonal elements of the covariance-variance-matrix) 
are normalised and inverted for the weighting.  
The weights  for each data point of each transfer function 

were calculated by multiplying the two mentioned weighting 
factors correspondingly for the real ( ) and imaginary part 
( ). The equations representing the model parameters within 
the transfer functions are nonlinear in their parameters. 
Therefore, only iterative algorithms for nonlinear regression 
were applicable. To avoid complex numbers in the results for 
the model parameters, it was necessary to constrain the 
algorithm to real numbers in the parameter vector. To this end, 
one set of approximated parameters was calculated by means of 
the real ( ) and imaginary parts ( ) of the two complex inverse 
transfer functions giving i , i , 

i , i . 
The resulting model function  follows as 

, , ⋅ , , ⋅

, , ⋅ , ,

⋅ , ,  , (15) 

with the assignment vectors , , ,  and the frequency 
vector . All vectors have the length 4  and are summarised 
in the matrix  giving 

, , , , 		, (16) 

1 0 0 0
⋮ 1 0 0 0

1 0 0 0
0 1 0 0

⋮ 0 1 0 0
0 1 0 0
0 0 1 0

⋮ 0 0 1 0
0 0 1 0
0 0 0 1

⋮ 0 0 0 1
0 0 0 1

		. (17) 

The data vector  follows as 

, ,

⋮
, ,

, ,

⋮
, ,

, ,

⋮
, ,

, ,

⋮
, ,

			. (18) 

The weights for each data point are summarised in the 
weighting vector  accordingly, giving 

,

⋮

,

,

⋮

,

,

⋮

,

,

⋮

,

  . (19) 

The cost function 

, , , , ⋅  (20) 

corresponds directly with (12) and is minimised for the 
parameter estimation. 

7. MEASUREMENT RESULTS 

The analysis of the feasibility of the parameter estimation 
was carried out with one HBM T5 10 N·m shaft type torque 
transducer (depicted in Figure 5). The chosen transducer is a 
passive strain gauge transducer, the bridge signals are 
transmitted by means of slip rings. The signal conditioning 
electronics, data acquisition systems, and filters have been 
calibrated dynamically prior to the measurements. The electrical 
influences of these components of the measurement chain have 
been compensated for [11]. 

 
Figure 5. Torque transducer HBM T5 – nominal torque 10 N∙m.  
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For the measurement, sinusoidal excitations in a frequency 
range of about 10 Hz to 1 kHz can be applied. It is 
advantageous for the model parameter identification to include 
frequencies which are as high as possible, because the sensitivity 
to parameter changes increases with higher frequencies [6]. 
However, the upper frequency limit for the measurement is not 
only limited by the capabilities of the rotational exciter, but by 
the dynamic behaviour of the whole shaft assembly. 

Beyond the (first) resonance frequency of the shaft 
assembly, the components arranged above the dominant spring 
element will be dynamically decoupled. The higher the 
excitation frequency is with respect to this resonance frequency, 
and the lower the damping of the system, the stronger the 
decoupling is. 

In practice, the angular acceleration at the top of the 
measuring device ( , cf. Figure 1) will become too small and 
too disturbed to be reasonably measured for frequencies far 
beyond the resonance frequency. For the investigated 
transducer HBM T5 10 N·m, the upper frequency limit for the 
measurements was reached somewhat above 300 Hz. 

The dynamic torque magnitude generated by the dynamic 
torque calibration device is relatively small at present and is in 
the range of about 0.5 N·m to 1 N·m. 

Figure 6 shows the magnitude and phase responses of the 
complex transfer functions of the top and of the bottom of the 
measuring device i  and i  for both measurement 
data and estimation. 

The measurement results show that the deviations from the 
estimated values of the top transfer function increase for 
frequencies higher than the resonance frequency of the system. 
This is caused by the mentioned increasing decoupling of the 
top part of the shaft assembly for frequencies beyond the 
resonance frequency. 

The results of the model parameter estimation show a fairly 
good agreement of the measurement data and the outcome of 
the regression, which proves the validity of the model 
assumptions for the transducer and for the measuring device. 
The real and imaginary parts of the two inverse transfer 
functions are given in Figure 7. These are the transfer 
functions, with which the parameter estimation was carried out. 

The real parts of the two transfer functions show very good 
agreement of measured values and fit, however, the imaginary 

parts reveal discrepancies between observed values and the 
regression data.  

As a next step, the correctness of the identified parameters 
was assessed. Agreement between measurement and parameter 
estimation results does not automatically yield parameters that 
correspond with the transducer’s real properties. This may 
happen if the model assumption and the mechanical system do 
not agree, but somehow a fit is possible, e.g. if some of the 
parameters of the measuring device are not correct or the 
transducer’s mechanical design is not sufficiently represented by 
the model. 

Therefore, a validation of the parameter estimation results 
was carried out by means of independent measurements and 
additional available information. This validation – as described 
in the next paragraphs – is an intermediate step towards a 
validation incorporating measurement uncertainties of all 
available sources. The agreement of measurement data and the 
results of the parameter identification will be analysed in terms 
of the uncertainties of both measurement data and model 
parameters in a subsequent publication. Due to the fact that the 
parameters of the measuring device – which were determined 
with assigned measurement uncertainties – are also 
incorporated in the transfer function equations, a comparison 
of identified parameters and measurement data considering 
only the measurement uncertainties of the measurement data is 
not sufficient. 

8. VALIDATION BY MEANS OF INDEPENDENT 
MEASUREMENTS 

The identified model parameters of the investigated 
transducer HBM T5 are given in Table 2. The parameters 
identified describe the mechanical properties of the transducer, 
which can be found – to some extent – in technical data sheets. 
However, this information is not reliable, because neither can 
one ascertain how these specifications are derived, nor are any 
uncertainties for the given specifications available. 
Nevertheless, the data sheet information of the HBM T5 
transducer [12] was compared with all other results. 

Additionally, some parameters of the investigated transducer 
were determined by independent static measurements. These 
measurements were carried out with the auxiliary measurement 

Figure 7. Measurement data of the HBM T5 transducer (blue) and fit result 
(red)  for  real  ( ) and  imaginary  ( ) parts of  i   (top) and  i
(bottom).  

Figure 6. Measurement data of the HBM T5 transducer (blue) and fit result

(red) for  i  (top) and  i  (bottom) in magnitude and phase.  



 

ACTA IMEKO | www.imeko.org  November 2016 | Volume 5 | Number 3 | 61 

set-ups already used for the determination of the mechanical 
properties of the measuring device [3]. While the torsional 
stiffness was measured without any modifications of the 
transducer, the friction of the slip rings and of the ball bearings 
made a measurement of the mass moment of inertia of the 
transducer’s rotor by means of a pendulum set-up infeasible. 
Instead, a bare rotor shaft without bearings of a similar 
transducer (same type and same torque capacity) was used for 
that purpose. 

It was not possible to validate the damping coefficient by 
independent measurements, but due to the known low damping 
of transducers and the large resonance rise experienced (cf. 
Figure 6), the influence of the damping can be assumed to be 
low and therefore to be less important for the dynamic 
behaviour of the transducer. 

The results of the measurements and of the manufacturer’s 
specifications are given in Table 3. 

Table 2 and Table 3 show that the data sheet specifications 
of the torsional stiffness agree very well with the experimental 
results from the auxiliary measurement, but the results from the 
mass moment of inertia deviate significantly. 

Two issues exist for the validation of the results of the mass 
moment of inertia parameters of the transducer: 
1. Only the overall mass moment of inertia 	

 can be determined by independent 
measurements. The top mass moment of inertia  was 
roughly estimated by means of the geometry of the rotor 
and with an assumed generic density of steel of  

7.8 g cm⁄  giving 	~	6	kg ⋅ mm . This number is so 
small that even with the set-up dedicated for the 
determination of mass moment of inertia, the resulting 
measurement uncertainty would be in the same magnitude 
as the measured quantity. 

2. The identified mass moment of inertia parameter of the 
bottom part of the transducer B  is significantly larger 
than expected. This deviation is most likely caused by the 
friction of the slip rings, which are arranged below the 
sensing element of the transducer. 

9. VALIDATION BY MEANS OF A VARIATION OF THE 
PROPERTIES OF THE DEVICE UNDER TEST 

To overcome these issues, an alternative validation approach 
was applied. The existing drive shaft assembly was modified 
with two different additional mass moment of inertia elements, 
which could be added to . The design of these mass bodies 
was chosen in such a way that a rigid connection minimises 

influences due to the mounting of the adapter. The mass 
moment of inertia of the mass bodies was measured 
independently in the same way as for the rotor of the torque 
transducer. 

One mass body is based on a modified coupling element 
(depicted in Figure 8); it has a mass moment of inertia of 

878.86	kg ⋅ mm 	 2 5 ⋅ 10 . Furthermore one 
mass body is an aluminium ring (depicted in Figure 9) with a 
mass moment of inertia of 295.64	kg ⋅ mm  2  
1 ⋅ 10 . 
Both mass bodies were used for validation measurements 

simulating a transducer with a correspondingly larger . The 
added mass moment of inertia in conjunction with the 
unchanged torsional stiffness of the torque transducer under 
test leads to lower resonance frequencies, and therefore to a 
decreased upper frequency limit for the dynamic measurements. 

The measurement results for the mass moment of inertia 
element using the coupling element ( 900	kg ⋅ mm ) are 
depicted in Figure 10, and the results for the aluminium ring 
( 300	kg ⋅ mm ) are shown in Figure 11. The resulting 
magnitude and phase responses of the parameters identified 
agree well with the corresponding measurement result. The 
parameters identified are given in Table 4.  

For both measurements with additional mass bodies, the 
parameters identified agree very well with the expectations. The 
mass moment of inertia of the top  agrees excellently with the 

Table 2. Results of the parameter identification. 

     

measurement 1  4 ⋅ 10 	kg ⋅ mm 603N ⋅ m rad⁄ 3 ⋅ 10 N ⋅ m ⋅ s rad⁄ 446	kg ⋅ mm  
measurement 2  8 ⋅ 10 	kg ⋅ mm 607 N ⋅ m rad⁄ 1 ⋅ 10 N ⋅ m ⋅ s rad⁄ 272	kg ⋅ mm  

Figure 8. Torque transducer HBM T5 (left) with the mass moment of inertia 
element  900 kg ⋅ mm  (right).  

Figure  9.  Moment  of  inertia  element  300	kg ⋅ mm   mounted  on  a 
clamping nut. 

Table 3. Manufacturer’s  specifications and  independent measurement 
results for mass moment of inertia and torsional stiffness with assigned 
expanded relative measurement uncertainties U . 

     

specifications  
from data sheet 
[12] 

41	kg ⋅ mm   640	 N ⋅ m rad⁄  

measurement 
results  

38.6	kg ⋅ mm 	
2 9.0 % 

638.29	 N ⋅ m rad⁄
2 0.1 %
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added mass moments of inertia. The torsional stiffness 
parameter  matches the independent measurements even 
better than with the measurements of the transducer alone.  is 
in a range similar to that of the measurements without 
additional mass bodies due to the influences from the friction 
of the slip rings. However, the reduced excitation frequency 
range causes higher uncertainties of the identified parameters, 
which will be described in a later publication. 

10. SUMMARY AND OUTLOOK 

A model-based approach enables the identification of the 
dynamic properties of torque transducers from measurement 

data. The model is linear and time-invariant and consists of 
known model properties of the measuring device and unknown 
model properties of the transducer under test. The parameter 
identification is carried out using the acquired measurement 
data which was corrected for influences from signal 
conditioning electronics and the data acquisition system. The 
parameters are estimated by means of a maximum likelihood 
estimator.  

Three signals are acquired during the calibration 
measurements. Based on this data, two complex transfer 
functions are calculated. A nonlinear regression is carried out 
based on the two transfer functions to estimate a set of 
common parameters. These parameters describe the dynamic 
behaviour of the torque transducers under test. 

The measurement results of a first transducer show good 
agreement to the model assumptions. Remaining discrepancies 
in the imaginary parts of the two transfer functions require 
further investigation. 

The parameter estimation based on the measurement data 
gives reasonable results. A validation of the identified 
parameters was carried out by means of independent 
measurements, as well as with a modified measurement set-up. 
The validation results agree very well with the identified 
parameters of the transducer and therefore confirm the results 
of the parameter estimation. 

The described validation is an intermediate step towards 
model-based dynamic torque calibration. The estimation of the 
uncertainties of the measurement and of the parameter 
identification, as well as the comparison of these results with 
independent measurements, is beyond the scope of this paper 
and will be covered by a dedicated publication in future. 
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