
ACTA IMEKO 
ISSN: 2221‐870X 
September 2015, Volume 4, Number 3, 72 ‐ 79 

 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 72 

Some thoughts on quality models: evolution and 
perspectives 

Luigi Buglione 

GUFPI‐ISMA (Gruppo Utenti Function Point Italia – Italian Software Metrics Association), Rome, ITALY 

 

 

 

Section: RESEARCH PAPER  

Keywords: Software Quality; Quality Models; Non‐functional Requirements; FPA; SNAP; ISO 25010; GQM  

Citation: Luigi Buglione, Some thoughts on quality models: evolution and perspectives, Acta IMEKO, vol. 4, no. 3, article 12, September 2015, identifier: 
IMEKO‐ACTA‐04 (2015)‐03‐12 

Editor: Paolo Carbone, University of Perugia, Italy 

Received February 12, 2015; In final form June 22, 2015; Published September 2015 

Copyright: © 2015 IMEKO. This is an open‐access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited 

Corresponding author: Luigi Buglione, e‐mail: luigi.buglione@gufpi‐isma.org  

 

1. INTRODUCTION 

‘Quality’ is a risky and misleading term because including so 
many meanings and attributes – even if often seen simply as 
‘defectability’ - within a single word that often in assessments and 
evaluations it besides in the ‘qualitative’ side more than be 
extended also in the ‘quantitative’ one, finding proper measures 
for quantifying it. Thus, questions such as ‘which is the value 
for quality? How to measure quality?’ are typical also in the 
Software Engineering community. It can be quite easy to count 
something but less to evaluate its quality side, because difficult 
to express the core question (“what does it mean quality”?). 
Tom Demarco said that “you cannot control what you cannot 
measure” [31]. But coming one step back, it is also true that “you 
cannot measure what you cannot define”. Coming one step back again, 
“you cannot define what you don’t know”. Thus, it is a knowledge 
problem and the priority is to move from a common, shared 
definition. Reading these three statements in the opposite 
order, (1) if you  know something, you’re able to properly 
describe it and share such definition with others; (2) if you are 
able to share definitions, it will be easier to quantify such ‘thing’  

 
 
in the same way (looking at metrology, two measurers should 
vary very few counting/evaluating the same ‘thing’ → 
repeatability); (3) if you are able to measure something in a 
proper way, understanding what attribute(s) you’re measuring, 
you can have information and should be sufficiently aware for 
taking decisions. Just a short example for better expressing the 
need and value when having (or not) a clear and not ambiguous 
definition: asking what is a LOC (Line of Code), possible 
answers could be: (a) a physical statement; (b) a logical 
statement; and both could be complemented (c) with or (d) 
without commented lines. Thus, counting LOCs for a software 
system, numbers could vary a lot just applying slightly different 
definitions1. Another short example with Function Points (FP): 

                                                           
 
 
 
 

1 According to Jones [13], there could be variability till 500 % between 
extremes. 

ABSTRACT 
‘Quality’  is an evolving concept, quite difficult to be defined, whatever the application domain observed. As Tom Demarco said,  it’s 
true that “you cannot control what you cannot measure”. But coming back, it’s also true that “you cannot measure what you cannot 
define” and again “you cannot define what you don’t know”. Thus, moving from a common, shared definition  is the priority for any 
activity and creates also measures from any measurement and benchmarking activity. Along the years, several ‘quality models’ (QM) 
have been produced: the scope for non‐functional attributes (part of the  ‘quality’ definition, also according to  ISO)  is enlarging. This 
paper discusses  the evolution of  the quality concept  (broader  than  the one  referred  to  the  solely  ‘product’, e.g.  service quality)  in 
order to observe which perspectives can be drawn up for the next years. 
 



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 73 

the IFPUG method till v4.2 formally included the so-called 
VAF (Value Adjustment Factor), expressing 14 non-functional 
attributes ‘adjusting’ the initial functional size value. Thus, AFP 
(Adjusted FP) formula included also VAF, while UFP 
(Unadjusted FP) not. But what should it mean the solely FP 
acronym? Which should be the right number of Function 
Points to count and declare for such activity? As in Figure 1, 
since any ‘thing’ to be evaluated is a mix of quantity and quality 
and each side has different parameters for being evaluated (in 
terms of productivity, costs and so on), it is fundamental to 
deeply analyse the ‘quality’ side – that has been right now the 
less explored (also because more complex) part of the ‘yin-yang’ 
representation. 

The paper is organized as follows: Section 2 will propose a 
short history of quality models (QM) from mid ‘70s on. Section 
3 will discuss the stakeholders’ issue: the inclusion (or not) for 
an attribute in a QM could be also due to the viewpoint faced 
and the stakeholders included (or not) in the analysis.  

Moving from the historical perspective shown, Section 4 will 
propose perspectives about how QM are evolving and should 
still evolve for properly catching the value for software quality 
during next years. 

2. A SHORT HISTORY OF QUALITY MODELS (QM) 

Our core question is: what is quality? ‘Quality’ is a multi-
facet term because it is an aggregator for multiple attributes. If 
you should express why you’ve appreciated a certain food, you 
would start to list a series of ‘attributes’ such as: flavour, taste, 
way to be presented, freshness of ingredients, the quality/price 
ratio, etc. Next step would be their quantification, trying to find 
a shared way to ‘count’ them.  

That’s the application of the well-known Goal-Question-
Metric (GQM) paradigm [20]. The same happened (and still 
happens) in Software Engineering with Quality Models (QM). 
If the ‘quantity’ side expresses the functionalities (what the 
software product – not the software project! - is asked to do), 
the ‘quality’ side should express the non-functionalities (how 
those functions should work for satisfying its users-clients). 
Thus a QM can be defined as a shared list of 

                                                           
 
 
 
 
2 Another way to express the same concept is using a coin: quality and 

quantity are the two faces of a coin. It is not possible to obtain a comprehensive 
evaluation not dealing with both faces. But each one has its own properties 
(attributes) and measures. 

attributes/characteristics that an entity of interest (EoI) can 
own, expressing its non-functional side (‘how’).  A QM can be 
articulated in one or more tiers: in the second case, there will be 
a hierarchy of attributes with high-level and low-level attributes.   

For ‘completing’ a QM, typically a further tier is added with 
measures that help in quantifying a certain attribute. Moving 
also from other similar studies [24]-[28], now a list of more 
known QM will be presented, trying to stress their peculiarities 
for catching useful elements for improving the next generation 
of QMs. 

2.1. FCM (Factor‐Criteria‐Model) 

This is the first QM, produced in the mid ‘70s within the Air 
Navy [1]. As shown in Figure 2, it contained 11 factors (the first 
layer-tier) and 23 criteria (the second layer). Each factor was 
linked to two or more criteria. Of course, as in any QM, each 
element needs to have a clear definition with unambiguous 
statements. Factors were classified into three moments in time 
along the software life cycle (SLC): product operation, product 
revision, product transition. 

2.2. Boehm Quality Mode 

One year later, Boehm proposed his own QM, with 7 high-
level characteristics (1st level) and 12 primitive characteristics 
(2nd level) [2] (Figure 3). Also here a high-level char could be 
linked to 2+ primitive characteristics. Introduced the ‘utility’ 
concept, splitting the ‘as-is utility’ and the ‘maintainability’ for 
software products. 

2.3. The FFT test 

Moving from such early QMs, ISO decided – after the 
realising of the first 9001 version in 1986 – to release its own 
QM [3]. The model, as shown in Figure 4, included 6 

 
Figure 1. Quantity and Quality – a ‘Yin‐Yang’ representation

2
. 

 

Figure 2. Factor‐Criteria‐Model.  



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 74 

characteristics and 18 sub-characteristics. Here each high-level 
characteristic is subdivided in a more refined list, with no-
crossed links. 

IEEE 1061-1992 replied the content of ISO 9126:1991, 
including such list of ‘attributes’ in the Appendix A. In 1998, 
IEEE 1061-1998 deleted such list, considering an open list of 
values and not a closed list of attributes. 

2.4. ISO 9126‐1:2001 

After 10 years, ISO refined its view on quality and proposed 
the new version for the 9126 QM [4] (Figure 5). It was 
introduced the concept of different viewpoints by different 
stakeholders: internal, external and quality in use viewpoints. 
Here the first two ones, with 6 characteristics and 26 sub-
characteristics. Each low-level characteristic was linked with 1+ 
process(es) from the ISO/IEC 12207 process model for any 

related process improvement activity. 
 A second model included the quality in-use view (Figure 6), 

with the four additional characteristics. 

2.5. ISO 25010:2011 

After 10 year more, ISO revised again its view on quality and 
evolved 9126 into the SQuaRE (Software product Quality 
Requirements and Evaluation) 25000 series with the new 2501x 
block of standards [5] (Figure 7). 

ISO 25010:2011 now includes 8 characteristics and 38 sub-
characteristics (Figure 8). Refined some characteristics (e.g. 
Usability is stressing more the Accessibility issue than before) 
and introduced others as Security. Also the quality in-use part 
evolved, including now five characteristics, maintaining from 
the previous version effectiveness and satisfaction and adding 
efficiency, freedom from risk and context coverage, defining 
also a lower-level. 

2.6. Other QMs and NFR‐related approaches 

After observing the evolution of the ISO view on QMs, this 
section will briefly introduce and list other possible QM 
produced in the Software Engineering arena from the ‘90s on: 

• FURPS(+): FURPS is the acronym for a software 
product quality taxonomy – as well as ISO 9126 - by Grady & 
Caswell [8] and refined with more attributes into FURPS+ [9]. 
FURPS stands for Functionality (to be split into: Feature Set, 
Capabilities, Generality, Security), Usability (Human Factors, 
Aesthetics, Consistency, Documentation), Reliability 
(Frequency/severity of failure, Recoverability, Predictability, 
Accuracy, Mean time to failure), Performance (Speed, 

Figure 7. ISO 25010:2011 – Quality Model.  

 
Figure 6. ISO 9126‐1:2001 –Quality in‐use view.  

Figure 8. ISO 25010:2011 – Quality in‐use.  

 
Figure 5. ISO 9126‐1:2001 – External/Internal Quality view.  

 
Figure 3. Boehm’s Quality Mode.  

 
Figure 4. ISO 9126:1991.  



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 75 

Efficiency, Resource consumption, Throughput, Response 
time), Supportability (Testability, Extensibility, Adaptability, 
Maintainability, Compatibility, Configurability, Serviceability, 
Installability, Localizability, Portability). The “+” addition 
represents an aid for remembering concerns such as: Design 
requirements, Implementation requirements, Interface 
requirements and Physical requirements. 

• ECSS-E-10A +  ISO 21351:2005: ECSS (European 
Cooperation for Space Standardization) is an initiative 
established to develop a coherent, single set of user-friendly 
standards for use in all European space activities. Among the 
several standards produced, ‘technical requirements’ are 
diffusely treated. ECSS-E-10A [6]  was used for creating ISO 
21351:2005 [7].  

• IFPUG VAF: from Albrecht’s initial study [29], 
passing for a single revision in 1983 [30] till IFPUG CPM v4.2, 
the FPA method proposed a ‘value adjustment factor’ (VAF) 
based on 14 non-functional attributes (GSC – General System 
Characteristics), mostly referred to the software product, some 
others to the software project entity. The 14 GSC are: Data 
Communication, Distributed Data Processing; Performance; 
Heavily Used Configuration; Transaction Rate; Online Data 
Entry; End-User Efficiency; Online Update; Complex 
Processing; Reusability; Installation Ease; Operational Ease; 
Multiple sites; Facilitate change. The aim of VAF was to ‘adjust’ 
the product functional size by a series of quality attributes for 
‘optimizing’ the statistical relationship in historical series of 
adjusted product functional size vs project effort. In 1998 ISO 
decided to keep of such element from any FSM (Functional 
Size Measurement) method, because not proportional to the 
product functional side, stating that non-functional 
requirements (NFR) must be evaluated apart from FUR in a 
different way. In the current IFPUG CPM v4.3 such list has 
been maintained in Appendix C [11]. 

• IFPUG SNAP: more recently, IFPUG proposed a 
new separate methodology from FPA named SNAP (Software 
Non-functional Assessment Process). From the analysis of 
product NFR, the method calculates the number of SNAP 
Points (SP). The current v2.2 [12] includes 14 sub-categories 
grouped into 4 categories. As in FPA, each sub-category has 2+ 
complexity parameters for deriving for each SCU (SNAP 
Counting Unit) the associated number of SP. Here the list of 
categories and sub-categories that could be used also as a QM, 
not considering the SP calculation algorithm: Data Operations 
(Data Entry Validation; Logical & Mathematical Operations; 
Data Formatting; Internal Data Movements; Delivering Added 
Value to Users by Data Configuration); Interface Design (UI 
Changes; Help Methods; Multiple Input Methods; Multiple 
Output Methods); Technical Environment (Multiple 
Platform; Database Technology; Batch Processing System); 
Architecture (Component Based Sw Dev (CBSD); Multiple 
Input/Output Interface). Table 1 summarizes the different 
QMs and approaches discusses above. 

3. POSSIBLE CRITERIA FOR EVALUATING A QM 

Analyzing the proposed QM it is possible to derive the 
following considerations in order to understand the value to be 
provided by a QM: 

• Stakeholders – as stressed in well-recognized 
management guides such as PMBOK [17] or ITIL [18], it is 
fundamental to understand from the beginning which are the 
right stakeholders to involve for creating a good QM. For 

instance, users are fundamental but often have been considered 
only for providing final feedback (customer/user satisfaction), 
not for driving assessment criteria. Remember that a customer 
(the business) is not necessarily the user, but could be separate 
people. Remember also to involve those secondary stakeholders 
(e.g. foreign tourists could be useful for describing how to 
improve a mobile touristic app for a certain city providing a 
different viewpoint than a citizen from that city). 

• Grouping criteria – quality represents the ‘how’ a 
product should be realized according to initial requirements. 
Thus, several criteria should be considered. For instance (a) 
Time: a lifecycle view should be included and/or linked to a 
QM (e.g. ISO 9126-1:2001 inserted the related process(es) from 
ISO 12207 and target audience for any sub-characteristic). It 
could be useful for improving the product during its lifetime for 
maintainability purposes. It could be applied at the beginning of 
a project, for planning the expected quality level and/or at the 
end of a project, for controlling the actual quality levels; (b) 
Viewpoint/Stakeholder positioning: internal, external and 
quality in-use viewpoints, as proposed by ISO from 2001 with 
9126-1 and now with the 25010 standards; (c) 
Viewpoint/Context-Content: the wider the list of attributes and 
sub-attributes, the more comprehensive the analysis of a 
product by its QM. As in the Balanced Scorecard (BSC) 
approach [19], it would be desirable to have at least 4-5 
perspectives (e.g. time, cost, risk, quality, ethics, etc.) against 
which grouping quality attributes; (d) Measurable entity: a QM 
should take into account one, single entity of interest (EoI). For 
instance, QM presented before are about the software product. 

4. EAM: TAXONOMIZE A QM  

The presented QM can have structurally a two (or three)-
level structure, but they are all about (software) products. What 

Table 1 – List of main QM – a short summary 
 

Name Year Author(s)  No.Chars/Sub‐
Chars 

Notes

FCM 1977 McCall et 
al. 

11  Factors  (3 
groups),  23 
criteria 

N:M 
relations 

Boehm QM 1978 Boehm 3  main  chars,  6 
second‐lev  chars, 
15 third‐lev chars 

‐‐‐

VAF 1979 Albrecht  10  GSCs  (General 
Systems Chars) 

Adj  Factor 
to FPA 

VAF 1983 Albrecht‐
Gaffney 

14 GSCs  Adj  Factor 
to FPA 

FURPS(+) 1987/92 Grady‐
Caswell 

5  chars,  28  sub‐
chars 

‐‐‐

ISO 9126 1991 ISO 6  chars,  21  sub‐
chars 

‐‐‐

ISO 9126‐1 2001 ISO 6  chars,  27  sub‐
chars  +  4  quality‐
in‐use chars 

2  models 
(int‐ext 
quality; 
quality  in 
use) 

ISO 21351 2005 ISO 16  Funct.  And 
Tech Req. 

ISO 25010 2011 ISO 8  chars,  31  sub‐
chars  +  5  quality‐
in‐use  chars  and 
11 sub‐chars 

2  models 
(int‐ext 
quality; 
quality  in 
use) 

SNAP 2011 IFPUG 14  Method



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 76 

about a QM for a different entity? One of the main problems in 
benchmarking activities is that often comparisons are done 
between not homogeneous entities and attributes. A simple 
example from the software industry can be the so-called 
‘backfiring’, that’s a linear conversion between LOCs and 
Function Points (FP). But a Line of Code (LOC) expresses only 
the length of the source code for a software product: two 
programmers could generate the same amount of functionalities 
from the user viewpoint but producing different numbers of 
LOCs, according to their experience, programming style, if the 
LOC definition for that organization includes (or not) 
commented and blank lines etc. FP born in the late ‘70s just to 
overcome such contractual problem, willing to express a neutral 
amount of functionalities for a software system provided by a 
provider to a customer. 

But also in this case there is often a confusion for many ICT 
professionals about what a FP is sizing: a FP – whatever the 
FPA variant - expresses the functional size for a software 
product, thus not the size for a whole software ‘project’. Simple 
demonstration: the so-called BFC (Base Functional 
Components) in a FSM (Functional Size Measurement) Method 
are all about the ‘product’, not the ‘project’ managing it. Again, 
if a project activity included into a Gantt chart does not vary 
(directly or indirectly) the number of FP, it means that such 
activity cannot be seen as related to a FUR (Functional User 
Requirement), that’s the needed input to calculate FP.   

EAM (Entity-Attribute-Measure) [15] is an effective way to 
taxonomize measures trying to depict a three-layered table for 
allowing understanding if your own set of entities of interest 
(EoI) has been properly analyzed through a palette of quality 
attributes. Table 2 presents the previous example using LOC 
and FP. 

It easily explains why LOC and FP cannot be ‘backfired’ or 
that McCabe’s cyclomatic complexity index v(G) - expressing 
the complexity for a chunk of software – is something different 
from the ‘functionality’. Thus, a more complex software cannot 
be measured and sized by FP but by v(G) or other similar 
measures, and so on. EAM could be a complement way to run 
a GQM (Goal-Question-Metric) [20] and BPM [22] analysis in 
order to check if we are measuring the ‘right things’ and ‘things 
right’, also because one of the main reasons why organizations 
measure a few is their perception of a higher cost than expected 
within the project budget. But often the risks are to measure 
too much (over-measuring), too few (under-measuring) or the 
wrong phenomenon (bad-measuring) [22]. EAM would like to 
be a way to do that.  

Looking at the ‘project’ entity, Figure 9 shows a proposal by 
PMI (www.pmi.org) for a list of 14 attributes (or characteristics) 
for a generic ‘project’ [21], but it is not shared e.g. with the 
other worldwide project management association such as IPMA 
(www.ipma.ch) or APMG (www.apmg-international.com). 

Again, looking to processes, it is sufficient to take a look to 
the different attributes proposed in the CMMI constellations 
(GP - generic practices) and in SPICE (ISO/IEC 15504, the so-
called PA - process attributes) for evaluating and rating a 
process using the N/P/L/F (Not/Partially/Largely/Fully 

achieved) ordinal rating scale.  
Thus, the match between a typical QM architecture and 

EAM can help an organization to clearly link operational 
measures in a project with the related entities and attributes 
(eventually two-layered) for the adopted QM, returning which 
could be the (sub)characteristic(s) with missing 
data/information to work on. 

5. BMP: BALANCING MULTIPLE PERSPECTIVES IN QM 

After understanding the quality level adopting the current 
version of a QM, next step could be to check and improve it 
over time. As in life, one fundamental criterion for being 
successful is to properly balance elements, possibly finding the 
most correct alchemy. It is not a simple task, but it implies a 
deeper knowledge about the way an organization works and the 
leverages to be used for achieving better results. BMP 
(Balancing Multiple Perspectives) [22], Figure 10, is a technique 
helping organizations in analyzing whether they are properly 
balanced against a set of criteria or not: are you managing your 
projects only by Time and Cost measures or including also 
Quality,  Risk and/or Ethics? 

Each ‘perspective’ (in this example: Time, Cost, Quality, 
Risk) could represent the trigger for a specific QM. And each 
‘specific’ QM could be deployed till the third level adopting the 
EAM approach presented before (measures – here shown as 
‘M’ followed by the initial of the perspective (T, C, Q, R) and 
an ordinal number), in order to check the level of completeness 
for each ‘leaf’ of this tree. Such approach, as described in [22], 
would help to drive an organization in obtaining more 
informative value from the same set of measures yet adopted, 
analyzing them in groups of two, or three or four, using a RCA 
(Root-Cause Analysis) approach.  

Figure 9. Project Attributes [21].  

Figure 10. BMP approach [22] – Perspectives and Measures.  

Table 2 – Entity (E), Attributes (A), Measures (M) [15].  

E – Entity  (software) product  (software) product

A  – 
Attribute  

Code Length    Functionality 

M  ‐ 
Measure 

Lines  of  Code 
(LOC) 

Function  Point 
(FP) 



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 77 

An example: the number of software defects before the 
project will be delivered or a certain number of LOC (or FP) 
could be good or bad, according to the thresholds established 
for each single measure. But correlating them – without 
gathering necessarily new measures, thus adding costs to the 
project – could give the project back additional information, 
e.g. measuring the ‘defect density’ for that chunk of software. 
And so on. Thus, in this context BMP perspectives could be 
interpreted as: 

• At a higher level, as Entity of Interest (EoI) – in this 
case the ‘bubbles’ could be represented by e.g. the five entities 
described in the STAR taxonomy (organization, project, 
resources, process, product) [23] 

• At a lower level, as QM attributes – in this case the 
balancing would be, within an EoI, among the different 
attributes (and related sub-attributes) till the measure layer. 

Figure 11 proposes a graphical view of what previously 
discussed, merging the typical QM structure with EAM, the two 
possible applications of the BMP technique. The Project 
Historical Database (PHD) represents the knowledge base 
where all the information should be stored for being shared 
along the organization. 

 For instance, ITIL proposes a ‘rule of thumb’ when dealing 
with how many KPI per each goal to formalize and use, 
proposing 2-3 KPI per goal and 2-3 base measures per each 
KPI. Measurement should be more and more an opportunity 
more than a cost: thus, organizations and projects could start to 
calculate also a ROM (Return On Measurement) as a variant of 
the traditional ROI, considering also the benefits and not only 
the cost from a proper measurement & analysis (MA) process, 
as stated e.g. from CMMI or ISO 9001 as a process to be 
deployed as soon as possible. 

6. A SHORT EXAMPLE 

In order to show an application of the concepts above 
presented, a short example follows, presenting before an EAM 
table summarizing the involved elements and later a GQM-like 
tree, depicting three levels (goal, KPI, measure). Such 
measurement plan has been produced taking into account four 
measurable entities (project, resources, process, product), 
planning one (or more) KPIs per each measurable entity and 
two (or more) measures per each KPI, as shown in Table 3. 

And now the GQM-like tree for the four (4) goals: 
o G1. Improve projects’ estimation capability ( Entity: 

Project) 
 KPI.01 – Improve the ‘historicization’ of  project data 
 M.01 – No. of  total projects managed per quarter by Business 

Unit 
 M.02 – No. of  projects uploading ‘project closing’ data per 

quarter 
 M.03 – Avg/Median estimated % effort for (PMBOK) ‘Project 

Closure’ phase 
 M.04 - Avg/Median actual % effort  for (PMBOK) ‘Project 

Closure’ phase 
o G2. Improve the Requirement Elicitation process ( 

Entity: Resources) 
 KPI.02 – Optimize the project teaming process 
 M.05 – Avg/median capability level per project role 

(periodically monitored) 
 M.06 –Avg/median seniority ratio per project role by that 

functional domain 
 M.07 - Avg/median cost per project role (by m/d) 
 M.08 – Avg/median No. of  changes in the team (per project) 

o G3. Improve the Requirement Elicitation process ( 
Entity: Process) 

 KPI.03 – Minimize the number of implicit requirements  
 M.09 – Analysts avg/median capability level (periodically 

monitored) 
 M.10 – Analysts avg/median seniority ratio by that functional 

domain 
 M.11 - % of  scope creep by m/d (economical) 
 KPI.04 – Optimize the FP/SP counting capability 
 M.12 – Avg/median % of  scope creep per project by a certified 

FSM-people 
 M.13 - Avg/median % of  scope creep per project by a certified 

NFSM-people 
o G4. Improve Software Quality ( Entity: Product) 
 KPI.05 - Reduce the number of  Defects per delivery 
 M.14 - No. of  defects FUR-related 
 M.15 - No. of  defects NFR- related 
 M.16 - No. of  defects Project-related 
 KPI.06 - Reduce the number of  not granular (product) URs 
 M.17 – No. of  (product) FURs not expressed at the 

‘Elementary Process’ level 
 M.18 – No. of  (product) NFRs not expressed at the 

‘Elementary Process’ level 
 

Gathering periodically those measures allows a project 
manager to better control a project with a close balanced 
monitoring by four EoIs, not only one and not only looking at 
time and costs. In that way it can be easier eventually to detect 
where root-causes can be placed for being removed quickly, 
lowering the Total Cost of Ownership (TCO) for that project 
(not necessarily once at a time, but 2 or more concurrently 
contributing to a certain final effect). A high number of defects 
could be due to a real low quality of that software, but also to a 
low coverage of test cases vs user requirements and that low 
coverage could be due (second step back in this example root-
cause analysis) to a reduced budget for the Analysis+Testing 
phases or because of unexperienced Test Specialists, not 
including the right number of tests or – if the coverage level 
would be ok - the proper test cases for verifying such part of 
the software. Thus, a balanced measurement plan can easily 
drive to better solutions, not necessarily spending more than in 
the ‘traditional way’. 

7. QUALITY MODELS AND THE NEXT DECADE 

Looking at the content of the presented QM against the 
period they were produced, it is possible to list a series of 
thoughts in order to designing QM for the next decade: 

• Content: a number of product attributes in a QM is 
useful for better describing and evaluating a product, but as 

 
Figure 11. Merging EAM, BMP, STAR taxonomy and QM.  

Table 3 – EAM tables (split in two blocks).  

Entity Project Resources Process 
Attribute  Estimation 

Capability 
Teaming 

Capability 
Req. Elicitation 

Capability 
Measure M.01~ M.04 M.05~ M.08 M.09~ M.11 

 

Entity Process Product Product 
Attribute  Req. Elicitation 

Capability 
Defectability Req. Granularity 

Measure M.09~ M.11 M.14~ M.16 M.17~ M.18 



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 78 

usual – the right number of attributes is in the middle (not too 
many, not too few). Product observation is fundamental for 
listing what is needed and it could change along time. For 
instance, smartphones have created a different way to describe 
and define ‘operability’ and/or ‘usability’ against mobile 
software produced just 3-4 years ago because of the ‘touching’ 
interaction on the screen. Again, sustainability can be a new 
product quality attribute to consider for new systems/software 
[14] because of a ‘greener’ perspective on software. 

• Usage: QM can be used not only for a ‘retrospective’ 
evaluation but also in early SLC phases as simple checklists for 
understanding the level of completeness for a product design, 
moving from a ‘wishing list’. Another way to use QM is for 
estimation purposes: since QM express NFR, estimators can 
use needed NFR-related (quality) measures to be included (at 
least 2+ ones) as independent proxies in estimation models, 
allowing the reduction of MRE (Mean Relative Error) figures as 
much as possible, saving project resources and improving the 
overall project value for its stakeholders (e.g. ISO 9126 parts 2-
3-4 define a plenty of measures to be read and applied). 

• Perspectives/Viewpoint: a stakeholders’ analysis is 
needed for understanding if the proper number of viewpoints 
in included (or not) in a QM. If too few perspectives have been 
included when designing a QM, feedbacks could be lower than 
expected at the delivery stage. A more comprehensive design 
can reduce maintenance costs along the product expected 
lifetime. 

• Measurement: another aspect to consider is the 
measurement issue, that’s the lower level in a multi-tier model 
as a QM is. People less skilled in measurement typically affirm 
that not anything can be measured. But, as in the introduction, 
if you are able to describe an entity of interest, you’ll be also 
able to measure it (e.g. using the GQM approach). ISO 15939 
[10] refined the GQM paradigm proposing MIM (Measurement 
Information Model) template that could be a good way to start 
defining how to monitor & control a non-functional (quality) 
attribute for a product. The suggestion is to follow a revised 
version of the well-known 5W+H approach (who, why, what, 
when, where, how), adding a second ‘H’ (how much), that 
could represent ‘targets – thresholds’ for checking the process-
in levels for that measure.  

• Entity of Interest (EoI): even if such QM born in the 
Software Engineering arena, they could be redesign or 
sometimes simply applied to a different EoI. Looking at the 
ISO 25010 quality model, it can be applied with very small 
changes for evaluating a service, not necessarily an ICT one. 
Imagine needing to evaluate a service desk service, as defined 
by ITIL or another IT Service Management (ITSM) best 
practice. You should take into account its reliability, continuity, 
security or ‘reusability’ of some components of a service. Of 
course some definitions could need to be slightly modified, but 
also the ‘quality in use’ part could be applied as is. Sometimes 
we act during time consolidating habits and concepts, but 
maintenance is a service, thus ITIL, CMM-SVC or other ITSM 
guides could be applied not only looking to Business Continuity 
service or something similar, but also for planning and 
managing a software maintenance service. By the way, some 
organizations can apply CMMI-DEV practices and processes 
also for maintenance projects, but CMMI-SVC would have a 
better fit. 

8. CONCLUSIONS AND NEXT STEPS 

Quality Models (QM) represent a good way in Software 
Engineering for evaluating software products from their initial 
concept till their realization and in-use stage. Non-functional 
requirements (NFR) are composed from quality and technical 
requirements; thus quality is one the two sides, maybe the more 
complex to analyze. Since quality is a multifaceted concept, it is 
very difficult to find a complete and stable definition for it: 
quality definition can evolve along time related to newer ways 
users could request, of course influenced by technology (e.g. 
smartphones, cloud computing, etc.). QM can help sharing the 
view on products and be used both in a qualitative (checklists) 
and quantitative way (measuring low-level attributes with one or 
more related measures).   

This decade will consolidate some new technology paradigm 
and will propose new ones: the important thing will be to 
observe more interesting trends for proposing evolutions and 
integrations of new, emerging facets for quality more than 
creating new models at all. Again, even if trivial, we need to 
clearly define which the entity to be analyzed (product, process, 
project, organization and resources) in order to avoid 
effort/cost estimation issues [15]. But – as said before – such 
QMs can be applied to any EoI, thus also to services, processes 
and projects. Evolution, not revolution, can be the right way to 
understand more about the ‘how’ realize better software 
systems and ICT services. 

REFERENCES 

[1] McCall J.A., Richards P.K. & Walters G.F., Factors in Software 
Quality, Voll. I, II, III: Final Tech. Report, RADC-TR-77-369, 
Rome Air Development Center, Air Force System Command, 
Griffiss Air Force Base, NY, 1977 

[2] Boehm  B.W., Brown J.R., Kaspar H., Lipow H., MacLeod G.J. 
& Merritt M., Characteristics of Software Quality, Elsevier 
North-Holland, 1978 

[3] ISO/IEC,  IS 9126:1991 - Information Technology - Software 
product evaluation – Quality characteristics and guidelines for 
their use 

[4] ISO/IEC,  IS 9126-1:2001 - Software engineering -- Product 
quality -- Part 1: Quality model 

[5] ISO/IEC,  IS 25010:2011 Systems and software engineering -- 
Systems and software Quality Requirements and Evaluation 
(SQuaRE) -- System and software quality models 

[6] ECSS, Space Engineering – System Engineering: Part 6. 
Functional and Technical Specifications, European Cooperation 
for Space Standardization, ECSS-E-10 Part 6A rev.1, October 31 
2005, URL: www.ecss.nl 

[7] ISO, 21351:2005 - Space systems -- Functional and technical 
specifications 

[8] Grady R. & Caswell D., Software Metrics: Establishing a 
Company-Wide Program, Prentice Hall, 1987, ISBN 
0138218447. 

[9] EELES P., Capturing Architectural Requirements, IEEE 
DeveloperWorks, 2005, URL: http://goo.gl/7PtM2z  

[10] ISO/IEC 15939:2007 - Systems and software engineering -- 
Measurement process 

[11] IFPUG, Function Points Counting Practices Manual (release 
4.3.1), International Function Point User Group, Westerville, 
Ohio, January 2010, URL: www.ifpug.org 

[12] IFPUG, SNAP (Software Non-Functional Assessment Process) 
APM v2.2, June 2014, URL: www.ifpug.org 

[13] Jones C., Applied Software Measurement: assuring productivity 
and quality, 2/e, McGraw-Hill, 1996 

[14] Lami G., Buglione L., Measuring Software Sustainability from a 
Process-Centric Perspective, Proceedings of IWSM-MENSURA 



 

ACTA IMEKO | www.imeko.org  September 2015 | Volume 4 | Number 3 | 79 

2012, 22th Int. Workshop on Software Measurement and 7th Int. 
Conference on Software Process and Product Measurement, 
Assisi (Italy), October 17-19 2012, pp.53-39 

[15] Buglione L., Ebert C., Estimation, Encyclopaedia of Software 
Engineering, Taylor & Francis Publisher, June 2012, ISBN: 978-
1-4200-5977-9 

[16] ISO, IS 21351:2005, Space Systems – Functional and Technical 
Specifications, May 19, 2005, URL: www.iso.ch 

[17] PMI, Project Management Body of Knowledge (PMBOK), 5th 
ed., 2013, www.pmi.org  

[18] AXELOS, ITIL v3 – IT Infrastructure Library, Refresh 2011, 
2014, www.itil-officialsite.com  

[19] Kaplan R., Norton D.,  The Balanced Scorecard: Translating 
Strategy Into Action, Harvard Business School Press, 1996, 
ISBN 0875846513 

[20] Basili V.B., Caldiera G. & Rombach H.D., The Goal Question 
Metric Approach, Encyclopedia of Software Engineering. Wiley 
1994, URL: http://goo.gl/uU5jJC  

[21] Turner R.J., Huemann M., Anbari F.T., Bredillet C.N., 
Perspectives on Projects, Routledge, 2010, ISBN 978-0-415-
99374-6 

[22] Buglione L. & Abran A, Multidimensional Project Management 
Tracking & Control - Related Measurement Issues, Proceedings 
of  SMEF 2005, Software Measurement European Forum, 16-18 
March 2005, Rome (Italy), pp. 205-214, URL: 
http://goo.gl/2dRL5j  

[23] Buglione L. & Abran A., ICEBERG: a different look at Software 
Project Management, IWSM2002 in "Software Measurement and 
Estimation", Proceedings of the 12th International Workshop on 
Software Measurement (IWSM2002), October 7-9, 2002, 
Magdeburg (Germany), Shaker Verlag, ISBN 3-8322-0765-1, pp. 
153-167, URL: http://goo.gl/t5Y0Hl  

[24] Jamwal R.S., Jamwal D., PadhaD., Comparative Analysis of 
Different Software Quality Models, Proceedings of the 3rd 
National Conference; INDIACom-2009, Computing For Nation 
Development, February 26 – 27, 2009, URL: 
http://goo.gl/kDvkYl  

[25] Al-Badareen A.B., Selamat M.H., Jabar M.A., Din J., Turaev S., 
Software Quality Models: A Comparative Study, in Software 
Engineering and Computer Systems, Part I: Second International 
Conference, ICSECS 2011, Kuantan, Malaysia, June 27-29, 2011. 
Proceedings, pp. 46-55  

[26] Suman, Wadhwa M., A Comparative Study of Software Quality 
Models, International Journal of Computer Science and 
Information Technologies, Vol. 5 (4) , 2014, pp.5634-5638, URL: 
http://goo.gl/rTSyQe  

[27] Sharma K., Comparison Of Various Software Quality Models, 
Proc. of the Intl. Conf. on Recent Trends In Computing and 
Communication Engineering -- RTCCE 2013, pp.48-51 

[28] Sanjay Kumar Dubey, Ghosh S., Rana A., Comparison of 
Software Quality Models: An Analytical Approach, Int. Journal 
of Emerging Technology and Advanced Engineering, Vol. 2, 
No.2, Feb 2012 

[29] Albrecht A., Measuring Application Development Productivity, 
Proceedings of the IBM Applications Development Symp., 
Monterey, CA (USA), Oct.14-17, 1979, URL: 
http://goo.gl/f0RN26  

[30] Albrecht A. & Gaffney J.E., Software Functions, Source Lines of 
Code, and Development Effort Prediction: A Software Science 
Validation, IEEE Transactions on Software Engineering, vol. 9, 
no. 6, Nov. 1983; URL: http://goo.gl/qYikl9. 

[31] Demarco T., Controlling Software Projects: Management, 
Measurement & Estimation, Yourdon Press, 1982.  

 
 

 


