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1. INTRODUCTION 

Regular reports on use of electronic measurement and 
analytical instrumentation, e.g. [1, 2], indicate that scientists and 
engineers plan to acquire more and more complex instruments 
(such as spectrophotometers, chromatographs, electron 
microscopes) and laboratory data management systems. To 
maximize the information gain from their application in 
physical sciences, life sciences, medicine, and engineering, a 
relatively high level of user knowledge and operational skill is 
required. This trend toward more complex instrumentation is 
accompanied by changes in the way professionals fulfill their 
various tasks [3]. We observe growth of time segments 
dedicated to study, learning, analysis, reasoning, and judgement 
in the structure of their jobs, with corresponding decline in data 
gathering, memorization, and physical activity. There is also a 
corresponding change in the generic structure of the 
instrument’s block diagram [4]: From a simple measuring device 
dedicated to specific physical quantities, followed by 
transducers interfacing a generic electrical instrument, to 
current instrumentation (with both analog and digital electronic 
components) combined with data acquisition and processing. 
The architecture of contemporary instrumentation permits 

implementation of complex and abstract models of applicable 
physical, chemical, and information transformation processes. 
Similar change is observable in the modes of instrumentation 
controls from mostly manual (allowing operators to adjust the 
set-up) to stored programs and feedback algorithms, allowing 
steadily increasing levels of automation in sample handling, 
repetitive measurements, and self-test. Another of the key 
changes in test and measurement instrumentation is the 
evolution of small multifunction products (usually an 
instrument-on-a-card) able to replace an entire rack [5]. 

The dominating technical issues being addressed by 
contemporary designers are concentrated around: 
– Requirements for real time measurements [6], reflected in 

increases of rates of data acquisition, speed of A/D 
conversion, rates of data processing, careful selection of 
data format, interrupt priorities, etc. Major unsolved 
problems remain in the areas of multinodal matrix data 
acquisition and processing of unstructured inputs. 

– Assessing the strategic impact of personal computers [7] 
which are strengthening their foothold in the field of 
electronic instrumentation. Although PC-based 
instrumentation does not provide anything substantially 
new, it handles many data related tasks less expensively and 
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with more flexibility than dedicated processors. Their 
memory with centrally stored programs and data permits 
efficient record keeping, cooperation of multiple 
instruments or measurement processes, and 
communication. This frees the user from many routine 
laboratory and reporting chores. 

– Interfacing, stemming from the availability of data 
processing equipment and need for at least laboratory-wide 
networking. 
All this is a contemporary reflection of the intuitively 

obvious and routine search for more capability (on-line 
measurements, automation of sample handling, ...), higher 
performance (detection limits, sensitivity, selectivity, signal-to-
noise ratio, speed, ...), ease of use, and lower price. In more 
specific terms the overall goals of new developments in the 
various types of instrumentation are: 
– Enhanced productivity and creativity of the analyst and 

experimenter, 
– increased information content of experiments, 
– optimized choice of experiment conditions, 
– multidimensional and multiparametric measurements, and 
– an integrated, highly automated laboratory. 

In general, these instrument design trends [8] seem to be 
driven by: 
– Need for wide repertoires of techniques and methods in a 

single laboratory, which is expected to be satisfied by 
implementations that preclude the prohibitive cost of a 
large number of dedicated instruments. 

– Recognized power of software leading to more software 
controlled instrumentation [9] and to blending of 
computations and measurements, in these systems the 
instrumentation parts are expected to be fixed, while the 
software assures needed flexibility and defines how the 
individual components behave together. This conceptual 
arrangement permits radical changes in the experiment to 
be accomplished with minimal hardware changes, In 
addition, software driven instrumentation opens door for 
self-tuning, optimization, self-diagnostics, integration into 
the overall laboratory environment, etc. 

– Availability of new and exotic technologies, such as fiber 
optics and microfabrication, offering an enormous range of 
opportunities for chemical microsensors (e.g. CHEMFETs, 

microdielectrometers, surface acoustic wave sensors), 
multiwavelength measurements, portability, and cost 
reduction [10, 11]. 
The overall pace of changes along these recognized trends 

will probably quicken and be more dramatic after the 
introduction of research results of Artificial Intelligence (AI) 
into routine instrument design considerations (block diagram of 
an intelligent instrument is presented in Figure 1). Experience 
currently being accumulated in the design of a wide variety of 
expert systems, complementing the well published work on 
DENDRAL, MACSYMA, PROSPECTOR, MYCIN, etc., will 
not only impact the instrumentation design, but will change the 
jobs of both instrument designers and instrument users [12], 
and highly probably, create new Artificial Intelligence 
technology based jobs in support areas. The expected result will 
be intelligent instrumentation which will be able to solve 
problems or produce answers instead of data [13]. 

The overall objective of introducing AI into instrumentation 
is to free the professional experimenter from unnecessary 
involvement with minute implementation details of the 
experiment and give him or her intelligent assistance in data 
interpretation, experiment evaluation and, ultimately, 
experimentation and instrumentation control according to 
embedded knowledge. Results from current research and 
application implementations, e.g. [14, 15], are presenting a 
convincing argument about the reality of an expected major 
impact by AI on the new generation of instruments. Embedded 
artificial intelligence could easily become the dominant design 
and implementation strategy for 21st century instrumentation. 

2. GENERIC QUALITY ISSUES IN CONTEMPORARY 
INSTRUMENTATION 

Measurement systems performance, like all technical 
equipment performance, is a result of sometimes complex 
interactions among the equipment, the operator, the procedures 
used, and the environment in which uninterrupted performance 
is expected. Quality management must address all these factors, 
because they all can be the root cause of imperfect performance 
representing itself as a detect, an error, or a failure [16]. 

The quality characteristics of the measurement process have 
developed around the concepts of precision, the degree of mutual 
agreement of independent measurements yielded by repeated 

Figure 1. Block diagram of an intelligent instrument. 
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applications of the process under specified conditions; and 
accuracy, the degree of agreement of such measurements with 
the true value of the magnitude of the quantity under 
consideration [17]. The concept of precision lends itself to a 
rigorous mathematical treatment by methods of statistical 
analysis. For accuracy, unfortunately, there does not exist any 
single, comprehensive, and satisfactory measure, and in some 
particular situations the concept itself can become illusive. Here 
statistics can only help, e.g. with tools such as mean square 
error, as proposed by Gauss himself, measurement bias, 
systematic error, and measurement uncertainty. But even with 
these tools the steps for analyzing assignable and unassignable 
causes of error are plagued with many difficulties. 

To satisfy the statistical character of both concepts multiple 
measurements are needed, which leads to an empirical concept 
of the repeatability of a measurement. Repeatability implies the 
same measurement process and the same method of 
measurement. Considered more fully it should also include the 
same observer, operators, auxiliary equipment, and equipment 
calibration status. In addition, it should be based on random 
sampling which takes into account a reasonable range of 
circumstances. 

Out of the wide variety of measurement equipment quality 
attributes the ones closest to measurement process quality are 
performance linearity over the effective range, and instrument 
stability. Linearity (actually the non-linearity or lack of linearity) 
is usually conveyed by statements about how the signal deviates 
as it spans the range of measurements. Linearity of an 
instrument is generally determined as the result of a calibration 
test in which only limited number of values is determined for a 
system in steady state. Only rarely will the same relation apply 
for dynamic states because the storage parameters will alter the 
instantaneous transfer characteristics according to the signal 
amplitude and history of previous signal excursions. Pressure 
gauges, accelerometers, thermometers, etc. will give very 
different values for instantaneous and steady state 
measurements. The best expression of an instrument linearity is 
via the calibration curve showing deviations from the best 
straight line. 

Drift is a system characteristic, sometimes understood to be 
synonymous with the term stability, that characterizes how a 
system variable, which is intended to be constant, varies with 
time. It also conveys information about very-low-frequency 
response of the instrument to the measured. Drift 
characteristics are usually specified from the reference point 
(defined at 25°C) to the extremes of the working range, 
expanded by safety margins. 

Linearity and stability, traditionally associated with the 
notion of instrument quality, are mostly a direct function of 
design choices and goals. Other typical design objectives, 
intended to minimize deterioration due to time or 
environmental stresses, represent additional product quality 
attributes which are achieved by proper system structure, 
component selection, adequate design margins, and built-in 
redundancy. These attributes are most often known as: 
– Reliability, the probability of a system’s successful function 

over a given mission period [18]. 
– Environmental ruggedness, defined by a class of environmental 

stresses under which proper functionality is guaranteed. 
– Electromagnetic compatibility, given by the energy levels, 

directions, and frequencies of radiated and conducted 
emissions and by the instrument susceptibility to external 
electromagnetic fields. 

– Safety level or class, indicating the risks of explosion, fire, or 
other hazards caused by potential internal defects or 
failures. 

– Maintainability [19], which is the probability that, when 
maintenance action is performed under stated conditions, a 
failed system will be restored to operable condition within a 
specified total down time. 
Levels of these product quality characteristics, required for 

business success and customer satisfaction, are given by users’ 
expectations and set by market conditions, competitive 
products performance, state-of-the-art of assurance 
technologies, and by government regulations or international 
standards. In some situations the overall economic value of 
these characteristics can be expressed by cost of ownership, 
which takes into account values of vendor’s goodwill shown in 
warranty period and conditions, cost of support and service 
contracts, etc. 

To the product quality characteristics mentioned above we 
must add the classical expectations of products free from 
defects at delivery, compliant to product specifications and data 
sheets, and evidencing satisfactory level of manufacturing 
quality controls, adequate workmanship skills, and attention to 
detail. 

Advances in computing technologies and the related lower 
cost of computing found their applications in many fields, 
including analytical, control, and measurement instrumentation. 
Currently the major part of electronic instrumentation is 
software driven, which brings into focus issues of software 
quality. The quality of the whole measurement system may, to a 
significant degree, be dependent on the quality of the code. 
Because computer software is a logical rather than a physical 
system, it has different characteristics [20], e.g.: 
– it does not wear out, 
– maintenance often includes design modifications and 

enhancements, and 
– there is no significant manufacturing activity involved. 

There is also not very much well structured industrial 
experience to significantly indicate preferable engineering 
design strategies. Many attempts to define software quality 
characteristics with associated metrics, criteria, and contributing 
factors have been made, e.g. [21, 22, 23], but only a few 
members of the proposed family of quality attributes are 
universally accepted, mainly: 
– Reliability, meaning a measure of the frequency and criticality 

of unacceptable program behavior under permissible 
operating conditions; 

– Correctness, now inconclusively demonstrated by validation 
testing which provides some level of assurance that final 
software product meets all functional and performance 
requirements. There is some hope that, in the future, 
programs will be infallibly proven to be correct. Some tools 
for automated proofs are beginning to emerge from the 
research work in artificial intelligence. 

– Maintainability, which may be defined qualitatively as the 
ease with which software can be understood, corrected, 
adapted, and enhanced. Software maintainability is a 
difficult term to quantify, but Gilb [24] proposed a number 
of measures relating to the maintenance effort. 

– Ease of use assures that the job or task will be successfully 
completed by personnel at any required stage in system 
operation within a specified time. Usability characteristics 
are based on observations and understanding of operator 
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behavior, limitations of body characteristics, and reaction 
times. 
Design approaches and assurance techniques for these 

quality attributes have not stabilized yet and vary widely from 
vendor to vendor. 

In the commercial world, as in science and engineering, 
these described measurement system quality characteristics are 
complemented by the ever increasing need to demonstrate that 
the total measurement uncertainty is sufficiently small to meet 
users requirements. This measurement assurance, in reality a 
quality control of measurements, is based on redundancy built 
into the measurement scheme. This redundancy is usually 
represented by repeated measurements of a stable standard. 
Measurement assurance is then obtained when verifiable limits 
of uncertainty have been demonstrated, and measurement 
process quality control program exists in real time to monitor 
its performance [25, 26]. 

3. QUALITY ISSUES UNIQUE TO INTELLIGENT 
INSTRUMENTATION 

– The definition of quality, which is currently oriented toward 
conformance to specification. It needs to be replaced by a 
sociometric definition, which perceives and eventually 
measures it as a multiattribute product characteristic to be 

designed in; 
– The value of quality, now primarily beneficial to the 

manufacturer via reduced production and support cost, 
must be recognizable directly at the product level in both 
classical forms (value in exchange and value in use). This 
will allow quality to be properly priced, and appreciated as a 
source of revenue; 

– The role of the quality department, where quality specialists and 
managers must shun being critics of manufacturing 
processes and become contributing partners with all line 
functions. 
We understand the fact that scientific research, as well as 

control and measurement processes are, by nature, processes of 
goal oriented learning, as evident from the similarity of flow 
diagrams of basic process steps shown in Figures 2A, B. The 
key objective in making these processes as efficient as possible 
is frequently achieved by applying scientific analytical 
instrumentation. Further, considering that the learning process 
itself is a feedback loop between inductive formation of 
hypotheses, based on accumulated data, and collection of new 
data according to deductively proposed experiments, we can see 
that classical instrumentation plays a major role in data 
gathering and analysis. However, intelligent instrumentation is 
expected to bring new (expert) levels of efficiency into the 

 
Figure 2A. The process of experimentation as iterative learning. 
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processes of experimental data interpretation, new hypotheses 
forming, and designing of new experiments. 

Recognition that all the terms, such as data, information, 
rules, metarules, heuristics, etc. used in presented flow 
diagrams, represent different forms of knowledge, brings us to 
knowledge as the central point of the whole held of artificial 
intelligence perceived, from the practical viewpoint of the 
electronic industry, as knowledge-based problem solving by 
computers. Also the empirical and intuitively self-evident 
observation that the competence, and by that the value, of any 
intelligent system strongly correlated to the amount and quality 
of the embedded knowledge, leads us to the central unique 
quality issue of intelligent instrumentation: the issue of knowledge 
quality. 

3.1. Knowledge Quality 

The factual part of our knowledge comes mostly in the 
form of scientific and technical data in three broad classes [27]: 
– Repeatable measurements on well defined systems (class A); where 

quality assurance methodologies recommend using data 
only from reliable sources such as National Standard 

Reference Data System (NSRDS) coordinated by the U.S. 
National Bureau of Standards. 

– Observational data, often time or space dependent (class B). 
The most effective way to assure quality of class B data by 
careful maintenance and calibration of the measuring 
instruments prior to data acquisition. Recording and 
preservation of all required auxiliary information is also 
important. 

– Statistical data (class C); here quality control strategy, based 
on Probability Theory, is a more difficult task, often 
hindered by disagreements in definitions and terminology. 
One of the greatest benefits of the recent advances in 

graphics software is increased control over the quality and 
completeness of experimental data by allowing for its visual 
inspection via windowing, 3-D modelling, and simultaneous 
processing of alphanumerical and graphical information. 
Improvements have reached the point where virtually any level 
of detail from multiple measurements can be observed on the 
screen and functionally used to enhance data quality. 

Also more frequent acceptance of the need for systematic 
skepticism and openness to alternative modes of interpretation 
in data analysis is now leading to application of statistical 

 
Figure 2B. Event-driven control scheme of a general problem solver. 
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methods of exploratory data analysis. These methods reflect 
recognition of the importance of graphical representation for 
visual inspection of unprocessed data, which should precede 
formal statistical calculations even when the latter is the desired 
end product. This approach opens wider ranges of alternative 
explanations and allows the researcher to be open to 
unexpected possibilities, particularly while working with weak 
theories. 

Assuring quality of higher level knowledge, which is being 
engineered today and will be embedded in intelligent 
instrumentation (e.g. definitions, taxonomies, discrete 
descriptions, constraints, deductive algorithms), presents many 
epistemological challenges. The philosophical questions about 
the reliability of scientific knowledge, by themselves a serious 
intellectual issue, will not significantly impact the design of 
intelligent instruments. This is so because, in majority of 
expected applications, the knowledge and application domains 
will be sufficiently narrow and well defined. This will permit 
quality assurance to concentrate on issues of unambiguity, 
consistency coherence, visibility and acceptability of perceived 
patterns, and methods of justification and validation. 

A completely new set of quality issues is associated with the 
problems of knowledge base updates and knowledge 
maintenance. Quality assurance methods here might be 
simplified by the presence of metaknowledge or metarules 
controlling automatic learning in embedded knowledge bases. 

3.2. Quality of Knowledge Representation 

The pragmatic approach to embedding knowledge into 
programs that exhibit intelligent behavior is focused on 
developing schemes for knowledge representation which permit 
manipulation of specialized data structures to obtain intelligent 
inferences. In general, the knowledge representation schemes 
are combinations of data structures and interpretive procedures. 
The most frequently used formalisms are: state/space 
representation, formal logic, procedural representation, 
semantic nets, production systems, scripts, and frames. There 
are also special techniques for visual scene and speech 
representation. 

The issues of form and notation have occupied most 
previous quality discussions. Currently it is recognized that the 
issue of what could or could not be done with a representation 
is more important. So, on the conceptual level, the most 
important quality attributes of knowledge representation are 
associated with its three adequacies [28]: 
– metaphysical, assuring a form that does not contradict the 

character of facts of interest, 
– epistemological, which guarantees that the representation can 

practically express the facts, and 
– heuristical, that assures the reasoning processes, leading to 

the problem solution, are expressible in contemplated 
language. 

Many authors [29] proposed more practical attributes, e.g.: 
– modularity, which allows adding, deleting, or changing 

information independently, 
– uniformity, to assure understandability to all parts of the 

system achievable via rigid structures, 
– naturalness, to reflect the ease of expressing important kinds 

of relevant knowledge, 
– understandability, the degree to which the representation 

scheme is clear to humans, 
– modifiability, which assures context independence. 

Studies of semantic primitives and established 
representational vocabularies [30] lead to other attributes such 
as finitude, comprehensiveness, independence, noncircularity, 
and primitiveness. 

A completely new quality assurance issue arises when 
problem solving algorithms require representation change 
midstream. Representation transformations must be then 
evaluated in terms of isomorphism and homomorphism. 

3.3. Knowledge Base Quality Issues 

Technical implementations of knowledge bases are 
benefiting from the design for quality methodologies of data 
bases, which culminated in fault-tolerant designs. New quality 
issues, emerging from the special characteristics of relational 
data bases and current experience with knowledge bases, are 
bringing into focus needs of assuring: 
– Protections against interferences among the subsets of a 

knowledge base. This is complicated by the environment of 
laboratory-wide networks which do not have a central 
operating system. Current “design for quality” research 
results tend toward making transactions atomic, which 
could adversely affect the transaction time; 

– Protections against new aspects of pattern sensitivity; 
– Transparency of structural characteristics, a difficult task in 

conditions of high structural complexity; and 
– Already mentioned knowledge maintenance quality controls. 

First attempts to formulate adequate assurance strategy for 
knowledge maintenance have already taken place, as described 
e.g. in [31], providing prespecified set of control metarules, 
production rules formalism, and tools for sensitivity analysis, 
execution tracing, and explanations. But effective 
implementation of these strategies will be complicated by the 
problems of scale, speed, and system complexity. 

The importance of methods for validation of system’s 
knowledge base and evaluation of its quality is also self-evident, 
but their development is a very difficult task. 

3.4. Quality of Knowledge Processing 

The basic set of knowledge processing algorithms consists 
of search processes, deductions, inductive inferences, and 
learning. 
– Search algorithms, not significantly different from other 

algorithms implemented by computer programs, do not 
present new or unique quality problems. The basic 
questions here still relate to implementation correctness and 
its demonstrated verification levels. Some new challenges 
may be found in implementation of associative searches, but 
even here, the main issue is correctness. 

– Deductions are basically chains of statements, each of 
which is either a premise or something which follows from 
statements occurring earlier in the chain. Mechanization of 
deductive processes based on predicate logic must, beside 
the issue of direct correctness, take into account needs for 
the deduction’s visibility, ease of inspection, backward 
traceability etc., to improve solution credibility and to allow 
for correctness verification. 

– The most difficult task for knowledge processing quality 
assurance arises when we depart from categorical (or 
deterministic) reasoning. Statistically based inferences, or 
inferences based on social judgement are plagued with 
errors of insufficient evidence, illusory correlations, 
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circumstantial prompting, belief perseverance in the face of 
contrary evidence, etc. Research into application of 
epistemology to solve these types of problems is only 
beginning. But we do not expect these problems to be 
encountered during the early generations of intelligent 
instrumentation. 

– Automated learning systems’ performance can be measured 
by the rate of knowledge compilation. The quality of such a 
system is usually described by the system’s generality (the 
ability to perform successfully in novel situations), its ability 
to discriminate between critical and peripheral information, 
its ability to automatically restrict the range of acquired 
knowledge applicability, and its ability to control the degree 
of interest of inferences in order to comply with principles 
of significance and goal satisfaction. 
But the fundamental conceptual problem of controlling 

quality of knowledge processing will be resolved only if the 
problem of adequate modelling of the categorical structure of 
the thinking process will be resolved. 

4. OTHER QUALITY ISSUES ASSOCIATED WITH THE 
INTELLIGENT INSTRUMENTATION 

In many aspects the intelligent instruments will be 
implementations of  an advanced generation of  the current 
software driven instrumentation. Because of  this fact all the 
traditional software quality issues will be still present and will 
have to be addressed. The aspects of  the new, higher level of  
intelligent human interface will bring into the field of  
instrumentation quality issues currently associated with 
advanced computing and engineering workstations. The most 
important seem to be the: 
– Quality aspects of the control language; in the field of 

intelligent instrumentation the interface and control 
language will have to provide convenient means for 
implementation of a variety of experimenting strategies and 
designs. It must also act as a vehicle of experimenter’s 
thought, and via local area networks allow communication 
of higher level concepts between experimenters. The 
minimum quality requirements will have to cover aspects of 
ease of programming, error handling, automatic 
backtracking, machine independency of compilers, and level 
of standardization. Similar requirements will apply to 
languages designed specially for manipulating knowledge 
bases. 

– Quality of human interface, which must permit the 
instrumentation user to concentrate fully on his experiment, 
without being distracted by the uniqueness of the applied 
computational technology. Human interface design 
strategies will have to go beyond the traditional ergonomic 
and intuitive approaches to design for system friendliness. 
They must address the physical, physiological, 
psychological, and intellectual aspects at the experimenters 
job and personality. Solutions must be based not only on 
anthropometry but be developed in the context of the 
measurement system’s lexical, syntactic, and semantic 
requirements. There is a growing recognition of the need 
for serious scientific experimentation which will permit 
both the designer and cognitive psychologist to significantly 
improve current approaches to human-instrument interface 
designs. 

– Quality aspects associated with new computing 
architectures and increased levels of parallelism. 

– System testability and diagnosis; the growing complexity of 
the instrumentation, its real-time performance, which will 
make accurate repetitions of the computational and 
reasoning processes impossible due to asynchronisms and 
new levels of freedom for internal intelligent controls, will 
make these tasks especially difficult but nevertheless 
extremely important for future fault-tolerant designs. 
Despite expected software dominance there still will be 

enough hardware in the next generation of  instrumentation to 
keep us worrying about the traditional quality issues associated 
with product safety, regulatory compliance, environmental 
ruggedness, reliability, maintainability, supportability, etc. Some 
new quality issues will emerge with new families of  VLSI 
components. The increased levels of  their complexity and 
density will challenge our ability to control qualify of  all 
materials involved in processing, the dimensions of  
manufactured structures in and below the one micron range, 
and the many process variables needed to achieve yield 
economy and final product quality. 

The expansion of  intelligent instrumentation, expected in 
1990’s, will be complemented by maturing of  some sensor 
technologies currently being introduced. The new families of  
sensors solve one set of  problems but open risks in other areas 
of  which the quality assurance community must be aware, e.g.: 
– Optical sensors for chemical analysis are an answer to 

problems of electrical interference, reference electrodes, 
physical contact with the reagents, and need for 
multiwavelength measurements. But to ensure the highest 
possible quality of their application, care must be taken to 
prevent background light interference, the possibility of 
photodegradation of reagents, to assure long term stability, 
etc. The sources of potential error must be identified and 
compensated for. 

– Electrochemical sensors, where developments are moving 
away from potentiometric to amperometric sensors. These 
changes are bringing challenges to techniques of surface 
modification control required to achieve wanted selectivity, 
to compensation methods for dealing with increased 
sensitivity and to design for reliability. For CHEMFETs, 
especially, challenges will appear in areas of stability and 
encapsulation technologies. 
The fundamental quality issues and strategies for assurance 

of  these new families of  sensors revolve around: 
– the two concepts: compound confirmation and compound 

identification, as well as 
– the practical need to avoid application surprises, such as 

interference in sample matrix effects, errors at the reference 
point, etc. 

5. RESULTS OF CURRENT RESEARCH AND APPLICATIONS 

Reports regarding results of AI application in support of 
instrumented diagnostics and troubleshooting are many. 
Manufacturers, including IBM, Digital, Tandem, Prime, AT&T, 
General Electric (for review see e.g. [32]), have devised remote 
diagnostic expert systems to analyze hardware problems in the 
field. In 1984 major breakthrough by Dr. L.F. Pau at Battelle 
Memorial Institute, Switzerland, in development of a set of 
about 400 application independent metarules for diagnostic 
expert systems, provided new strategy for both reduction of 
design cost and increase of capability via a model of a circuit 
network which describes many types of real electronic faults. 
Also the proliferation of CAE tools and workstations has a far 
reaching impact on the productivity of development and ease of 
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support of maintenance related expert systems. Other software 
based expert system-building tools, such as automated 
reasoning tool ART [33], permits the designer to develop the 
necessary knowledge base, reflecting his experience. These tools 
often use frames to represent knowledge about objects of 
interest, along with their attributes. Agenda or menu windows 
indicate the rules fired together with facts that initiated them. 
These and command windows, which trace program execution 
step-by-step, simplify both debugging and use of the system by 
illustrating the reasoning process flow. 

Less visible, but significant, are the results of the still 
infrequent applications of AI to upgrade performance of 
analytical instruments. One of the key reasons for this slow 
progress is that the majority of known successful projects has 
been implemented on large computers, often unavailable in 
current laboratory settings. 

A microcomputer based expert system for enhancement of 
electroencephalogram evaluation [15] has demonstrated the 
usefulness of AI methods in biomedical instrumentation. This 
system provides on-line evaluation with performance equal to 
that of a large computer. The most important information is 
being extracted from the frequency domain, using FFT for 
spectral estimation, Hanning windows to reduce spectral 
leakage, and forty-three assembly language coded rules for basic 
classification into either normal or abnormal categories. The 
disadvantage of the present system lies in the need to have the 
user provide the complete control strategy, i.e. the selection of 
relevant rules and sequence of their implementation. 

The development of a totally computerized triple 
quadrupole mass spectrometer, with prototype knowledge 
based instrument control [14], is a necessary step toward the 
goal of intelligent TQMS instrumentation. It has the ability to 
apply structured stored experience, to use power of automatic 
reasoning to control its own behavior, and to respond to novel 
situations and new problems. The knowledge including control 
heuristics is represented in the form of productions (rules). 
Resident, AI guided calibration program assures self-adaptive 
feedback control process for real-time optimization or tuning 
of the data acquisition process. 

Studies of data acquisition, knowledge representation, 
reasoning algorithms, and interpretation of results, applied, e.g., 
to chromatographic data for the diagnosis of spontaneous 
bacterial peritonitis [34], indicate that current results can be 
extended to other applications and could lead to automated 
intelligent decision systems. 

Honeywell System’s FLEET/DRAS project [35] 
demonstrated the feasibility of applying expert system 
technology to automation of data reduction, analysis, and 
detection of anomalies. 

Although incomplete, work done in investigation and 
assessment of the mutual relationship between artificial 
intelligence and assurance sciences and technologies, has 
identified the key quality strategies necessary to address the 
new, knowledge quality related issues [36]. These strategies are 
based on creative application of current assurance expertise 
enriched by methods of applied epistemology. As described in 
previous chapters major progress has been achieved in: 
– controlling quality of the factual part of embedded 

knowledge; 
– identification of adequacy (metaphysical, epistemological, 

and heuristical) as the most important quality attribute of a 
knowledge representation; 

– strategies for fault-tolerant design of data and knowledge 
bases; and 

– key architectural guidelines for intelligent human interface 
design. 
The key quality assurance technologies and skills for the 

manufacture of key VLSI components, which are expected to 
be fundamental for the intelligent instrumentation hardware, 
are identified and in place [37]. 

New sensor technologies, new non-von Neumann 
architectures, new system parts and functions, as well as 
support of knowledge quality assurance, will require additional 
intensive applied research and engineering work by teams of 
experts from both the R&D and quality communities. 

6. SUMMARY AND CONCLUSIONS 

The emergence of  successful practical implementations of  
the research results in artificial intelligence is beginning to 
impact conceptual thinking about the new generation of  
electronic measurement and analytical instrumentation. Because 
the competence, and by that the value of  an intelligent 
instrument, will always be strongly correlated to the amount 
and quality of  the embedded knowledge, the issue of  
knowledge quality is beginning to form the cornerstone of  the 
new concern of  quality management. To assure success of  
quality programs, methods of  applied epistemology must be 
employed. Only in this way can the problems of  quality at all 
levels of  knowledge, its representation, storage, and processing 
be solved. The key quality assurance strategies addressing these 
knowledge related quality attributes have been identified. 

New quality issues are also emerging because of  the 
increased levels of  hardware parallelism, computational speed, 
system complexity, and new sensor technologies. Traditional 
issues of  hardware and software quality, as well as issues of  
support and vendors goodwill, remain substantially unchanged. 

Current research and application results indicate that 
artificial intelligence must be considered by instrumentation 
designers in their search for more capability, higher 
performance, ease of  use, and lower price. They even suggest 
that embedding artificial intelligence into the measurement and 
analytical instrumentation could easily become the dominant 
system design and implementation strategy for the 21st century. 

The conceptual framework of  current quality assurance, if  
enriched by methods and tools of  applied epistemology as 
indicated, seems to be generally adequate to address the new 
issues associated with knowledge quality and intelligent user 
interface. 
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