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1. SUBJECT AND SCOPE OF THE THEORY OF MEASUREMENT 

To ask what is (or should be) the subject matter of the 
theory of measurement is not an idle question, since what 
seems to be the first problem today is to realize that there are 
indeed basic problems to solve and to identify then. Too many 
people feel with undue complacency that the theory of 
measurement is a perfected structure, needing only peripheral 
work. Others feel, instead, that fundamental questions lie 
unanswered, or even unasked, being pre-emptied by 
undiscussed assumptions; framing such questions, that I think 
are to be asked and answered from the operative standpoint [1–
4], is the aim of this paper. 

The purpose of a theory is to describe reality in a coherent 
framework – in our case to provide a coherent description of 
the valid praxis of measurement, suited to its whole range. It is 
apparent that the current theoretical framework is not up to this 
task: the rank confusion prevailing in the field is widely 
recognized and lamented. Just try and compare the definitions 
given in the current literature of basic concepts as value, error, 
measurement, measurable quantity, etc. (I even saw the 
lecturers on Metrology of an International School declining to 
hold a seminar on definitions as meaningless in today’s mixed-
up situation [3]). There is a widening gap between the praxis of 
measurement and its theory: our measurements agree with one 
another much better than we agree in talking about them. 

Curiously enough, this is not felt as a flaw in the theory: for 
most people it is just a matter of ‘terminology’ and the problem 
is shunted to nomenclature committees, which face up an 

impossible task. They are supposed to choose the ‘right word’ 
for designating well-understood, undisputable concepts, but 
these ones turn out to be hazy or unfitting; a formal 
redefinition is called for, and in so doing unwitting theoretic 
work is done: what else is the core of a theory but a cross-
connected list of definitions? 

The ‘current’ theory of measurement is embodied in the 
definitions, remarks and assumptions (both discussed and taken 
for granted) of textbooks on one hand and normative literature 
(standards, codes of practice, etc.) on the other. There is no 
parallel of the latter source in the other fields of science, 
unencumbered by the strong normative implications of the 
measurement problem. What happens is that the ‘normative’ 
authors feel that it is not up to them to discuss the theory, but 
only to codify the approved practice using the language of the 
main line of the approved textbooks; the latter, on their hand, 
cannot teach differently from the main line of the normative 
literature without rendering a bad service to their readers. The 
vicious circle thus generated makes it difficult to update the 
theory; its haphazard growth disguised as lexical adjustment or 
conventional ruling cannot touch the basic tenets, while the due 
concern over its responsibility may well transform some 
normative body into a low-pass filter against new ideas. This is 
one reason, I think, why the current theory of measurement is 
still based on the framework masterly set up by Helmholtz [5] 
on basic ideas of Euclidean lineage, which makes it the only 
field of science treated as yet in full 19th—century terms. A 
century passed, which shook the very foundations of mechanics 
and geometry, but new basic concepts like those of signal and 
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information, of quantum indeterminacy, etc., do not seem to 
have found their proper place in the frame of the measurement 
theory. Meanwhile a more and more sophisticated 
instrumentation calls for a refined treatment in modern setting; 
we need a comprehensive theory able to range from the 
carpenter’s rule to the microprocessor, and the latter can hardly 
be dealt with as an extrapolation of the former. 

As technical-scientific people are shy of meddling with 
‘philosophical’ issues concerning the meaning of what they do, 
and grew accustomed to shift most basic issues into 
terminological channels, the bulk of their work is devoted to 
mathematical techniques for data elaboration, mostly 
concerning the probabilistic error analysis. Somebody is 
therefore inclined to identify the theory of measurement with 
this analysis (blanket statements as “any physical quantity is just 
a statistical variable” are often heard among physicists), which 
represents a drastic reduction in scope for the former and 
leaves the latter without bases (such position is also due to the 
general, very disputable, inclination to identify ‘theory’ with 
mathematics). The debate on the basic concepts of 
measurement has been left mainly to scholars in non-physical 
sciences [6–9]: almost everybody seems convinced that only 
there some problem is left, while in physics and the related 
technical fields all is nicely settled on Helmholtz’s lines [8]. In 
the minds of many people Stevens’s ideas are connected with 
non-technical measurements, though his stand against 
Campbell [6] on psychophysical measurements could well have 
been taken by any technical scholar on several engineering 
measurements (e.g. hardness). Marvel was expressed for the 
neglect in which the field is left [7], and it was noted that 
fundamental issues about measurement in physics are unsolved 
or plainly ignored [9]. 

Measurement is a knowledge-gathering technique. What its 
theory is to be concerned with depends on what we expect 
from a theory. From the operative standpoint the measurement 
theory is the total body of definitions and rules concerning 
measuring activities, formulated with the aim of providing a 
guide to get consistent results. From another it is the 
argumentation that justifies the measurement itself, thus 
sanctioning what can be measured and what cannot. The issue 
of the scope of the measurement theory is coextensive with the 
question of what is a measurable quantity. 

2. MEASURABLE QUANTITIES 

In an operative approach we may say a measurable quantity 
is anything we can describe in an objective and consistent way; 
the problem then is to define ‘objective and consistent’ in order 
that we can measure things to our satisfaction and discriminate 
against illusory knowledge. The classical approach starts from 
the other end: the consistency is looked for in the formal 
properties of the class of mathematical entities chosen for the 
description, the measuring procedure is modelled on a formal 
operation of this class, and a measurable quantity is what fits 
the model; the problem then is to justify the measurement of 
the other things that in practice we measure but do not fit 
directly in the pre-established model. 

The universal (though not necessary [9]) choice is to map the 
measurable quantities on the class of the real numbers, setting 
up a homomorphism between the empirical juxtaposition of the 
measured objects and the addition of the numbers assigned to 
measure them. The obvious paradigm is the measurement of 
length. All quantities endowed with the ‘additive’ property of 
the length, called fundamental or extensive (terminology and 

connotations depend on the author), may be measured directly; 
the others must be somehow ‘derived’ from them; if some kind 
of ‘derivation’ is not devised the quantity is not deemed and is 
excluded from the scientific realm. This way one gets a very 
good logical consistency for the fundamental quantities, but at 
the expense of generality, and the approach itself breeds the 
inclination to reduce the scope of the theory. When a theory 
meets phenomena which do not fit, either one changes the 
theory or puts an ‘off limits’ sign on the phenomena; the more 
clean-cut is the theory, the stronger the temptation to shrug off 
what does not fit. The ‘derivation’ criteria, either of the quantity 
or of the measuring procedure, are debatable. Considerable 
ingenuity was spent for deriving the measurement of 
temperature; other quantities (e.g. hardness) were not so lucky, 
perhaps because they were not so firmly embedded in the core 
of physics, and are therefore in a limbo – someone calls them 
“pseudo-quantities”, which does not deter people from 
measuring them, but only hampers coherent standards. 
Likewise, nuclear physicists keep using counters as measuring 
instruments while others show that counting is not a 
measurement [7]. Something is wrong: either the people who 
keep on measuring “pseudo-quantities”, or the arbitrary 
requisite of an ‘additive’ property that so many measurands 
simply do not possess. One must remember that once people 
believed that all measurements ought to be referred to mass, 
length, and time: much of this kind of philosophy is still 
attached to the measurement theory. The ‘derivation’ problem 
is circumvented by the idea of different ‘scales of 
measurement’, with different relational properties, but many 
people do not accept all ‘scales’ as ‘measurement’, and others 
distinguish between a strict sense and a wide sense of 
measurement. It is also disturbing that the vectorial character of 
physical quantities cannot be accounted for in these 
frameworks. 

Anyhow, if ‘measurement’ is a procedure of limited 
applicability, other consistency rules, beside another label, must 
be given to the knowledge-gathering procedure applied to the 
“pseudo-quantities”, and an overall treatment is in order. Is a 
distinction between strict and wide sense of measurement 
meaningful, or is it not a question of different types of 
measurable quantities? The idea itself of looking into 
mathematics for ‘justifying’ a measuring procedure, for finding 
out whether or not we are allowed to measure a thing, is 
disputable: is the theory of measurement a branch of 
mathematics (albeit applied), or is it a branch of the natural and 
technical sciences (using suitable mathematical tools)? There is 
a difference, which lies in where we look for the ultimate 
criteria of consistency. 

3. THE DATA SET REPRESENTING A MEASURAND 

Granted that measurement is, in Finkelstein’s well-chosen 
words, “the process of assignment of numbers to attributes ... 
in such a way as to describe them” [10], we have yet to decide 
in which way numbers are to be assigned. In the classical theory 
the question is not even posed; to represent the measurand one 
real number is assigned, tied to a unit of measure: the value of 
the measurand in the chosen scale of measurement. The 
geometric paradigm indeed leaves no doubt that “measurement 
demands some one-to-one relation between the numbers and 
the magnitudes in question” [11]. The fact is that with a single 
real number to represent the measurand no consistency can be 
obtained in different measurements of the same measurand, 
owing to what Eisenhart aptly calls the “cussedness of 
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measurement” [12]. The difficulty is bypassed by assuming that 
the ‘true’ value – the one number that would make all 
measurements fit – exists, but is unknown and unknowable; 
individual measurements yield values differing from it by an 
‘error’ due to instrumental ‘imperfections’; an analysis of these 
measurement errors is required to assess the interval within 
which the true value is supposed to lie. This way theory of 
measurement and theory of errors are separated: the former is 
free to pursue its way unencumbered by questions of 
uncertainty, left in care of the latter. Somebody finds it a good 
arrangement, claiming that the principles of measurement 
cannot depend on ‘technical’ issues of uncertainty [8]; others 
feel that ‘essential difficulties in the logic of measurement arise 
from uncertainty” [10]. To postulate the solution is no way to 
solve a problem [11]: this course was taken only on the strength 
of the geometric paradigm. 

We should ask: is the real number the proper mathematical 
entity for representing measurands? The real number was 
invented to solve problems in pure mathematics born of the 
Euclidean mensuration problem, i.e. expressing with a number 
the proportion of two segments of any geometric figure; the 
apodictic certainty offered by geometry is so attractive that one 
forgets it is due to the abstract definition of the geometric 
figures, that do not belong in the real world. But measurement 
is meant to describe the real world, and if it follows too closely 
the tracks of geometry it risks to become itself involved in 
idealized measurands. The real number is by definition the limit 
of a convergent sequence, but in measurement there is no such 
a thing as a sequence with a definite generating rule. We may 
also ask: is the mathematics of continuum, of which the real 
number is the main pillar, the proper tool for representing the 
physical world? Atomic and nuclear physics did show matter to 
be granular; quantum mechanics added a granularity of its own 
and also an indeterminacy deeply embedded in the very fabric 
of things physical. This is not the setting meant for real 
numbers and the mathematics of continua. It would not do to 
have a different theory of measurement for the macroscopic 
and microscopic worlds. Besides, everybody knows that any real 
macroscopic measurand is endowed with an intrinsic 
uncertainty inherent to its very definition (“you don’t measure 
bricks with a micrometer”); with more and more precise 
measurements of a given measurand one does not get closer to 
a real number expressing its value, as the classical theory 
assumes mimicking sequences, but rather at a certain point one 
finds oneself measuring something else, because the 
measurand’s definition has exploded into a finer structure. The 
implications of this commonplace experience are lost if one 
postulates descriptions by real numbers, and one also wonders 
whether possible ties between the quantum indeterminacy of 
microphysics and this ‘definition indeterminacy’ of 
macrophysics were not obscured by the slant toward geometric 
sharpness taken by the theory of measurement. 

If we look at things from the operative standpoint, we 
cannot help noting that measurements actually yield numerical 
intervals, and that upon such intervals we must reason to judge 
the consistency. Even a ‘perfect’ instrument could not 
overcome the intrinsic uncertainty of a real measurand. The 
mathematical entity we are actually working with is a set of 
numbers, and there is nothing wrong in representing a 
measurand with a full set of numbers tied to a unit of measure: 
it is yet “assignment of numbers ... in such a way as to describe 
it”. This set assigned to describe the measurand (let us call it a 
“value-span”) would include in the description the uncertainty 

of the measurement, thus reuniting theory of measurement and 
‘theory of error’. The one fundamental requirement for 
consistency is that different valuations of the same parameter 
yield ‘the same’ result: it is matter of defining rigorously what 
we mean by ‘the same’ and follow suit. Two measurements are 
consistent if the assigned value-spans overlap: this translates in 
formal terms the practical judgment of consistency “to stay 
within the error”. The algebra of sets is to substitute the algebra 
of real numbers in operating on measurement data, starting 
with the replacement of the basic relation ‘equal’ with ‘not 
disjoint’ [1–4]. A new Italian Reference Standard on basic 
measurement terminology [13] follows this line, that was found 
easy to practice. 

One may ask which special properties should have the sets 
assigned to describe measurands. In particular, the boundary of 
these sets cannot be sharply defined, if the pitfalls of the real-
number concept are to be avoided. A suitable specialization of 
the ‘fuzzy set’ concept might well turn out to be the proper 
mathematical tool for the job [1–3, 14]. 

4. ERROR, UNCERTAINTY, INDIFFERENCE 

The problem posed by the cussedness of measurement is 
tackled by the classical theory in terms of ‘error’. This concept 
rests on the idea that the instrument ought to indicate directly 
the true value of the measurand but indicates instead a wrong 
one; the underlying assumptions (derived straightly from the 
model of measuring length with a graduated rule) are: (a) the 
measurand is described by a single real number; (b) the 
instrumental indication is a value assigned to the measurand. 
On this basis the questions to ask are: why is the instrument 
wrong? how much is it wrong? A full answer is impossible: we 
cannot hope to know the error a priori, we can only judge a 
posteriori that it is smaller than a certain amount. This 
‘maximum error’ is thought to be determinable by combining 
the different errors due to various causes, separately analysed, 
and an a priori distinction is made between ‘random’ and 
‘systematic’ error; the former may be treated exactly by 
statistics, but the latter turns out to be an elusive concept [12] 
that calls for an educated guess. The distinction has some 
heuristic value, beside historic reasons, but adds more problems 
than it solves: without a sum rule it is no help for judging the 
consistency of different measurements, and no logically sound 
sum rule can be given for such essentially heterogeneous 
components (as shown by the fact that at least four competing 
rules are now used). Such care was paid in distinguishing 
between ‘precision’ and ‘accuracy’ that some technical language 
even lacks a word describing their cumulative effect; so it 
happens that after defining different errors one often drifts to 
speak of ‘uncertainty’, without however defining it. 

The problem may be tackled from a different standpoint if 
we drop the basic assumptions of above, remembering that the 
theory had been cast in that mold long before the 20th-century 
concept of signal were developed. If we look at the 
instrumental indication as at a signal bearing information on the 
measurand, and allow that we are to assign a data set describing 
the latter (not necessarily a single number) by connecting this 
information with other information pertaining to the 
instrumental characteristics and to the ‘influence quantities’ 
affecting the measurement, then the questions to ask are: how 
do we describe the instrument output? which relation holds 
between this output and a value-span suited to describe the 
measurand? This way we keep much closer to the actual 
practice, and may account in the same framework for all 
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instruments (allowing for the evolution of the output signals 
from the reading of graduated rules to the string of digits out of 
on-line computers). This approach calls for a clear distinction 
between the terms referring to the description and those 
referring to the instrument’s output. Much confusion is thus 
avoided that the classical approach brings about: many technical 
languages, e.g., use the same term for both the operation of 
measurement and the resulting description of the measurand, 
following a mathematical usage justified only by the uniqueness 
of mathematical solutions; the statistical treatment of ‘errors’ is 
also often confused with that of random quantities [4]. The 
attention is brought on the calibration procedures and the 
interplay of instrument, measurand, and environment. 

It is now possible a question that the classical approach 
cannot ask, i.e., is there a relation between the uncertainty of 
the measurement and the information gained on the 
measurand? The error concept reflects only the inability of the 
instrument to supply the information, assumed to be contained 
in the true value: the measurement is treated in an all-or-
nothing way, and we cannot tie a larger error with less 
information. The uncertainty concept has uncertain meaning. 
Taken as ‘the maximum allowed error’ of the instrument, a 
given uncertainty associated to the value indicated by the 
instrument means that we are uncertain on where the true value 
is in the interval thus defined, and the width of the latter might 
be construed qualitatively as information on the measurand. On 
the other hand, if we treat this interval as a set assigned in its 
whole to describe the measurand, this means we are indifferent 
on which element of the set represents the measurand: its 
description is the whole set and two measurands cannot be 
distinguished from each other if their value-spans overlap; then 
an instrument which in correspondence to its output signal is 
able (through its calibration operator) to assign a narrower 
value-span is also able to discriminate to a higher degree a 
measurand from others of similar description, which means it 
supplies more information on the measurand. With this 
meaning of ‘indifference ranges’ the concept is suited to 
quantitative treatment and may turn out quite handy in tricky 
issues as the pattern recognition. 

5. TIME AND MEASUREMENT 

Time affects measurement as an influence quantity like the 
others, playing two different roles: (a) as the time allowed for 
the measurement operation; (b) as the lifetime of the 
instrument (or of its calibration). 

The classical theory is ill equipped to cope with the first 
problem, as the true value is surely instantaneous (geometry is 
time independent) and no question of principle can arise with 
time-varying measurands. In practice a distinction is made 

between static and dynamic or stationary and transient 
measurements (definitions and terms change with the milieu); 
most standards refer only to the former, as no conceptual tools 
are available to deal with the latter. With an operative approach 
in terms of signals and assigned value-spans the measurement 
time fits snugly in the picture, as one of the influence quantities 
determining the width of the value-span, and one wonders 
whether a general relation might be worked out between 
uncertainty (as indifference range) and measurement time, 
similar to the one tying the indeterminacy of conjugate variables 
in quantum mechanics. 

The second role refers to the time dependence of the 
calibration, hence to the problem of reliability. The cussedness 
of measurement depends on time [12] and a distinction is 
usually made between repeatability and stability, but the current 
approach does not go much further: the ‘age’ of a calibration is 
not usually considered an influence quantity though there is no 
reason for not treating it as such. When we calibrate an 
instrument we warrant the consistency of the value-spans 
assigned under the calibration; how long do we mean the 
warranty to hold? Not forever. Shall we state that the 
confidence level of the warranty decreases in time or that the 
uncertainty increases? The calibration is a procedure of quality 
control on the instruments, carried out with statistical 
techniques; the question then arises whether the ergodic 
theorem may be applied to a population of instruments to 
predict the behaviour of single ones [4, 15]. 
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