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1. INTRODUCTION 

Many powerful methods aimed at measuring the parameters 
of digital signals corrupted by noise rely on model fitting 
approaches [1]. Fitting consists in adjusting the parameters of 
the model in order to minimize a distance measurement 
between the model and the digital signal. When the distance 
measurement consists in the root mean square difference, the 
fitting is recognized as the best fit in a least square sense [2]-[3].  

Sine fitting is aimed at accurately estimating the frequency, 
amplitude, phase and DC value of a sinusoidal signal corrupted 
by noise. Also, the estimation of the variance of the noise can 
be gained from the residue of the fit [4]-[7]. For instance, 
displacement sensors [8] and digital impedance meters [9] 
exploit sine fitting to estimate the amplitude of the signal, 
whereas digital instruments devoted to system monitoring and 
control use sine fitting to obtain accurate frequency [10]-[12] or 
phase measurements [13]-[16]. In metrological applications the 
chief purpose of the fitting is the accurate estimation of the 
variance of the noise [17]. 

The most common sine-fitting algorithm is the three 
parameter  algorithm  [17],  which  is  based  on a linear algebra  

framework, and it is utilized when the frequency parameter 
is known and stable. The accuracy characterizing the parameters 
estimates offered by the three parameter algorithm is mainly 
limited by the exact knowledge of the frequency of the signal.  

If the fitting result is unsatisfactory a four parameter 
algorithm can be adopted to improve the estimates. The four 
parameter algorithm starts from the results of a pre-fit, 
obtained through the three parameter algorithm, and runs a 
least square procedure to (i) update the estimates of amplitude, 
phase, and dc value and (ii) identify a frequency correction term 
to improve the frequency estimate. In order to further improve 
the results, the four-parameter algorithm can be recursively 
invoked until the target accuracy is gained, using the estimates 
gained at the previous execution as inputs for the next 
execution.  

In the paper, starting form an analysis of the effects 
produced by a frequency error in the use of the three parameter 
sine fitting algorithm, two least square methods capable of 
complementing the three parameter sine fitting algorithm and 
improve its results are proposed as alternative to the four 
parameter algorithm. The proposed approaches quantifies both 
the frequency error, to offer an accurate estimate of the 
frequency of the input signal, and the variance of the noise. 
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The  paper  presents  two  approaches  to  improve  the  three  parameter  sine  fitting  algorithm  and  attain  accurate  estimates  of  the 
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Their performance in terms of accuracy and running times are 
thoroughly analysed and compared to that offered by the four 
parameter algorithm. Although both the proposed algorithms 
and the four parameter algorithm can be inserted into iterative 
schemes and repeated until a target precision is gained, the 
single shot results are considered in the comparison. The 
proposed algorithms are in fact intended for those applications 
in which the estimates of the frequency and of the variance of 
the noise must be gained in very short times, which are in 
contrast to long iterative approaches.  

2. SINE FITTING APPROACHES 

2.1. Three parameter sine fitting 

The standard three parameter sine fitting algorithm estimates 
the amplitude, phase and dc value of the sinusoidal signal that 
best fits in a least square sense a digital signal yk. Named the 
value of the digital frequency of the input data (i.e. the frequency 
in hertz normalized to the sample frequency), A, , and C, 
respectively, the amplitude, phase and DC value, nk the noise, 
and k the digital time ranging from 0 up to M-1, the following 
model can be adopted: 

  kk nCkAy  2cos  (1) 

The three-parameters sine-fitting algorithm requires as input 
parameter the value of the digital frequency or an estimate  of 
it. If the value  coincides with , the values of the parameters 
A, and C can be gained considering the equation: 

    kk nCkBkAy  00000 2sin2cos   (2) 

which is equivalent to equation (1) but linear in the parameters 
A0, B0 and C0, respectively defined as: A0 = Acos, B0 = -Asin, 
and C0 = C. Discarding the noise nk and ranging k  from 0 up to 
M-1, equation (2) produces a linear system made up of M 
equations, which can be represented in matrix form by: 

D0x0 = y (3) 

where x0 is a column array with the unknown components A0, 
B0 and C0, y is a column array containing the samples of the 
input digital signal, yk, and D0 is the matrix of the coefficients: 
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in which  kc k 00 2cos  , and  ks k 00 2sin  . The three 
parameter algorithm determines x0 by means of the pseudo-
inverse method, namely: 
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As it is well known the solution represented by equation (5) 
minimizes the mean square value of the residue of the fitting, 
which should coincide with the noise. The parameters of the 
model given in (1) are then estimated through: 
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in which atan2( . , . ) represents a four quadrant inverse tangent 
function.  

2.2. Four parameter sine fitting 

The four parameter sine fitting algorithm works on the 
hypothesis that the estimated value of the digital frequency  
approaches the exact one , but it is biased by a small amount 
. It linearizes the model given in (2), which is non-linear with 
respect to , by approximating it with a first order Taylor 
expansion centred in i-1 = 0. Thus it considers for the acquired 
digital signal the representation: 
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in which there are four unknown parameters, namely Ai, Bi, Ci, 
and i. The term i represents a correction term that added to 
i-1 produces an improved estimate of the digital frequency, 
i=i-1+i. 

Equation (7) represents an iterative model that includes the 
values of the parameters estimated at step (i-1)-th and the 
unknown parameters to be estimated at step i-th. In order to 
start the iterations, the four parameter algorithm uses at step 
i = 1 the results of a three-parameter pre-fit to initialize 
Ai-1 = A0, Bi-1 = B0 and i-1 = 0; for the next iterations, the 
parameters estimated at step i-th are reused at step (i+1)-th.  

The method to solve (7) is formally identical to that 
discussed for the three-parameter algorithm. In fact, discarding 
the noise nk and ranging k  from 0 up to M-1, equation (7) 
produces a linear system made up of M equations. The estimates 
of the parameters Ai, Bi, Ci and i that minimize the mean 
square value of the residue in (7) can thus be attained solving the 
system by means of the pseudo-inverse method. In matrix form, 
collecting the parameters Ai, Bi, Ci and i, in the column array 
xi, it results: 

  yDDDx TT
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where Di is defined by: 
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The four-parameter algorithm is usually run until the distance 
between successive estimates is smaller than a target threshold. 
It typically converges in less than ten iterations, but can diverge 
if the initialization step is coarse. 

3. ANALYSIS OF THE EFFECTS OF A FREQUENCY ERROR 

In order to improve the results of the fitting, an appropriate 
model is proposed to analytically describe the effects produced 
by a frequency error. In particular, the digital signal can be 
represented according to: 

  
    k

kk

nCIkA

nCkAy





00

0

2cos

2cos




 (10) 

in which I0 satisfies the constraint 20I0 =  + n2 for an 
unknown integer n, and ∆ is much smaller than . From 
equation (10) it follows that: 

     
      k

k

nCIkIkA

IkIkAy




000

000

2sin2sin

2cos2cos




 (11) 

and, in the hypothesis that the frequency error  is small:  
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According to (12), the residue  

 
    k

kk

nkIkA

CkAy








00

0

2sin2

2cos
 (13) 

does not coincide with the noise but includes an additional 
contribution, which is described by linearly damped oscillations 
characterized by frequency 0; the parameters  and I0 
characterize the envelope of the damped oscillations. This 
contribution is often visible in the typical graph of the k data 
resulting in real tests: an example of a possible scenario is given 
in Figure 1. 

4. PROPOSED METHODS 

The removal of the deterministic contribution present in 
(13) can be obtained by least square estimation procedures. In 
particular, two methods can be considered. 

4.1. Method ‘A’ 

A first method consists in finding the values of the 
parameters  and I0 that produce the least square residue in 
(13). The values can be obtained by solving through the 
pseudo-inverse method the over-determined system: 
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where    kAsk 02sin2 . Specifically, named a the 

column array with components  and - I0: 

a = (ATA)-1AT (15) 

where  is the column array containing the values k, and A is 
the matrix in (14). It is worth noting that (15) is formally the 
solution of a straight line fit problem. The estimate of the 
frequency error can be therefore straightforwardly gained by 
applying the formula: 
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In order to measure the random noise nk, the deterministic 

contribution present in (13), identified through the estimation 
of  and I0, has to be subtracted from the residue k. 

4.2. Method ‘B’ 

Alternatively the frequency correction term  and the 
variance 2

n of the noise corrupting the signal can be estimated 

from the squared values 2
k  of the residue throughout a further 

least square procedure. In this case a simple and linear model 
can be utilized to fit the data. Specifically, taking the square 
values of equation (13), it follows: 
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The squared values of the noise 2
kn  include both a constant 

term equal to 2
n , which is the variance of the original noise nk, 

and a zero mean random term mk. Grouping all the 
contributions that have zero mean value in (17), both if 
characterized by deterministic or random nature, in the term lk: 
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it can be stated that: 

    knk lIkIkA  22
00

222 22   (19) 

To gain estimates of , I0, and 2
n , and get rid of lk, 

equation (19) is first rewritten in a more compact form: 

kk lcbkak  22  (20) 

and the parameters a, b, and c are estimated by solving through 
the pseudo-inverse method the system: 

    






























































 
2

1

2

2
0

2

2

111

1

100

M

k

c

b

a

MM

kk















 (21) 

Specifically, named b the column array with components a, b, 
and c it results: 

b = (BTB)-1BT (22) 

where  is a column array containing the values 2
k  and B is 

the matrix in (21). The typical results obtained fitting the 2
k  

data are given in Figure 2. 

 
Figure 1. Residue characterized by  linearly damped oscillations masked by 
noise. 

 
Figure 1. Squared values of the residue and polynomial fitting results. 
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Finally, taking into account that a, b, and c are related to , I0 
and 2

n  by: 
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the parameters of interest can be gained from: 
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In order to estimate the term that compensates the 
frequency error, the sign of the correction has to be gained 
throughout further considerations. For instance, if the initial 
frequency estimate 0 has been obtained by applying a peak 
location algorithm to the results Y(m), m = 0, …, M-1, of a M 
points Discrete Fourier Transform (M-DFT), according to: 

    
N

j
jYmYNm  020 ;max   (25) 

the correction can be given without sign ambiguity as:  

       11 jYjYsign  (26) 

which is valid for rectangular window at large values of j 
(typically more than 10 cycles in the measurement interval). The 
high signal to noise ratio in the neighbouring of the peak value 
should assure the minimum sensitivity to the effects of the 
noise. 

5. PERFORMANCE EVALUATION 

The performance of the proposed methods has been 
assessed by means of several tests. The main goal of the tests is 
evaluating the accuracy of the methods at estimating both the 
frequency of the input signal and the variance of the 
superimposed noise. In this case the accuracy can be 
decomposed into two terms, i.e. bias and repeatability, and can 
be quantified as square root of their quadratic summation.  

Each test consists in repeating N times two fundamental 
steps:  

- running a three-parameter sine-fitting algorithm to attain 
initial estimates of the parameters of the sine model; 

- applying the proposed methods and the four-parameter 
algorithm to attain improved estimates of the parameters of 
interest. 

The difference between the mean value of the repeated 
estimates and the reference value represents the experimental 
bias, while the experimental standard deviation of the repeated 
estimates represents the repeatability. 

The signals under test are made up of M samples that 
represent a sinusoid corrupted by noise. The digital frequency 
of the test signals  is obtained adding to a basic value 0, 
expressed with finite resolution RBW = 1/M, an offset , i.e. 
 = 0 + . The basic value 0 is given in input to the initial 
three-parameter sine-fitting algorithm to obtain an initial 
estimate of the signals parameters. The offset  makes the 
methods under test work in the presence of a frequency error. 

Figure 3 shows the typical results related to digital frequency 
estimates, obtained for a signal under test characterized by 
M = 100, 0 = 0.310, and signal to noise ratio (SNR) equal to 
37 dB. To highlight both the bias and repeatability 
contributions to the overall accuracy the results are shown by 
means of scatterplots; different markers are associated to the 
different methods. In particular, the results offered by the peak 
location algorithm applied to the outcomes of the M-DFT are 
represented by marker ‘*’, those offered by method A by 
marker ‘+’, those offered by method B by marker ‘o’, and those 
offered by the four-parameter sine fitting algorithm in single 
run mode by marker ‘x’. The considered frequency offsets  
are positive and equal to 10%, 20%, 30% 40% and 50% of 
RBW; it has been observed that positive and negative frequency 
errors produce the same statistics. For each method a set of 15 
estimates has been considered to put in evidence bias and 
repeatability. The results highlight that methods A and B 
exhibit comparable performance, both in terms of bias and 
repeatability, with respect to the four-parameter sine-fitting 
algorithm in single run mode. Note that the results produced by 
the peak location applied to the M-DFT results are 
characterized by utmost repeatability, which is explained by the 
minimum sensitivity to the effects of the noise in the 
neighbouring of the peak value of the signal spectrum, as well 
as the high SNR equal to 37 dB.  

Figure 4 shows the typical results related to the variance 
estimates obtained in the same test conditions. Specifically, the 
results are given by means of a scatterplot that makes visible 
both bias and repeatability. The peak-to-peak amplitude of the 
simulated signal is 1 V, the noise variance is 0.005 V2. In this 
case marker ‘*’ is associated to the results offered by the three 
parameter sine fitting algorithm. 
Methods A and B exhibit almost comparable performance with 
respect to the four parameter sine fitting algorithm utilized in 
single run mode.  

Similar tests have been repeated for signals characterized by 
reduced SNR = 17 dB; Figure 5 and Figure 6 show the results. 
Concerning the digital frequency estimations, methods A and B 
still exhibit comparable performance in terms of bias and 
repeatability with respect to the four parameter sine fitting 
algorithm. 

Figure  3.  Results  related  to  the  estimates  of  the  digital  frequency  of 
sinusoidal signals corrupted by noise when the SNR is equal to 37 dB. 
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Further tests have been performed in order to verify any 
influence of the length of the processed data on the results. In 
particular, the estimates of the digital frequency and noise 
variance have been performed upon records made up of 100, 
250, 500, and 1000 samples. The results show that the accuracy 

characterizing the digital frequency estimates improves upon 
the increasing of the record size M. The performance in terms 
of bias and repeatability related to the variance estimates 
produced by the proposed methods show the same sensitivity 
on the record size with respect to that offered by the four 
parameter algorithm. Figure 7 and Figure 8 show a typical case: 
they are related to a signal corrupted by noise characterized by 
SNR = 17 dB. It is worth noting that the resolution RBW 
needed to measure the exact digital frequency is 0.001, thus for 
the record characterized by size 100, 250 and 500, the M-DFT 
approach offers a digital frequency estimate which is shifted 
from the real one, because the available resolutions are 
respectively equal to 0.01, 0.004, 0.002.  
The results obtained for M = 1000 are very accurate because 
the digital frequency of the signal is exactly estimated by the M-
DFT approach. 

6. CONCLUSIONS 

The paper has presented two methods to improve the three 
parameter sine fitting algorithm. The performance of the two 
methods, intended as an additional step of the three parameter 

Figure  5.  Results  related  to  the  estimates  of  the  digital  frequency  of
sinusoidal signals corrupted by noise when SNR is equal to 17 dB. 

Figure  6.  Results  related  to  the  estimates  of  the  digital  frequency  of
sinusoidal signals corrupted by noise when SNR is equal to 20 dB. 

Figure 7. Estimates of the digital frequency of the signal corrupted by noise: 
the accuracy improves upon the increasing of the record size M. 

Figure 8. Typical estimates of the variance of the noise: the performance of 
the  proposed  methods  are  comparable  to  those  offered  by  the  four 
parameter algorithm. 

Figure 4. Results related to the estimates of the noise variance carried out 
when the digital frequency of the signal is affected by error. 



 

ACTA IMEKO | www.imeko.org  June 2015 | Volume 4 | Number 2 | 105 

sine fitting algorithm, has been compared to that of a four 
parameter sine fitting algorithm used in single run mode. The 
proposed methods represent nice alternatives to the four 
parameter sine fitting algorithm for the identification of the 
parameters of the sinusoidal model and the estimation of the 
variance of the superimposed noise. In addition, they are 
suitable to function in a large variety of noise conditions. 

It is worth noting that one of the simplest ways to improve 
the results of a three parameter sine fitting algorithm is 
preliminary computing an accurate initial estimate of the 
frequency of the input signal. To this end, high-accuracy 
spectrum analysis techniques, capable of providing analytical 
leakage compensation and improving frequency estimation, can 
be employed; one of these simply requires interpolating the 
DFT results related to the signal under test. In several practical 
applications the proposed methods are likely rejected in favor 
of interpolated DFT approaches, while in particular cases can 
be considered for their low computational burden. Anyhow, the 
proposed methods represent two different lines of attack to 
refine the three-parameter sine fitting results, to be valued from 
a conceptual and methodological point of view. 

APPENDIX A 

The computational burden of the different approaches that 
have been considered can be evaluated by counting the number 
of the most expensive calculus operations, i.e. the nonlinear 
operations and multiplications, which are required to obtain the 
results.  

The overall computational burden of the proposed methods 
and the four parameter algorithm considered for estimating the 
digital frequency and the variance of the noise includes that of 
the three parameter algorithm. 

The three parameter sine fitting algorithm requires the 
definition of matrix D0 that involves the calculation of 
cos(2k) and sin(2k), with k ranging from 0 up to M-1, and 
has a cost equal to 2M. Then a least square minimization has to 
be performed by processing M equations to gain the values of P 
parameters. In detail, MP(P+1)/2 multiplications are needed to 
compute the symmetrical square matrix D0TD0 and MP 
multiplications are required to condition the input data by 
computing D0Ty. The other calculations have a negligible cost. 
In fact, the number of multiplications needed to perform the 
P-square matrix inversion, i.e. (D0TD0)-1, in the case that the 
inversion is attained by calculating the algebraic complements, 
which is the most expensive method and requires P! 
multiplications, is negligible since P is equal to 3; similarly, the 
final step that consists in calculating the inner product between 
the inverted matrix and the conditioned data, counts only P2 
multiplications, which is negligible.  

The four parameter algorithm adds the computational 
burden of including in matrix Di a fourth column, i.e. 
2A0kcos(20k) - 2B0ksin(20k), which requires 4M 
multiplications, aside the three already present in D0. Moreover 
it demands least square minimization upon M equations to gain 
Q = 4 parameters.  

Method A instead involves the computational burden of 
defining matrix A, which consists in calculating the values sk, 
which have a cost equal to M, and performing the M 
multiplications k·sk, and, furthermore, the computational 
burden of performing least square minimization upon M 
equations to gain R = 2 parameters. Nonetheless, to estimate 
the variance of the noise, the parameters  and I0 have to be 

used to build up the fitted model of the residue k, extract the 
noise nk, and calculate its variance.  

Method B is the best one from a computational point of 
view because it does not add any computational burden for 
defining matrix B, the values of which are independent from 
unknown parameters: to define matrix B only the size M of the 
acquired data is needed. Since the square matrix (BTB)-1 can be 
calculated and stored previously, the remaining computational 
burden is just that of data conditioning, which consists in 
calculating BTy and requires 3M multiplications. Moreover, the 
method makes ready both an estimate of the frequency error 
and of the variance of the noise without requiring building up 
models. 

The running times of the three and four parameter 
algorithms as well as of the methods A and B have also been 
measured. In particular, the algorithms have been run on a 
COMEX XP.520 core 2DUO T7200 machine, which is a 
windows based multitasking processor. Due to the multitasking 
functioning of the operative system, the running times have 
shown different values in repeated tests. To clear the effects of 
interruptions and holding-ups due to the operative system, the 
same test signals have been processed a thousand times and the 
average running time observed for each algorithm has been 
considered as a reasonable measurement. The test results 
highlight that the four parameter sine fitting algorithm 
lengthens the running time of the three parameter algorithm. In 
particular, Table 1 gives in the first column the results related to 
the average processing time of a record of 1000 points in 
milliseconds. It also summarizes in the second column the 
approximate estimations of the computational burden of the 
four different approaches, expressed in terms of number of 
most expensive calculus operations.  
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