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1. INTRODUCTION 

The detection of the stress state of structures is an important 
problem in the field of structural engineering as it provides 
crucial information for monitoring their health and detecting the 
development and propagation of damage within them. Structural 
Health Monitoring (SHM), which encompasses a variety of 
techniques and technologies, has been developed to address this 
issue and is widely used in both aerospace and civil engineering 
[1]–[7]. 

In recent decades, SHM has extended its applications to 
infrastructure and civil engineering, including historic and new 
buildings, bridges, tunnels, industrial plants, manufacturing 
facilities, offshore platforms, port structures, foundations, and 
excavations [8]–[11]. 

Existing bridge structures are exposed to various 
environmental and operational stresses during their lifetime, and 
the influences of these external loads can lead to the acceleration 
of structural damage. In addition, extreme events such as 
earthquakes can occur during the life of a bridge, emphasizing 
the need for timely detection of the structure's condition to 
ensure safety. While visual inspection has traditionally played an 
important role in detecting defects on the structure surface and 
assessing the structural condition, it is labor-intensive, time-
consuming, and subjective. To address this issue, SHM 
techniques have been proposed and are increasingly applied to 
long-span bridges [12]–[14]. SHM is defined as the use of sensing 
techniques and analysis of structural features to detect structural 
damage or deterioration; it is suggested that SHM should be 
considered in the context of condition assessment and as a 
damage detection technique [15]. In summary, the main 
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objectives of SHM are damage detection and condition 
assessment. 

SHM techniques have been applied to bridges for almost 40 
years through the installation of Structural Health Monitoring 
Systems (SHMS) and have been increasingly applied to long-span 
bridges worldwide. In summary, SHM techniques, particularly 
those based on vibration measurements, have great potential in 
the monitoring and maintenance of bridges to ensure their safety 
and longevity [16]–[20]. Among the various sensor techniques 
used in SHM, vibration-based measurement using 
accelerometers and data acquisition systems is one of the most 
widely studied and applied methods. In this approach, the 
response of the structure is measured under a given excitation, 
and its modal parameters, such as natural frequencies, damping 
ratios, mode shapes, and modal scaling factors, are determined 
[21]–[23]. The performance of the accelerometer is critical to the 
quality of the acquired data and the accuracy of the results. 
Therefore, the proper selection of the accelerometer should 
consider the balance between the cost and performance of the 
overall SHM system [24], [25]. 

In recent years, the use of micro-electromechanical systems 
(MEMS) sensors in SHM systems has gained significant 
attention. MEMS sensors are tiny devices that can measure a 
wide range of physical quantities, such as acceleration, strain, 
pressure, and temperature, with high accuracy and precision [26]. 
They are also compact, low-power, and cost-effective, making 
them ideal for large-scale and long-term monitoring of 
structures. The integration of MEMS sensors into SHM systems 
brings several benefits, such as improved accuracy and reliability, 
reduced power consumption, and enhanced data acquisition and 
processing capabilities. MEMS sensors can provide real-time 
data on the stress state of a structure, enabling early detection of 
damage or deterioration and allowing for timely and cost-
effective maintenance and repair. They can also be used to 
identify potential failure modes and predict the remaining useful 
life of the structure. In the case of bridges, the use of MEMS 
sensors in SHM systems can provide a comprehensive and 
continuous monitoring solution that can detect even subtle 
changes in the structure's condition due to external loads, traffic, 
or environmental factors [24], [27]. This information can be used 
to optimize the bridge's performance and extend its service life 
while reducing maintenance and repair costs and ensuring the 
safety of the users. 

Overall, the use of MEMS sensors in SHM systems represents 
a promising approach for the monitoring and maintenance of 
structures, particularly in the case of large-scale and critical 
infrastructure such as bridges [28]. With further advances in 
MEMS technology and data analytics, it is expected that SHM 
systems will become even more efficient, accurate, and cost-
effective, providing greater benefits to both engineers and end-
users. 

MEMS inertial sensors offer several advantages, but it is 
important to consider their drawbacks as well. Their small size 
makes them highly sensitive to environmental changes, and 
random noise can make error compensation procedures more 
complex and limit their applicability [29], [30]. An increasing bias 
drift with non-linear characteristics is a significant factor to 
consider, as it demonstrates that while MEMS IMUs can provide 
remarkable accuracy at high rates, angular velocity, and 
acceleration data can easily degrade over longer periods. 
Therefore, special attention must be paid to these sensors, which 
are typically classified based on their bias instability and random 
walk parameters, both of which characterize their performance 

and suitability for specific applications [31], [32]. For example, 
accelerometers with a bias instability lower than 0.01 mg are 
considered "marine-grade," while more cost-effective 
"consumer-grade" sensors have lower performance but also 
lower power consumption [33]–[35].  

To overcome the MEMS limitations, several studies have 
been conducted on the adoption of a Kalman filter (KF) to 
compensate the MEMS errors. In particular, for SHM 
applications, high-frequency noise could be a key element to 
accurately estimate the structure acceleration. So, the Kalman 
Filter algorithm can be used to reduce noise in data obtained 
from MEMS accelerometers. It works by estimating the state of 
a system based on a series of noisy measurements. In the case of 
MEMS accelerometer data, the Kalman filter can be used to 
estimate the true acceleration of an object by filtering out high-
frequency noise [36]–[39]. 

In this research, a redundant prototype of low-cost 
accelerometers that exploits a Kalman Filter algorithm for 
filtering purposes has been proposed. Then, the performance of 
the proposed solution is assessed by means of a comparison with 
a high-performance accelerometer sensor by means of a 
controlled oscillation generator that is specifically realized to 
obtain oscillations with known frequency and amplitude. Finally, 
the authors propose a sensor node that could be adopted for 
SHM applications. 

The paper is organized as follows; the proposed method, the 
implementation of the controlled oscillation generator, and the 
sensor node realized are described in Section 2, while in Section 
3, the system architecture that includes both the hardware and 
software implementation has been described. Finally, in Section 
0 the obtained results are presented as advantages introduced by 
the proposed approach, the overall performance reached in 
oscillation measurements, and the proposed IoT architecture 
before drawing the conclusions in Section 5. 

2. PROPOSED METHODS AND SMART MONITORING 
ARCHITECTURE 

A platform based on the Internet of Things (IoT) exploiting 
redundant low-cost MEMS accelerometers for monitoring large 
structures such as bridges and tunnels has been evaluated, where 
the redundant prototype is already presented in [40]. The 
research activities have been focused mainly on two main 
aspects: (i) a prototype of redundant low-cost MEMS 
accelerometers evaluation for oscillation measurements by 
exploiting the Kalman filter for data filtering, where the 
performance is assessed by means of custom testing setup for 
controlled oscillation measurements and a result comparisons 
with a reference system, i.e., high-performance accelerometer 
sensor; (ii) an IoT solution for a real-time system that acquires 
and visualizes data based on the adoption of the redundant 
prototype and the typical protocol of IoT. 

2.1. Proposed method 

Regarding the first point, the main goal was to use a 
redundant configuration of accelerometers to reduce the typical 
errors that affect low-cost MEMS accelerometer sensors, such as 
bias instability, in-run bias instability, and velocity random walk. 
In this way, thanks to the redundant prototype performances, it 
could be adopted for oscillation measurements. To this aim, the 
authors propose an initialization procedure based on the 
adoption of a Zero-Velocity Update (ZVU) filter that allows to 
estimate of the initial error values and the initial alignment. In 
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this way, the acceleration measurements are compensated by the 
estimated noise values and then are processed by means of a 
Kalman Filter for high-frequency noise reduction and, finally, a 
Fast Fourier Transform (FFT) to evaluate the oscillation 
frequency and amplitude, as shown in Figure 1. The performance 
validation of the proposed method is assessed by a suitably 
controlled oscillation generator based on a crank-rod system 
capable to emulate different oscillation frequencies. Finally, a 
marine-grade MEMS sensor has been adopted as a reference 
system to assess and compare the performance reached by the 
proposed solution. 

2.1.1. Zero-Velocity Update filter and initial alignment 

The Kalman filter is a recursive algorithm that can be used to 
estimate the state of a dynamic system based on a series of noisy 
measurements. It works by predicting the state of the system at 
the next time step based on a model of the system dynamics and 
then updating this prediction based on the actual measurements. 
The algorithm includes two key steps: prediction and update. In 
the prediction step, the state estimate and error covariance matrix 
is predicted based on the previous state estimate, control input, 
and system dynamics. In the update step, these predictions are 
updated based on the actual measurements and the measurement 
noise covariance matrix [32]. 

The ZVU filter is based on an Error-State Kalman Filter 
(ESKF). This approach is based on the assumption that the 
system output is in a standing condition, i.e., the velocity is equal 
to zero. The ZVU filter is realized according to the following 
steps: 

1) the position vector is provided by a GNSS source; 
2) the velocity vector is set equal to zero; 
3) roll and pitch angles are obtained by means of a coarse 

leveling procedure according to (1) and (2): 
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where 𝜃 is the pitch angle, 𝜙 is the roll angle, 𝑓𝑖𝑏
𝑏  represents the 

raw acceleration measurements among the x, y, and z axis 
referred to as the body reference frame. 

The predict/correct phases are realized according to the 
ESKF implementation [40]; in this way, noise terms are 
estimated during the state vector correction and exploited in the 
successive prediction stages. The residual error values are then 
adopted to correct the acceleration measurements to obtain 
better performance in frequency and amplitude oscillation 
measurements.  

For the sake of clarity, in this specific application, the GNSS 
position is only once evaluated; in fact, the accelerometer sensors 
are mounted on a structure where the GNSS position variations 
are not significant or not observable by most GNSS modules. 
Regardless, knowledge of the position is necessary to accurately 
compensate for the gravity vector. 

2.1.2. Kalman Filter approach 

Once obtained, the initial noise parameters, thanks to the 
application of the ZVU, and a further KF has been applied to 
the acquired acceleration samples in order to filter out high-
frequency noise. To suitably reduce the computational burden, 
the update matrix is reduced to the identity matrix (i.e., in the 

prediction stage, the so-called a-priori estimated value �̂�− is equal 
to the corrected value obtained in the previous iteration). As for 
the correction stage, it is obtained according to the following 
equations: 

𝐾 = 𝑃/(𝑃 + 𝑅) (3) 

�̂�+ = �̂�− + 𝐾(𝑥 − �̂�−) (4) 

𝑃 = (𝐼 − 𝐾) 𝑃 + (�̂�+ − �̂�−) 𝑄 , (5) 

where 𝐾 is the Kalman gain, 𝑃 is the error covariance matrix, 𝑅 

is the noise covariance matrix, �̂� and �̂�−are the state vector and 
estimated state vector, respectively, i.e., the acceleration 

measurements, 𝐼 is the identity matrix, and 𝑄 is the system noise 
covariance matrix. 

 

Figure 1. Proposed method based on the adoption of a Zero Velocity Update filter.  
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2.1.3. Controlled oscillation system and measurement setup 

The measurement setup is composed of a controlled stepper 
motor that rotates a cylinder that is connected to the beam by 
means of a linkage in such a way as to convert the rotary motion 
of the stepper motor into linear motion. The sensor modules are 
placed on a plate rigidly constrained to the beam; in this way, 
harmonic motion is realized. The nominal acceleration values 

(𝑎(𝑡)) can be derived from the maximum imposed displacement 
and frequency by the equation: 

𝑎(𝑡) = −𝜔2𝐴 sin(𝜔 𝑡) , (6) 

where 𝐴 is the vertical displacement amplitude, 𝜔 = 2 π 𝑓 is the 
angular frequency. 

The geometrical dimensions of the realized system are 
reported in Table 1, where it is also highlighted the maximum 
displacement that is evaluated as the difference between the 
highest and lower points of the plate (among the Z-Axis). 

Figure 2 shows the controlled oscillation generator and the 
measurement setup. In particular, the mechanical parts are 
realized by the 3D printing process [41], [42] and are highlighted 
in black color, while the stepper motor and motor driver are 
highlighted in orange color. The measurement setup is mainly 
composed of the sensor modules, i.e., the proposed redundant 
low-cost accelerometers (red) as well as the STIM318 by 
SensoNorTM, the marine-grade (green) accelerometer exploited 
as a comparison reference. Both modules are connected to a 
microcontroller (placed under the plate), specifically, the 
STM32F446RE from STMicroelectronicsTM, that acquire data 
via the I2C (Inter Integrated Circuit) and via the UART protocol, 
respectively. To this aim, an interface between the RS422 and 
UART protocols was realized using dual differential drivers and 
receivers (SN75C1167 from Texas Instruments). To synchronize 
the two systems, the microcontroller provides an external trigger 
to sample the marine-grade accelerometer data. The STIM318 
acquires data at 2 kHz and is triggered at 125 Hz, resulting in a 
mean delay of 250 µs between the request and sampling of 
measured quantities. Finally, the acquired data is sent to a 
personal computer for further processing via a Bluetooth module 
connected to the microcontroller through the UART interface. 

2.2. Proposed smart monitoring architecture 

As for the second point, the prototype device is completed 
with a wireless communication system based on the LoRaWAN 
protocol and a NFC module for remote and in-situ monitoring, 
respectively, as shown in Figure 3. Once the operations for 
determining the quantities of interest have been locally 
performed, the microcontroller sends the result via LoRaWAN 
protocol to a gateway on which a node-red-flow is implemented 
that forwards the measured data via MQTT to a Thingsboard-
based cloud dashboard. Moreover, the data are also accessible 
through NFC protocol. In particular, using a mobile phone as 
NFC reader, the identity of the node is detected and exploited to 
access the IoT platform and display measured data on the mobile 
application.  

The proposed architecture aims to transmit only the 
maximum amplitude value of the signal, which is evaluated by 
the microcontroller as the peak in the frequency domain. The  
microcontroller then sends both the frequency and amplitude 
values, effectively reducing the number of samples transmitted 
and allowing for real-time monitoring. This ensures that only 
relevant information is transmitted, resulting in a more efficient 
system protocol with fewer packets, for forwarding measured 
data via the LoRA and NFC protocol so as to speed up NFC and 
Dashboard communications. 

3. SYSTEM ARCHITECTURE 

The hardware components used in performance assessment 
and wireless sensor node development for real-time monitoring 
are reported in Table 2 and Table 3, respectively, while the 
corresponding operations flow-chart are shown in Figure 4a and 
Figure 4b. For the sake of clarity, the redundant prototype is 
composed of six iNemos from STMicroelectronicsTM in a cubic 
configuration. 

 

Figure 2. Realized oscillating system and measurement setup for performance assessment; thanks to the stepper motor oscillations with known frequency and 
amplitude can be applied to the low-cost redundant accelerometers.  

Table 1. Geometrical dimension of the controlled oscillating system. 

System Dimension (cm) 

Beam 22.5 × 1 × 1 (L × W × H) 

Linkage 9.5 × 0.2 × 0.5 (L × W × H) 

Cylinder radius 5.5 

Max Displacement 0.5 
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Figure 3. Sensor node and proposed smart monitoring architecture.  

 

Figure 4. Data acquisition flow-chart for: a) performance evaluation; b) real-
time monitoring.  

Table 2. Performance evaluation equipment. 

Hardware Part number Manufacturer 

Redundant 
Accelerometers 

LSM6DSM (Six iNemos) STMicroelectronics 

Marine-grade 
accelerometers 

STIM318 SensoNor 

Microcontroller Nucleo-F446RE STMicroelectronics 

Motor StepSyn SANYO DENKI 

Motor Driver board X-NUCLEO-IHM04A1 STMicroelectronics 

Bluetooth module RN41 Roving 

RS422-UART SN75C1167 Texas Instruments 

Table 3. Sensor node realization hardware. 

Hardware Part number Manufacturer 

Microcontroller Nucleo-F446RE 

STMicroelectronics 
Sensor board X-Nucleo-IKS02A1 

NFC module X-NUCLEO-NFC04A1 

LoRA module I-NUCLEO-LRWAN 

SPI-micro Sd-Card 410-380 Diligent Inc. 
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As stated above, the communication between the 
microcontroller and the PC is realized by means of a Bluetooth 
protocol (Figure 4.a); this allows control of the start of the 
acquisition and data collection. Once the start is sent, the 
microcontroller generates a trigger signal for the sensor modules 
and starts to acquire data from both. During the tests, it is 
necessary to ensure accurate measurement synchronizations.  

Therefore, the data is processed offline to avoid introducing 
delays from each data acquisition in both systems. The software 
architecture is designed with a focus on synchronizing both 
systems to obtain comparable measurements between the 
proposed solutions and the reference system. This approach 
ensures that the results are reliable and can be compared 
accurately. 

As for the wireless sensor node, the software architecture is 
realized to real-time process the acceleration measurements, as 
shown in Figure 4b, where the microcontroller acquires data and 
elaborates them according to the proposed method with the aim 
to evaluate the maximum frequency peak value and send by 
means of the LoRaWAN protocol and NFC the oscillation 
frequency and the associated amplitude values.  

The proposed solution is based on the ZVU filter for initial 
alignment and noise terms evaluation; to enhance parameter 
estimations require the GNSS position information. To this aim, 
the realized IoT architecture includes the setting of these 
parameters that can be stored on the Sd-Card; this procedure 
could be achieved when the sensor node is mounted on the 
structure that will not change its position. Finally, the ZVU and 
initial alignment that requires 60 s is activated in two conditions: 

1) each time the device is turned on to correct the random 
bias values; 

2) whenever the internal temperature of the accelerometer 
changes by ± 3 °C, in such a way as to correct the bias 
values changes due to the temperature. 

Once the error values are estimated, the microcontroller removes 
the high-frequency noise from the raw acceleration 
measurements adopting the Kalman Filter and then processes 
them by means of a FFT algorithm to evaluate the maximum 
frequency peak value and associated amplitude values that are 
sent through the IoT protocols, i.e., LoRAWAN and NFC. 

4. RESULTS 

The proposed solution is evaluated according to the 
measurement setup realized and described in Section 2.1. To this 
aim, the oscillation measurements in terms of oscillation 
amplitude of both systems have been compared at different 
controlled frequencies from 1 Hz to 5 Hz.  

The performance of the proposed method has been assessed 
by comparing the measurement results provided by the realized 
system with those guaranteed by a marine-grade MEMS sensor, 
i.e., the STIM318. The raw acceleration measurements are 
acquired by the concentrator and sent to a PC that collects and 
processes data by means of a Matlab code, according to Section 
2.2.  

The performance reached by the proposed method highlights 
the benefits introduced by exploiting the ZVU filter and initial 
alignment for measurement calibrations, i.e., the compensation 
of accelerometer bias drift values. In fact, as shown in Figure 5, 
the signal spectrum of both systems have been compared, where 
the amplitude value differences associated with the component 

at 1 Hz between the proposed method (𝐴est) and the reference 

(𝐴ref) are equal to 0.021 m/s², while the amplitude differences 

between the best sensor i.e., one cube face (𝐴one) measures and 
reference system are equal to 0.137 m/s². For the sake of clarity, 
a comparison at frequency oscillation of 1Hz is shown, but 
similar results have been experienced, which are reported in 
Table 4. Moreover, the theoretical amplitude values evaluated 
according to (6) have been reported. 

The benefit introduced by the proposed method is 
highlighted in Table 5, where the differences between the 

reference system and estimated values (∆𝐴est) and the reference 

system and one sensor value (∆𝐴one) have been reported. 
These results are also shown in Figure 6, where the 

differences between the reference system and uncompensated 
measures rise as the frequency increases due to the typical low-
cost accelerometer errors, while by adopting the proposed 
method, the differences are constant. In fact, by exploiting the 
ZVU calibration, the bias drift and bias stability are 
compensated, as shown by the stability of the system as the 
frequency increases. 

Finally, to assess the proposed solution, Figure 7 shows the 
second-order polynomial fitting to evaluate the quadratic trend 
of the acceleration amplitude as the frequency increases. The 
comparison highlights that the reference system and estimated 
acceleration amplitude values present a comparable trend with 
the ideal trend, while instead, the uncompensated values show a 
significant drift over frequency. 

 

Figure 5. Acceleration amplitude comparison at 1Hz: reference system (red), 
proposed method (blue) and one sensor measures (orange). 

Table 4. Acceleration amplitude results from 1Hz to 5Hz. 

Amplitude  
(m/s²) 

Oscillation Frequency (Hz) 

1 2 3 4 5 

Reference System 0.173 0.767 1.754 3.123 4.914 

Proposed Method 0.152 0.744 1.733 3.101 4.891 

One Sensor 0.31 1.243 2.254 4.63 6.823 

Theoretical 
Acceleration 

0.197 0.789 1.776 3.158 4.934 

Table 5. Amplitude differences between the reference system and (i) the 
proposed method; (ii) one accelerometer sensor measures. 

Amplitude differences  
(m/s²) 

Oscillation Frequency (Hz) 

1 2 3 4 5 

∆𝐴𝑒𝑠𝑡 0.021 0.023 0.021 0.022 0.022 

∆𝐴𝑜𝑛𝑒 0.137 0.476 0.5 1.507 1.909 
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Once the performance has been verified, an example of 
sensor node operation, presented in Section 2.2, is shown in 
Figure 8. The monitoring dashboard can be accessed from both 
smartphones and pc, and information regarding the amplitude of 
the oscillation in g and the frequency is shown. For the sake of 
clarity, the full dashboard also shows all the sensor axes. 

5. CONCLUSIONS 

The use of MEMS-based sensors in SHM systems has been 
shown to be an effective and cost-efficient approach for large-
scale structural monitoring. However, the inherent errors in 
MEMS-based sensors can affect the accuracy and reliability of 
SHM systems. To overcome these challenges, this research 
evaluates the use of a redundant configuration of low-cost 
MEMS sensors, then proposes (i) an initialization procedure 
based on the adoption of a Zero-Velocity Update filter to 
compensate the bias components i.e., in-run stability, bias 
instability, and thermal effects; (ii) an initial alignment procedure, 
and (iii) a Kalman Filter for high-frequency noise reduction that 
has proven to be effective in improving the performance of 
MEMS-based SHM systems keeping advantages in terms of 

computational load. In particular, the system performance is 
evaluated by means of a custom oscillating platform that 
provides oscillation at constant displacement and variable 
frequency. In this way, the proposed method is tested, and a 
comparison with a reference system, i.e., a marine-grade 
accelerometer, theoretical values, and the one accelerometer 
sensor measures, has been evaluated. The proposed method 
highlights a remarkable agreement with the reference system, 
which respects the theoretical trend, and the performance 
improvements over one accelerometer sensor measurements are 
deducted from the results obtained; in fact, amplitude differences 
of 0.02 m/s2 and 0.137 m/s2 have been experienced between the 
reference system and the proposed solution and one sensor 
respectively. Moreover, it is observed that drift and bias stability 
errors are not present in the system as the frequency increases. 

Finally, a smart monitoring architecture has been proposed 
based on the adoption of a sensor node capable of real-time 
monitoring of the structure by exploiting the IoT 
communication protocols, i.e., LoRAWAN and NFC. The use 
of these systems, combined with the proposed solution, can 

 

Figure 6. Differences as the frequency changes (from 1H z to 5 Hz), between 
the reference system and (i) the proposed method (blue); (ii) one sensor 
measures (orange). 

 

Figure 7. Polynomial fitting comparison: ideal trend (black), reference system 
(red), proposed method (blue) and, one sensor measure (orange). 

 

Figure 8. Monitoring dashboard example of operation.  
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provide accurate and reliable data, leading to timely maintenance 
and cost savings. 

As future work, additional tests will be executed by means of 
different beam sizes (the acceleration amplitude could be 
changed by modifying the beam length) and a vibrodyne to 
suitably assess the combined effects of amplitude and frequency 
by evaluating the minimum and maximum operating values. 
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