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1. INTRODUCTION 

In the perspective of whole-system economic sustainability, 
the enormous volume of urban plastic waste and the constant 
increase in human plastic consumption require a high level of 
waste valorisation. By the numbers, global plastic production 
reached 367 million tons in 2021, with Europe accounting for 
16 % of the total [1]. 9 % of plastic was recycled, 12 % was 
incinerated, and 79 % ended up in landfills or natural 
compartments [2]. The recycling of polymer waste has significant 
environmental advantages owing to the replacement of primary 

manufacturing, and waste sorting optimization plays a critical 
role in the development of the recycling process [3], [4]. 
Recycling is a technique for plastic product end-of-life waste 
management [5]. Basically, two types of recycling processes can 
be distinguished: mechanical and chemical processes [3], [6]. In 
both, sorting is the most critical stage in the recycling process, 
and this is true regardless of how effective the recycling program 
is [3], [4]. The use of automated sorting equipment makes the 
process more efficient [7]. Usually, these devices rely on 
vibrational spectroscopic techniques [8]-[11], and camera 
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systems for the polymer identification of clear and coloured 
products [5], [12]. Other techniques are based on ultraviolet (UV) 
spectroscopy [13], [14], X-ray [15], and hyperspectral imaging 
[16]-[18]. Over the years, this strategy has increased the purity of 
the output plastic, achieving a high percentage of recyclates in 
the production of secondary materials. However, these systems 
reach their limits with mixed plastics that require additional 
sorting elsewhere and can affect the quality of the recyclate if not 
appropriately allocated. A positive cost-benefit analysis is only 
possible if the separated polymer fractions have a high purity 
grade and satisfy the market demand for high-quality recyclates. 
Therefore, post-consumer recycling consists of many essential 
steps: collection, sorting, cleaning, size reduction and separation, 
and/or compatibilization to reduce polymer contamination [5]. 
In this scenario, the prospect of combining a well-established 
polymer identification technology with a small, portable, low-
cost, real-time spectrometer for local and intermittent semi-
automatic sorting is highly desirable, accompanied by robust data 
analysis [19], [20]. In recent years, chemometric analysis of non-
destructive spectroscopic data has been widely investigated as an 
automated method for improving plastic sorting systems [21]-
[24]. This improvement has been driven by the need to reduce 
the environmental impact [25]. Recently, machine learning has 
attracted considerable attention in plastic waste recognition using 
spectroscopic techniques [26]-[32]. In this study, we compared 
machine learning and chemometric techniques for classifying 
plastic waste data acquired with a portable Near-Infrared (NIR) 
spectrometer (see Figure 1 for the scheme of the work). 
Comparisons were made between chemometric approaches, 
Principal Component Analysis (PCA) and Partial Least Squares 
– Discriminant Analysis (PLS-DA), and machine learning 
techniques, Support-Vector Machines (SVM), Fine Tree, Bagged 
Tree, and Ensemble Learning. A comparison was also made in 
terms of pre-processing: traditional techniques, such as Standard 
Normal Variate (SNV) and Savitzky-Golay derivatives were 
examined in contrast to feature reduction techniques, such as 
multiple Gaussian Curve Fit based on Radial Basis Functions 
(RBF). The predictive performances of the tested models were 
compared in terms of classification parameters, such as Non-
Error Rate (NER) and Sensitivity (Sn) with the analysis of 
confusion matrices, providing a comprehensive overview and a 
rational means of selecting the approach for the analysis of NIR 
data for plastic waste sorting. 

2. MATERIALS AND METHODS 

2.1. Samples collection 

The first batch of plastic samples was collected in the 
Selection Division of the Montello SpA recovery and recycling 
plant (Bergamo, Italy), which accepts post-consumer plastic in 
the form of municipal waste for recycling [20]. Subsequently, the 
dataset was expanded to include new samples from municipal 
waste collected before ending up in landfills. A total of 325 
samples from a variety of polymer classes were used in this study. 
Specifically, the products studied were: 75 samples of 
poly(ethylene terephthalate) (PET), 100 samples of polyethylene 
(PE), 75 samples of polypropylene (PP), and 75 samples of 
poly(styrene) (PS). The assortment included bottles, containers, 
and packaging of various sizes, shapes, and colours. 

2.2. NIR analysis 

Plastic samples were analysed using the MicroNIR On-site 
spectrometer (Viavi Solutions Inc., CA, United States) in 
reflectance mode without pre-treatment of the samples. The 
instrument is a palm-sized, portable spectrometer weighing 
approximately 250 g and measuring less than 200 mm in length 
and 50 mm in diameter. The instrument is equipped with a Linear 
Variable Filter (LVF), coupled to a linear detector array, which 
operates in the wavelength range 950-1650 nm. Control settings 
for spectral data acquisition were set to 10 milliseconds 
integration time and 50 scans, resulting in a short measurement 
time of 0.25 seconds. A point-and-shoot technique was used to 
perform 5 replicates for each sample to reduce the effects caused 
by sample non-uniformity. A total of 1625 spectra were acquired, 
and acquisition was performed using MicroNIRTM Pro v3.0 
software (Viavi Solutions Inc., CA, United States). 

2.3. Spectral pre-processing and chemometrics 

Pre-processing NIR spectral data has become an essential 
aspect of chemometric modelling. The goal is to eliminate 
physical events from the spectra to improve subsequent 
multivariate regression, classification model, or exploratory 
analysis [33]. In this study, the spectra were retrieved in a single 
matrix of 1625 × 125 (samples × wavenumbers) and pre-
processing was applied using the Savitzky-Golay second 
derivative method with seven data points and a second order 
polynomial followed by Standard Normal Variate (SNV). The 
second derivative was applied to correct the drift effect [34], [35] 

 
Figure 1. Scheme of the work. 
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in the NIR spectra, while SNV corrects the baseline shift [36]. 
SNV was calculated as follows [36]: 

𝑋corr =
𝑋org − 𝑎0

𝑎1

 (1) 

where 𝑋corr is the spectrum corrected, 𝑋org is the raw spectrum 

collected by the instrument, 𝑎0 is the value of the mean of the 

spectrum to be corrected, and 𝑎1 is the standard deviation.  
In addition, normalization was performed by mean centering. 

Different chemometric methods were used for the correct 
evaluation of the data of all analysed samples. PCA was initially 
applied as an exploratory analysis to investigate the data structure 
and was performed on 1625 NIR spectra from all polymer 
classes. Then, PLS-DA was applied as a supervised pattern 
recognition tool to separate the different commodities. Prior to 
using PLS-DA, data were split into a training set and a test set 
using a MATLAB proprietary function. The process was 
repeated 500 times, generating a different training and test set 
each time (75 % of the samples belonged to the training set and 
25 % to the test set). All chemometric analyses were performed 
with MATLAB 2021b (The MathWorks, Inc, Natick, MA, USA) 
using the PLS-Toolbox (Eigenvector Research, Inc. Manson, 
Washington, USA). 

2.4. Machine learning and pre-processing 

Various machine learning algorithms were applied for 
classification purposes; SVM, Fine Tree, Ensemble Learning, 
and Bagged Tree. In addition, a likelihood-based aggregation 
procedure (here called Combo) was used to integrate the data 
into a single predictor, and the same procedure was applied with 
a Monte Carlo Method (MCM) to make a perturbation on raw 
data, to improve the generalization performance. The chosen 
hyperparameters are the following: for Fine Tree Gini's diversity 
index (gdi) was used as split criterion with 100 maximum number 
of splits; SVM was performed with a linear kernel function with 
kernel scale equal to 3. Lastly, Ensemble Learning was performed 
with the Bagged Tree method with 30 cycles of learning. To test 
the reliability of the system, 200 random extractions were 
performed for splitting the training and testing set. Again, 75 % 
of the samples were used for training and the rest for testing. 
Machine learning methods were performed on three different 
datasets: the raw data collected as specified in the previous 
paragraph (2.2), data reduced using the Gaussian RBF curve fit 
[37], and a dataset obtained combining raw and pre-processed 
data. 

Each curve of the dataset has been fitted using a combination 
of 12 gaussian functions and a linear interpolation with a second-
degree function, thus reducing the dataset dimension to 12 RBF 
centres and 12 sigma values. The procedure is as follows: 

1. The second order derivative is computed and fed to find 
detection algorithm for the initial guesses of the RBF 
centres (here the MATLAB function “Findpeaks” was 
used with a limitation of 12 peaks maximum and 
excluding the first and last 20 samples of the spectrum). 

2. A linear regression with a second-degree equation is used 
to remove offset and second-order trends. 

3. The RBF centres are used as initial guess to an 
optimization procedure based on a Sequential Quadratic 
Programming constrained minimization function [38]. 

The cost function 𝜀 used is reported in (2) where 𝐴𝑖 is the 

frequency of the 𝑖-th sample, 𝑦𝑖  is its raw values, and 𝜇𝑗 , 

𝜎𝑗 , and 𝐴𝑗 are the centre, sigma and amplitude of the 𝑗-th 

RBF function respectively. 

𝜀 = ∑ ∑ 𝜀𝑖,𝑗

𝑗𝑖

 

𝜀𝑖,𝑗 = {

0, 𝜎𝑗 < 0

𝐴𝑗𝑒
−

(𝑓𝑖−𝜇𝑗)2

2 𝜎𝑗
2

, 𝜎𝑗 ≥ 0

 

(2) 

4. The centres and sigmas found are collected as features of 
the new dataset. 

The condition posed in (2) on the positive value allows to 
reduce dynamically the number of RBF functions actually used, 
while the interpolation removes trends that could hide peaks. 

A third dataset combining the two previous dataset (raw and 
RBF Gaussian fit) is also created simply joining the two tables. 

All calculations were performed using MATLAB and 
Statistics Toolbox release 2021b (The MathWorks, Inc, Natick, 
MA, USA). Automation of the procedure was implemented 
using MATLAB functions created in-house.  

In Figure 2 the data analysis approach starting from raw data 
is reported, both for chemometrics and machine learning 
modelling. 

3. RESULTS ANN DISCUSSION 

3.1. NIR spectra 

The main advantage of NIR spectroscopy is that it is a fast-
response analytical technique capable of collecting spectra 
without prior processing and predicting physical and chemical 
properties from a single spectrum [39]. The absorption bands in 
the NIR region are caused by overtones and/or combination 
bands of primarily carbon-hydrogen vibrations and oxygen-
hydrogen vibrations. Correct band assignment is difficult since it 
may be caused by various combinations of fundamental 
vibrations. Also, overtone vibrations are highly overlapping [40]. 
Representative NIR reflectance spectra of the four polymers 
(PE, PET, PP, and PS) are shown in Figure 3. 

 

Figure 2. Data analysis approach.  
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The main absorbance band for PET was found at 1660 nm, 
which is related to the 1st overtone of C-H stretching [41], with 
other two peaks at about 1130 nm and 1415 nm. For PE the peak 
around 1211 nm is related to 2nd overtone of methylene C-H 
group, while the peak at about 1217 nm is related to the C-H 
stretch [42]. Peaks at 1391 nm and 1168 nm, correspond, 
respectively, to C-H combination band and 2nd overtone of CH2 
symmetric stretch. Regarding PP, the 2nd overtone of the 
asymmetric methyl C-H stretch is around 1193 nm, while the 
asymmetric methylene C-H stretch occurs at about 1211 nm [43]. 
The two peaks at 1391 nm and 1397 nm are related to methyl 
and methylene (C-H) combination. Lastly, for PS the peak at 
1205 nm corresponds to the 2nd overtone of the aromatic C-H 
stretch; the stretching vibrational mode of C-H which occurs 
around 1639 nm, and the 1st overtone of aromatic C-H stretch 
overlaps with C-H combination band, which occurs at about 
1391 nm [42]. To allow comparison between the raw spectra and 
the same spectra after applying the Savitzky-Golay 2nd derivative 
and SNV, Figure 4 shows the representative spectra of the four 
commodities after pre-processing. 

3.2. Principal component analysis  

The PCA calculation was performed after the pre-processing 
described above for the entire spectral range. For data structure 
analysis, PCA is a useful chemometric method. The goal of PCA 
is to extract the information stored in many variables into a 
smaller number of variables, called Principal Components [44]. 
Figure 5 shows the score plot of the first two components 
(73.88 % of the total explained variability), in which a clear 
separation between the polymer classes can be seen. Along PC1 
PET is distinguished from the other commodities. PET samples 
show very negative score values, while the other samples show 
positive score values. On the other hand, along PC2, PS is clearly 
separated from the other plastics.  

A clear separation between PP and PE can be noticed in the 
score plot of PC1 vs PC3 in Figure 6, where PC3 accounts for 
15.83 % of the total information and explains the difference of 
PP from the other class of polymers. 

3.3. Partial least squares discriminant analysis 

Following the exploratory PCA analysis, a supervised 
classification technique was used to distinguish the different 
plastic groups. In PLS-DA, a classification objective is added to 

 

Figure 3. Representative near-infrared (NIR) spectra of the four classes of 
polymers.  

 

Figure 4. NIR spectra of the four classes of the polymers after the typical pre-
processing for chemometric analysis: Savitzky-Golay 2nd derivative and 
Standard Normal Variate.  

 

Figure 5. Results of PCA performed with spectral data of different 
commodities. The score plot of PC1 vs PC2 is presented.  

 

Figure 6. Results of PCA performed with spectral data of different 
commodities. The score plot of PC1 vs PC3 is presented.  
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the PLS regression technique. The response variable is 
categorical and reflects the class to which the statistical units 
belong. PLS-DA returns the prediction as a vector with values 
between 0 and 1 and a length equal to the number of classes in 
the predictor variables [45], [46]. Each time PLS-DA was 
performed, the parameters such as NER and sensitivity were 
calculated in fitting, in cross-validation (CV), and for the test set. 
The cross-validation procedure was based on venetian blind 
approach with 5 groups. CV was also used to determine the 
optimal number of Latent Variables (LVs) for each PLS-DA 
model. Figure 7 shows all sensitivities for each class, calculated 
for training set, CV, and for test set. The values are close to 1, 
indicating a very high classification performance. Moreover, the 
results are very balanced between training, CV, and test set; 
therefore, overfitting is completely avoided, and the model can 
be considered reliable and stable.  

Table 1 shows the NER defined as mean class sensitivity [47], 
calculated for all the training set, cross-validation, and test set. 
Overall, 99 % of the samples were correctly classified for each of 
the 500 iterations. 

3.4. Machine learning 

Due to the complexity and the large number of results, for the 
machine learning analysis the classification parameters are 
presented only for the test set. Figure 8 shows the NER of the 
classes for each computed model and for each treatment of the 
data. It is noticeable that the models run on raw data have the 
worst performances. The NER ranges from 0.74 (Fine Tree) to 
0.9 (SVM), indicating a high variability in the results. For raw data 
only SVM can be considered as a satisfactory model for pattern 
recognition. Lower variability in the results is observed for pre-
treated data and for a mixture of pre-treated and raw data, where 
the NER ranges from 0.96 to 0.99 and from 0.96 to 0.98, 
respectively. Thus, there is no difference in the results between 
pre-processed data and the combination of raw and pre-treated 
data. These results confirm that feature reduction based on the 
Gaussian curve with RBF gives high performances for pattern 
recognition in machine learning analysis. 

In general, the model performance is comparable between 
machine learning and multivariate analysis methods. After 
random extraction of training and test data repeated 500 and 200 
times for chemometrics and machine learning, respectively, the 
NER calculated for the test set is above 0.95 for both methods. 
However, the use of chemometrics reduces the computational 
time, compared to the computationally intensive machine 
learning algorithms. 

4. CONCLUSION 

This paper included a side-by-side comparison between 
conventional chemometric methods and machine learning 
algorithms for the classification of a dataset obtained from the 
study of plastic waste with a portable Near-Infrared (NIR) 
spectrometer. Multivariate methods such as Principal 
Component Analysis (PCA) and Partial Least Squares - 
Discriminant Analysis (PLS - DA) were investigated, as well as 
machine learning methods such as Support Vector Machines 
(SVM), Fine Tree, Bagged Tree and Ensemble Learning. Results 
were also compared in terms of data processing: signal pre-
processing tools, SNV, and Savitzky-Golay derivatives were 
compared with feature reduction approaches such as Multiple 
Gaussian Curve Fit based on Radial Basis Functions (RBF). In 
addition, the machine learning algorithms were run on raw data, 
pre-processed data, and the combination of the two approaches. 
The results from PLS-DA showed very high performances for 
pattern recognition; in fact, the NER for the training set, in CV, 
and for the test set are all equal to 0.99. In contrast, for machine 
learning, the NER for raw data ranges from 0.74 for Fine Tree 
to 0.90 for SVM, indicating high variability in the results. The 
results for the pre-processed data show lower variability with 
NER value ranging from 0.96 to 0.99, which is also valid for the 
combination of raw data and pre-processed data. This confirms 
that RBF-based variable reduction is the most crucial point to 
improve classification performances. Contrarily to some results 
found in the literature regarding the pre-treatment of data having 
a negative effect in accuracy using chemometrics [48], the pre-
treatment of data is generally an improvement in the detection 
accuracy using machine learning techniques. We can conclude 
that the multivariate and machine learning approaches produce 
comparable results in terms of model performance. The NER 
estimated for the test set is above 0.95 for both chemometrics 
and machine learning after randomly extracting the training and 

 

Figure 7. PLS-DA Model. Class sensitivities (Sn) calculated for training set, in 
cross-validation and for test set.  

Table 1. PLS-DA Model. Non-Error Rate calculated for training set, in CV and 
for test set.  

 NER 

Training 0.99 

CV 0.99 

Test 0.99 

 

Figure 8. Machine Learning. Comparison of the Non-Error Rate (NER) 
calculated from the confusion matrices for each model. Results are presented 
for raw data, pre-treated data, and the combination of raw and pre-treated 
data.  
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test data and repeating them 500 and 200 times, respectively. On 
the other hand, chemometrics is characterised by a lower 
computation time compared to machine learning algorithms and 
it can therefore be considered more advantageous. 
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