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1. INTRODUCTION - DATA SCIENCE CLASSES OF TIC 
PROBLEMS 

The conformity assessment processes are mostly finalized 
with decision delivery, mostly evident in testing, inspection, and 
certification (TIC). These decisions are predominantly based on 
empirical data derived by measurements. Measurements are 
crucial in various critical societal sectors, such as healthcare, 
trade, industry, energy sector, environmental protection, etc., 
where TIC activities are commonly conducted. Lately, significant 
impact on the TIC sector is created by the spin of the digital 
transformation. In the centre of the digital transformation there 
is the enormous quantity of data, which is continuously 
produced, processed, stored, and used for increasing number of 
applications. Artificial intelligence, machine learning, internet of 
things, big data analytics etc. are based on data. However, the 
data quality is an issue not always properly addressed, especially 
in sectors with traditions based on experimental approaches, as 
the TIC. Poor models, incorrect results, and finally wrong 

decisions might derive from poor quality of data. Data science 
utilizes scientific approaches, protocols, algorithms and systems 
with interdisciplinarity to extract insights and information from 
noisy, structured and unstructured data, and deploy knowledge 
from data in wide scope of applicative solutions [1], [2]. The 
recent revival of measurement and data science interrelation is 
induced by the emerging application of sensory devices and 
significant increase of available data storage, processing, 
transmission capacities which are variously utilized. One of the 
results of the high quantity of recorded information and of the 
theoretical achievements in measurement and data science, is an 
invention of numerous newly developed products and smart 
services. This contribution conducts an analysis of the options 
for utilization of the latest data science achievements in the TIC 
decision making processes, based on conclusions with 
synchronous usage of “measurements” as completely empirical, 
and the “data science” as methodology oriented towards 
modelling and simulation, combined with high complementarity 
and synergy, i.e., the data fusion approach. The modern scientific 
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methodologies require sustaining the theory validity, through 
experimental verification, whenever possible. Experimental 
proof comprises a quantitative measure or non-quantitative (i.e., 
qualitative measure) of the observed quantities achieved through 
measurement. The consistency degree of various measurement 
results, derived by different independent experimenters or by the 
same experimenter at various moments, provides an indicator for 
the reliability of the results of the quantity of interest, taking into 
account that empirical knowledge is mostly imperfect to some 
degree and the combination of observations are standard and 
essential practices [3]. 

Several classes of data science problems for which techniques 
might be developed and evaluated across different domains in 
the TIC sector are [1]: 

• Detection: finding data of interest in given dataset.  

• Anomaly detection: identification of system states that 
force additional pattern classes in a model. Outlier 
detection is associated with identifying potentially 
erroneous data items forcing changes in prediction models 
“influential observations”.  

• Cleaning: elimination of errors, omissions, and 
inconsistencies in data or across datasets. 

• Alignment: relating different instances of the same object 
[4], like a word with the corresponding visual object, or 
time stamps associated with two different time series. Data 
alignment is frequently used for entity resolution, 
identifying common entities among different data sources. 

• Data fusion: different representations integration of the 
same real-world object, encoded in a well-defined 
knowledge base of entity types [5].  

• Identification and classification: attempt to determine, for 
each item of interest, the type or class to which the item 
belongs [6].  

• Regression: finding functional relationships between 
variables.  

• Prediction: estimation of a variable or multiple variables of 
interest at future times.  

• Structured prediction: tasks where the outputs are 
structured objects, rather than numeric values. A desirable 
technique to classify a variable in terms of a more 
complicated structure than producing discrete or real-
number values. 

• Knowledge base construction: construction of a database 
with a predefined schema, based on any number of diverse 
inputs.  

• Density estimation: production of a probability density 
(distribution function), beside a label/value.  

• Joint inference: joint optimization of predictors for 
different sub-problems using constraints that enforce 
global consistency used for detection and cleaning for more 
accurate results.  

Data science involves ranking, clustering, and transcription 
(“structured prediction”), as in [7]. Other classes of problems are 
based on algorithms and techniques which are applied to raw 
data at an earlier “pre-processing” stage. Different data 
processing may be activated if evaluation methodology is 
essential, [1]. 

2. MAIN STATISTICAL PARADIGMS FOR DECISION MAKING 
IN TIC 

The international endorsement of the Guide to the 
Expression of Uncertainty in Measurement (GUM), [8] 
accelerated the need to provide uncertainty statements in 
measurement results. The laboratory accreditation based on 
standards such as ISO 17025 [9] has amplified this process. As 
the uncertainty statements have been recognized as essential for 
effective decision making, various laboratories, from national 
metrology institutes to commercial test laboratories, insert 
significant workload into evaluation of measurement uncertainty 
by applying the GUM methods [8], [10], [23], but also the 
methodologies proposed in the international guideline ILAC G8 
[22]. The approaches for uncertainty propagation evaluation in 
the TIC applications comprise the frequentist, Bayesian, and 
fiducial statistical paradigms [11], [23]. 

The first statistical paradigm - frequentist, is where 
uncertainty can be probabilistically assessed, and is based on 
statistical theory, referred as “classical” or “conventional”. 
Considering the origin of uncertainty in TIC, these approaches 
must be adjusted to derive frequentist uncertainty intervals under 
practical conditions. In most realistic TIC environments, 
uncertainty intervals must comprise both the uncertainty in 
quantities estimated using data and the uncertainty in quantities 
derived from expert knowledge, so the approach of data fusion 
is indispensable. To gain an uncertainty interval, the measurands 
which are not under observation are usually treated as random 
variables with probability distributions of their values, on the 
other hand measurands with values possible to be assessed by 
applying statistical data are considered as unknown constants. 
The traditional frequentist protocols should be altered to achieve 
the prescribed level of confidence after averaging over the 
potential quantities’ values evaluated by expert judgment [11]. 

The second paradigm - Bayesian approach [11] named after 
the fundamental theorem, which was proved by the Reverend 
Thomas Bayes in the mid-1700s, is where the analyst’s 
knowledge about the measurands is modeled as a set of 
stochastic variables with a probability distribution in the joint 
parameter space. The theorem enables the probability 
distributions to be updated based on the observed data and the 
inter-relationships of the parameters defined by the function or 
equivalent statistical models. The probability distribution is 
obtained by describing the knowledge of measurand given the 
observed data. 

The third statistical paradigm - fiducial approach, is developed 
by R. A. Fisher in the 1930s [11]. The probability distribution 
(fiducial distribution) for a measurand conditional on the data is 
gained from the interrelationship of measurand and the input 
value described by the function and the distributional 
assumptions on the data used to estimate. 

3. DECISION-MAKING, AND RISK BASED THINKING IN TIC 
ESTABLISHED BY DATA FUSION 

Data fusion aim to obtain higher quality information to apply 
to specific contexts, by profiting from the symbiosis of data 
collected from diverse sources. Data fusion is the process of 
combining data or information to estimate or predict entity states 
[12]. Applied in many decision-making domains, such as the TIC, 
it encompasses classification and pattern recognition utilized to 
argument decisions. Decision making, especially in conformity 
assessment is directly linked to introduction of risks in the 
laboratory or the TIC entity’s operations. So, in TIC it is crucial 



 

ACTA IMEKO | www.imeko.org June 2023 | Volume 12 | Number 2 | 3 

not only to fuse data obtained from multiple sources, both 
experimental and theoretical, but also to assess threats and risk 
[9], [22] and [23]. Data fusion enlarges robustness and soundness 
and diminishes the vulnerability of the system giving arguments 
for the decision, and enabling decision-making even when some 
sources of information are missing or are inappropriate. Through 
data fusion better and larger coverage of space and time is 
achieved, ambiguity is decreased, because better information 
leads to better distinction among available hypotheses. Data 
fusion is based on experimental data output by sensing devices 
or instruments, and on information gained by other routes (e.g., 
the user as a data source for a priori knowledge, experience, and 
model application). Data fusion imposes all data to be 
represented in the same format (e.g., numeric values in the same 
units, relative values). If data are diverse in representation, data 
alignment or data registration is indispensable [12]. 
Measurements, as instrument outputs, produce a signal usually 
affected by noise, and whose reliability has to be proved (e.g., 
instrument malfunction, express corruption of measured 
quantity, like jamming). Filtering and validation of the data are 
necessary in data fusion processes. Data fusion comprises 
activities tackling: data from sources with different quality levels, 
such as different accuracy, co-related data, inflation of 
information, and all other issues leading to computational 
problems, and impose a need to change the context of the 
observation, like from time to frequency domain, or to extract 
features or attributes [12].  

As an illustration for application of data science in the TIC 
sector, one of the most relevant TIC decision-making and risk-
introducing issues will be further demonstrated - determination 
of the re-calibration period of the TIC measurement equipment 
by deploying data fusion as a mean for argumentation.  

4.  PLANNING THE TIC INSTRUMENT RE-CALIBRATION 
PERIOD BY DEPLOYMENT OF DATA FUSION 

Estimating the re-calibration intervals is an essential issue of 
the TIC sector entities utilizing calibrated instruments in their 
activities. Most of the test equipment in today's laboratory 
inventories are multi-parameter items or consist of individual 
single-parameter items. An item-measurand is declared to be out-
of-tolerance if a single instrument parameter or an item in a set, 
is found to be out of pre-defined specifications. This is 
expensive, and introduces risks [13], [14], [23]. Most of the 
published methods for planning the re-calibration period of an 
instrument, are of statistical origin and can be adequately used 
only for large inventories of instruments, [15]. As a result of the 
different performance characteristics of individual instruments 
and their changeable working conditions, instrument reliability is 
complex to anticipate. Extended calibration intervals might have 
a consequence in increased potential costs associated with a 
given instrument, as more operation cycles (tests or calibrations) 
have been conducted before it is re-calibrated and found to be 
in- or out-of-tolerance. A posteriori costs might encompass a 
reverse traceability review to identify the items that have been 
tested by the instrument, a thorough investigation of the level of 
negative impact on their performance given the scale of the 
instrument’s out-of-tolerance, leading to customer alert, 
accreditation suspension, product recall and imperceptible issues 
like the TIC entity’s jeopardized reputation might occur. In this 
contribution, the focus is on estimating the recalibration period 
of measuring instruments used by the TIC entities by deploying 
data fusion for reduced decision-making risk. The approach for 

determining the recalibration range will be validated through a 
case study on experimental calibration and check data of an 
electrical measuring instrument, by fusion of data from diverse 
sources (both a posteriori experimental and a priori knowledge, 
experience, model application).  

Most of the standards according to which the TIC entities are 
accredited/certified require to have available, suitable, and 
adequate facilities and equipment to permit all TIC activities to 
be carried out in a competent and safe manner, with the 
responsibility lying solely on the TIC entity. One of the most 
significant decisions regarding the calibration is “When and how 
often to do it?” 

Many factors influence the time range between calibrations, 
and they should be identified and considered by the TIC entity. 
The most important factors are:  

• uncertainty of measurement required or declared by the 
TIC entity,  

• risk of a measuring instrument exceeding the limits of the 
maximum permissible error when in use,  

• cost of necessary correction measures when it is found that 
the instrument was out-of-tolerance over a long period of 
time,  

• type of instrument,  

• tendency to wear and drift,  

• manufacturer’s recommendation,  

• extent and severity of use,  

• environmental conditions (climatic conditions, vibration, 
ionizing radiation, etc.),  

• trend data obtained from previous calibration records, 

• recorded history of maintenance and servicing,  

• frequency of cross-checking against other reference 
standards/measuring devices (including diverse measures 
for quality assurance in TIC, such as inter-laboratory 
comparisons or proficiency testing schemes, or 
repeatability of tests under different operating conditions),  

• frequency and quality of intermediate checks in meantime, 

• transportation arrangements and risk, and 

• degree to which the TIC personnel are trained [15].  

The ILAC-G24 specifies the following methods, [15]:  

• automatic adjustment or “staircase” (calendar-time), 

• control chart (calendar-time),  

• “in-use” time,  

• “in service” checking, or  

• “black-box” testing, and  

• other statistical approaches.  

The use of statistical methods (i.e., by deploying data science) 
on an individual instrument or instrument type are of interest, 
especially if combined with adequate software tools. 

According to Agilent Technologies®, prior to the introduction 
of a new product, [16] the responsible personnel set the initial 
recommended re-calibration period. Data is treated as reliable 
data if originating from at least three areas:  

• data from similar instruments,  

• data for the individual components used in the instrument,  

• data on any subassemblies deriving from existing mature 
products (i.e., instruments).  
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The usual working environment and the testing results of the 
surrounding conditions conducted on instrument prototypes are 
considered as well [18].  

Several methods for determining the calibration intervals are 
published, [13], [14], [19], [20] and [21]. Some models assume 
that the calibration condition of the instrument can be traced by 
monitoring the drift of an observable parameter, [13]. The 
calibration ranges can be presented according to analysis by 
parameter variables data, analysis by parameter attributes data, by 
instrument attributes data, and by class instrument attributes 
data. Other methods, such as an extension by providing a 
maximum likelihood estimation for the analysis of data 
characterized by unknown failure times, are given in [13], where 
the estimation method is using the exponential reliability 
function.  

An approach with a review of the instrument’s calibration 
history is presented in [14], calibration records indicate the 
history of remaining in tolerance. The instrument might have a 
higher likelihood of remaining in tolerance, as a result of an 
algorithm that has been developed calculating calibration ranges 
based on the condition received from calibration along with a 
historical weighting. A method from variables data is presented 
for determining calibration intervals for parameters whose value 
demonstrate time-drift with constant statistical variance. The 
method utilizes variables data in the analysis of the time-
dependence of deviations between as-left and as-found values 
from calibration. The deviations are from the difference between 
a parameter's as-found value at a given calibration and as-left 
value prior to calibration [14]. The choices for the tolerance band 
for parameter X in the Table 1, are derived from other authors 
publications [14], but also based on the own laboratory 
metrology experience. In further research other methodologies 
for this purpose are planned to be deployed, like the suggested 
decision-making ranges as in ILAC G8, [22]. 

 In [19] and [21], a stochastic optimisation approach for 
determination of the re-calibration period is presented. A genetic 
algorithm methodology is deployed for estimation of the next 
calibration period, considering the previous calibration history of 
the measurement device. The experimental results of last 
calibration certificate are used for verification of the predicted 
device measurement time drift in the moment of the estimated 
moment of next calibration. The modelling is performed by 
representing the time dependence of the instrument time-drift 
with Lagrange orthogonal polynomials, constructed from 
experimental calibration history embedded in an algorithm based 
on the statistical least square method and inclusion of the 
accompanying uncertainties in the genetic algorithm stochastic 
optimisation tool for determination of the coefficients of the 
polynomial model of the function of the time-drift of the 
instrument. 

4.1. ESTIMATION OF A RE-CALIBRATION PERIOD-MODEL 
DEVELOPMENT 

Based on the previous discussions and survey, the following 
innovative data fusion model for determination of the re-
calibration period is proposed: 

NI = ECI ⋅ [𝐶1 ∙ X + C2 ⋅ X + C3 ∙  X + C4 ∙ X + IC ∙ 𝑌 + 

+CFU ∙ 𝑍 + CO ∙ 𝑈 + OFH ∙ 𝑉 + MS ∙ 𝑊] 
(1) 

where are: 

NI - New Interval 

ECI  - Established Calibration Interval 

Table 1. Values of parameters as multipliers. 

Parameter  Value 

X “In Tolerance”  1 

“Out of Tolerance”  0.8 

< 1x the tolerance band 

“Out of Tolerance”  0.6 

> 1x the tolerance band, 
< 2x the tolerance band 

“Out of Tolerance”  0.4 

> 2x the tolerance band, 
< 4x the tolerance band 

“Out of Tolerance”  0.3 

> 4x the tolerance band, 
< 4x the tolerance band 

Y=ΣYi Y1 number of in-service checks between 
calibrations  

 

1 time 0.1 

< 5 times 0.3 

< 10 times 0.4 

> 10 times 0.5 

Y2 measured value  
 

no difference (<3%) 0.5 

difference < 20% 0.4 

difference > 20% 0.1 

Z=ΣZi Z1 Frequency of usage 
 

dayly 0.1 

montly 0.5 

yearly 0.7 

Z2 Habit of usage 
 

used with caution in laboratory conditions  0.3 

used with caution in tendency to wear and 
drift 

0.2 

use without special attention in terms of 
events 

0.1 

U=ΣUi U1 Cost of calibration  
 

Small 0 

Medium 0.3 

Large 0.5 

U2 Cost of necessary correction 
measurement  
(in case the artefact of calibration is out of 
specifications and further 
service/adjustment is needed and 
repeated calibration procedure is 
imposed) 

 

< 0.5 x cost of calibration 0.5 

< 1 x cost of calibration 0.1 

> 1 x cost of calibration 0 

V The operator is trained to handle the 
instrument and knows the measured items 

1 

The operator is trained to handle the 
instrument, but imperfectly acquainted 
with the measured items 

0.5 

W Service (minor repair or adjustment of the 
artefact of calibration) performed 
between previous and last calibration 

0.5 

No service performed between previous 
and last calibration 

1 
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𝐶1 - Historical weighting of the most recent calibration (0.2, 
modification of the simplified method) 

𝐶2 - Historical weighting of the most previous calibration 
(0.1, modification of the simplified method) 

𝐶3 - Historical weighting of the previous calibration (0.08, 
modification of the simplified method) 

𝐶4 - Predicted value of next calibration (0.06, newly 
introduced parameter) 

IC - In-service check between calibrations (0.1, newly 
introduced parameter) 

CFU - Condition and Frequency of Use (0.2, newly 
introduced parameter) 

CO - Costs (0.1, newly introduced parameter) 

OFH - Operator factor and habit (0.08, newly introduced 
parameter) 

MS - Maintain and service (0.08, newly introduced 
parameter). 

The model in the equation (1) is derived by combing models 
from [14] an [15], and by deploying the laboratory experience in 
electrical metrology (i.e., the linearity of the electrical instruments 
characteristics derived from the instruments technical 
specification), like the time-drift of the instruments [17]. The 
main idea is to provide an easy model ready to be used in the TIC 

entities everyday operations. The ECI  can be specified 
depending on the experience with the stability of similar 
instruments, experience, and recommendations. This is a 
parameter containing the a priori knowledge in the data fusion 

process. Other coefficients of a priori knowledge origin are 𝐶1, 

𝐶2, 𝐶3, 𝐶4, IC, CFU, CO, OFH and MS. The 𝐶1, 𝐶2, 𝐶3, are 
historical weighting coefficients, of the previous three 
calibrations. In case of more than three previous data, for a 
shorter time history they can be taken into consideration with 
significantly lower weighting coefficients (less than 0,4 or 0,2, 
respectively for the fourth and fifth previous calibration), and in 
case of longer time history (longer periods of re-calibration of 
more than one year) they can be neglected. 

The longest possible re-calibration period will be estimated, 
leading to a conclusion that this approach is more rigorous in 
comparison to the “simplified method” as defined in [15], only 
if the estimated period is shorter than the real time range used 
for validation derived from the last calibration certificate and in 
which the instrument was found to be in-tolerance. The 
parameters as multipliers are given in Table 1. 

4.2. EXPERIMENTAL CASE STUDY FOR METHODOLOGY 
VALIDATION 

A data base containing the historical data of previous 
calibrations of the instrument must be established and 
maintained by the TIC entity, for further proper implementation 
in the proposed model. 

The proposed model is feasible to be utilized after at least two 
conducted calibrations of the instrument in appropriate time 
ranges. As a case study for validation of the proposed 
methodology, a real data base with the calibration history of a 
digital multimeter used during testing process by a TIC body is 
adopted. The variations of the calibration values should be 
considered in maximum available measurement points, 
emphasising points with detected changes. To be on the safe 
side, the most acceptable value of X is the smallest value among 
all available points. The expected value of the next calibration 
time moment can be obtained by deploying sophisticated 
algorithms previously published in [14], [18], [19], [20], and [21], 

but for some TIC entities their approaches introduce obstacles 
and risks for implementation. The methodology we present in 
this study, embedding the statistical tool of the least squares, is a 
simplified option for the TIC entities. This method is chosen 
because it is embedded in many already available calculators to 
the TIC entities in a very user-friendly form (e.g., MS Excel). The 
in-service checks with another instrument, should be 
accomplished in time moments and occasions where the 
uncertainty of calibration is on disposal for both instruments.  

TIC entity’s quality management proposes the extent of 
factors and habits of the staff, while the instrument operator 
specifies the frequency and conditions of use, which are another 
example of a priori knowledge in the data fusion process. 
Depending on the available history data and tracking behaviour 
of the instrument, the coefficients proposed in the algorithm can 
be modified and customized for each instrument or group of 
instruments (i.e., the model is universal and invariant to the type 
of instrument or the number of instruments). 

The next calibration period of a METREL® Eutotest XE MI 
3102 tester is estimated as a case study for the model validation. 
Following the recommendations of the instrument producer 
Metrel® [17], regular 6-months or 1-year calibration of all 
measurement functions of the instrument should be carried out. 
This case study has been chosen because of the instrument, the 
artefact of calibration, and because the laboratory already has 
sufficient data on disposal. Namely, the data used in the 
modelling and verification process, is for a period of 72 months 
(i.e., period of 6 years), which is an appropriate time range to 
derive sound regressive conclusions. 

In Tables 2 and 3 the calibration history for the instrument in 
a single point of the current and voltage measurement ranges are 
given, respectively. The data used in Tables 2 and 3 are from the 
calibration certificates of the instrument, conducted by an 
external accredited calibration laboratory. To the moment of first 
calibration the zero value is assigned, and the time representation 
of the further moments of calibration are expressed in month 
units from the first calibration. The reference calibration value 
for the current is chosen to be 10 A, while the reference value 
for the voltage is selected to be 400 V.  

The measurement uncertainty is divided by a corresponding 
coverage factor declared in the calibration certificate, as in the 
history calibrations, they are carried out in different laboratories, 
some expressing the expanded uncertainty at factor of coverage 

Table 2. The calibration history in a single point of 10 A in current 
measurement range of METREL® Eurotest XE MI 3102. 

t  
in month 

I  
in A 

Uncertainty  
in mA 

0.00 9.98 0.020 

15.00 10.00 4.121 

36.80 10.01 14.545 

52.60 9.98 14.545 

72.90 10.00 0.015 

Table 3. The calibration history in a single point of voltage measurement 
range of METREL® Eurotest XE MI 3102. 

t  
in month 

U  
in V 

Uncertainy  
in V 

0.00 399.00 0.42 

21.80 401.00 0.36 

37.66 401.00 0.36 

58.02 400.00 0.50 
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k = 1.65 (for rectangular distribution at probability of 95 %) and 
some expressing the expanded uncertainty at factor of coverage 
k = 2 (for normal distribution at probability of 95 %). So, the 
standard uncertainty is utilized in the calculations. This is the step 
of data alignment in the process of fusion of heterogeneous data. 

The trend lines for both quantities - current at 10 A 
represented in equation (2), and voltage at 400 V represented in 
equation (3) - are derived by utilization of the statistical least 
square method, with exclusion of the experimental value from 
last calibration, and it is used for predictive verification of the 
models. The derived predictive models are: 

𝐼 = −7 ∙ 10−7 ⋅ 𝑡3 + 10−5 ⋅ 𝑡2 + 0.0013 ⋅ 𝑡 + 9.98 

𝑅2 = 1 
(2) 

U = −0.0024 ⋅ 𝑡2 +  0.1448 ⋅ t + 399 

𝑅2 = 1 . 
(3) 

In Figures 1 and 2 the calculated expected values from the 
function models in (2) and (3) by inserting the last calibration 
time moment in the models, are shown in Figures 1 and 2. So the 
expected values are 9.85 A for current measuring range and 
399.32 V for the voltage measurement range and are in tolerance. 
The differences between the calculated (theoretical) values and 
the real measured values, derive from the ranges of the 
measurements uncertainty in calibration which is one of the main 
inputs in the modelling, and which is of stochastic and 
unpredictable nature. 

In the Table 4 are presented the experimental results of in-
service check measurements with another instrument of similar 
type (comprising the same measurement ranges as the object of 
validation) with established measurement traceability. The results 
are in limits of errors (i.e., in-tolerance). In case of out of 
tolerance result derived from the in-service measurement checks, 
according to the prescribed laboratory procedures the instrument 
will be subjected to immediate re-calibration or put out of 
service. 

Other values for the parameters in the algorithm are as 
follows:  

ECI = 24 months 
 

NI = ECI ⋅ [𝐶1 ⋅ X + C2 ⋅ X + C3 ⋅ X + C4 ⋅ X + 

+IC ⋅ Y + CFU ⋅ Z + CO ⋅ U + OFH ⋅ V + MS ⋅ W] 

 = 24 ⋅ [0.2 ⋅ 1 + 0.1 ⋅ 1 + 0.08 ⋅ 1 + 

+0.06 ⋅ 1 + 0.1 ⋅ 0.8 + 0.2 ⋅ 0.3 + 0.1 ⋅  0 + 

+0.08 ⋅ 1 + 0.08 ⋅ 1] = 24 ⋅ 0.74 = 17.76 . 

(4) 

The last calibration is not used in the prediction of the next 
value and is used as a validation point of the algorithm. The real 
calibration period (between the last two calibrations) is 20 
months, while the predicted re-calibration period by the 
proposed algorithm is 18 months. The values obtained with the 
last calibration validate the method. Shorter value of the re-
calibration interval is obtained, which is on the safe side, and can 

 

Figure 1. The calibration history and expected value in a single point 10 A of 
current measurement range.  

 

Figure 2. The calibration history and expected value in a single point 400 V of 
voltage measurement range.  

Table 4. Experimental values of the last in-service check with other calibrated 
instrument with established measurement traceability. 

Instument I in A U in V 

Metrel MI 3102 3.7 224 

Metrel MI 833 3.7 223 

Table 5. Multipliers used in the case study. 

Parameter  Value  

X “In Tolerance”  1 

Y=ΣYi Y1 number of check between calibration 
 

< 5 times 0.3 

Y2 measured value  
 

no difference (3%) 0.5 

Z=ΣZi Z1 Frequency of usage 
 

dayly 0.1 

Z2 Habit of usage 
 

Used with caution in tendency to wear and drift 0.2 

U=ΣUi U1 Coft of calibration  
 

Small 0 

U2 Cost of necessary correction measurement 
 

> 1 x cost of calibration 0 

V The operator is trained to handle the instrument 
and knows the measured items 

1 

W No service performed between previous and last 
calibration 

1 
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be accepted as applicable without introduction of additional risks 
from aspect of the re-calibration period. In fact, the TIC 
operation’s risk is significantly mitigated, i.e. minimized. Namely, 
in case when the derived theoretical value would be outside of 
the tolerance limits, is could be concluded that the planned re-
calibration is not appropriately chosen (i.e., it is too long). In that 
case, new planning should be conducted, in accordance with the 
period calculated using the model. 

Additional validation of the predictive model for 
determination of the re-calibration period is the a posteriori 
experimental approach of verification by executing in-service 
check measurements with another instrument of similar type 
(comprising the same measurement ranges as the object of 
validation) with established measurement traceability. 

This case study has validated the proposed methodology for 
prediction of the next moment of instrument calibration. The 
derived results demonstrate reduced risk arising from out-of-
tolerance state of the instrument due to prolonged re-calibration 
period. So, this data fusion methodology, with the proposed 
simple procedure for application in any TIC entity, enables 
argumented decision making concerning the determination of 
the instrument re-calibration period. The mitigated risk from this 
aspect increases the confidence in the reliability in the 
instruments used by the conformity assessment body. 

5. CONCLUSIONS  

The proposed methodology for predicting the period of re-
calibration based on data fusion concept is simple, containing a 
plenty of data on factors influencing the stability of the 
instrument derived from diverse sources. It is easily deployable 
in the daily routine of any TIC entity. The model opts to decrease 
the quality management risk of the occurrence of errors due to 
inappropriately defined re-calibration period of any instrument 
used in the TIC activities. 

The presented case study validates and confirms the 
effectiveness of the proposed methodology, through 
experimental values verification. An advantage of proposed 
universal model is its openness which enables the variation of the 
coefficients and provides means for specialization in case of a 
group of instruments. One of the options for generalisation of 
the method in case of a group of large number of instruments of 
the same type, is the possibility to fix some of the coefficients, 
and to make variations of certain coefficients. More thorough 
studies should be conducted in this context, by deploying 
statistical approaches for random sampling of data from previous 
calibrations of high number of instruments of same type (i.e., 
date reduction should be carried out through a data science 
approach). 

Finally, it can be concluded that data fusion approach is highly 
adaptable for various decision-making situations in the TIC 
sector, opening possibilities for mitigation and reduction of risks 
during TIC operations. 
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