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1. INTRODUCTION 

The progress in information and communication technology 
favoured the development of a new paradigm, known as Internet 
of Things (IoT) [1], [2]. This consists of distributed smart 
transducers that acquire data continuously and communicate 
with each other by wireless connection, so as to support everyday 
tasks and improve the quality of life [3]. These transducer 
networks concern a broad range of applications, such as 
environmental monitoring, smart power grids, transportation, 
healthcare, agriculture, and electronic payments [4]–[8]. 

Most of the IoT transducers are physically accessible, and this 
allows certain types of attacks and security breaches [9]. Indeed, 
an attacker can gain access to the network nodes in order to 
control them or to eavesdrop on exchanged messages. The 
security of the processed information should be typically 
guaranteed by encrypting messages through cryptographic 
algorithms [10], e.g., based on the well-known Advanced 
Encryption Standard (AES). Such an algorithm is implemented 

in the IoT transducer to encrypt the transmitted messages and 
decrypt the received ones. However, although mathematically 
safe, the implementation of these algorithms presents some 
vulnerabilities to side-channel attacks, namely attacks based on 
the measurement of physical quantities associated with the 
encryption/decryption operations [11]. Measured quantities may 
involve power consumption, electromagnetic emissions, 
execution time, light, or heat associated with device 
cryptographic operations. This side-channel information, also 
referred to as “leakages”, can be exploited to discover the secret 
key of the cryptographic algorithm. 

The side-channel attacks have been extensively studied by 
researchers and test laboratories for more than two decades. The 
attacks that have received most of the attention are based on the 
measurement of power consumption, which is dissipated by the 
embedded device during its operations. These are known as 
power analysis attacks and they were firstly introduced in 1999 
by Kocher [12], who managed to break a public key 
cryptographic algorithm by measuring the power consumption 
of a device. Indeed, by exploiting the dependence between power 
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consumption and the internal state of the device during the 
execution of cryptographic operations, he was able to obtain 
information about the secret key being used. The 
implementation of this type of attack simply consists of two main 
phases: (i) the acquisition of power traces and (ii) a statistical 
analysis. With regard to the actual statistical analysis, different 
types of attacks can be distinguished: Simple Power Analysis, 
Differential Power Analysis [12], Correlation Power Analysis 
[13], and scatter analysis [14]. Moreover, machine learning-based 
approaches to data analysis are gaining more and more interest 
due to their capability of decoding patterns generated by complex 
systems [15]-[17]. 

In previous studies, many proposals concerned methods to 
improve the attack efficiency [18]–[20], techniques to make 
cryptographic algorithms robust against the power attacks [21]–
[23], and tests aiming to evaluate the robustness of IoT devices 
with respect to the side-channel attacks. Broadly speaking, the 
appealing sensitive and personal information encourages the 
attackers, on the one hand, to break a cryptographic system in 
order to make profits. On the other hand, the security offered by 
such systems must be increased and tested in order to ensure 
confidentiality. Most cryptography papers present resource 
usages for breaking the cryptographic scheme analysed in 
function of the security parameters. This allows the system 
designers to choose the parameter values in order to make it 
more expensive to achieve a successful attack [24]. In this 
context, the rigor offered by metrology can contribute to the 
characterization of embedded and consumer-grade devices [25]. 
Notably, metrology has been recently allowing substantial 
progress in the field of information security of smart transducers 
thanks to a characterization of the AES vulnerability [26] or an 
evaluation of the robustness offered by countermeasures 
implemented in many devices [27]. 

The present work focuses on the role of metrology in 
improving security testing for embedded devices. In particular, 
results from previous works on the topic are recalled, integrated, 
and discussed. In detail, a vulnerability assessment will be 
presented by also providing some examples of enhanced power 
analysis attacks. Next, the discussion will move to robustness 
evaluation by means of design of experiments. The overall aim is 
to highlight the role that metrology can have in cyber-security. 
The paper is organized as follows. Section 2 introduces the 
instruments and the setup adopted to implement a power 
analysis scatter attack. Section 3 presents the results achieved 
thanks to the metrological approach to security testing. 
Conclusions are drawn in section 4 along with addressing future 
works. 

2. MATERIALS AND METHODS 

Power analysis attacks are side-channel attacks that exploit the 
variations in the power consumption of a cryptographic device 
to reveal the secret key [28]. In particular, the data-dependency 
and the operation dependency are exploited. The following 
subsections present a power analysis attack known as “scatter 
attack”, the instruments adopted in power traces acquisition, and 
the measurement setup. Then, how to perform an optimized 
attack and security testing will be discussed in the next section 
with inherent results. 

2.1. Scatter attack 

The scatter attack was chosen to demonstrate the vulnerability 
of the AES. The attack was implemented against an IoT 
microcontroller (a.k.a. IoT device under test), secured by the 

AES cryptographic algorithm with a 16-bytes-long secret key, i.e., 
AES-128. The scatter attack consists of statistical analysis of 
several power traces, whose variations in amplitude are related to 
the value of the key. The attack implements a “divide-and-
conquer” strategy by discovering a single byte of the key at a 
time. The workflow of the attack is shown in Figure 1. For each 

𝑖𝑡ℎ byte of the key (𝑖 ∈ [0, 15]), a simple discriminant related to 

each key byte hypothesis 𝑘 is obtained by means of a Pearson’s 

chi-squared (𝜒2) statistical test. When the key byte hypothesis is 
correct, the discriminant related to the real value should be 
characterized by the highest value with respect to other guesses. 
Therefore, high values in the discriminant maximizes the 
likelihood that the key byte hypothesis coincides with the secret 
key byte. The secret key is thus discovered by repeating the 
described procedure for all the key bytes. 

For the implementation of the attack, a malicious 
measurement system is wired to the IoT microcontroller under 
test for monitoring the power consumption (power trace 
acquisition phase) during the encryption. The measured data of 
the power consumption are processed by a method of signature 
analysis (statistical analysis phase) in order to reveal the secret key 
of the AES-128 algorithm. For the advanced encryption 
standard, the portion of the power traces whose variations in 
amplitude are related to the key value is represented by the 
AddRoundKey and SubBytes steps of the first AES round. 
Indeed, the key expansion of the AES algorithm produces 10 
round keys, the first of those generated coinciding with the secret 
key. Therefore, the first round employs the secret key in clear. 
Moreover, among the operations computed in the first round, 
the AES SBox output has a statistical influence on the power 
consumption [29]. 

2.2. Instruments 

The device under test (DUT) was the ATMega-163, a low-
power CMOS 8-bit microcontroller based on the AVR 
architecture, embedded on a smart card. The microcontroller 
presents 16 kB in-system flash, 512 bytes EEPROM, 1024 bytes 
Internal SRAM, and 8 MHz maximum clock, and implements 
the advanced encryption standard with a key of 128 bits. The 
cryptographic algorithm is implemented in software, and it does 
not include the side-channel countermeasures. The acquisition 
phase exploited the oscilloscope Teledyne Lecroy HDO9304, 
characterized by 3 GHz bandwidth, 40 GSa/s sample rate, and 
8-bit analog-to-digital converter (ADC). A further hardware 

 

Figure 1. Flow diagram of a scatter attack.  
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component, useful for the communication between the DUT 
and the oscilloscope, was employed. This component consisted 
of Power Tracer by Riscure [30], a low-noise card reader for side-
channel power measurements with precise triggering capabilities. 
The Power Tracer supplies the integrated circuit on the smart 
card and communicates with it via ISO/IEC 7816-3 protocol. 
Moreover, it contains a low noise amplifier (26 pA/ √ Hz @ 1 
MHz) with top end low-noise and high bandwidth analogue 
components that are electrically isolated from digital circuitry. 
Thanks to this circuitry, the Power Tracer provides the power 
consumption in output with a good signal-to-noise ratio. The 
capacitors inside the Power Tracer are pre-charged to power the 
smart card during each single measurement to avoid any external 
noise in the circuit. Typically, power consumption of contact 
smart cards is measured via a resistor inserted between the 
ground pin of a smart card and the ground of a card reader. The 
Power Tracer measured power consumption without 
measurement resistance in the power chain, thus allowing stable 
card voltage, maximum signal bandwidth, high sensitivity, and 
low insertion error [31]. An illustration of the instruments and 
devices used for the attack is shown in Figure 2. 

2.3. Measurement setup 

The block diagram of the measurement setup for power traces 
acquisition, is shown in Figure 3. A market-leading and 
professional tool, namely Inspector by Riscure, was installed on 
a personal computer. This sends the initial configuration 
parameters to the digital oscilloscope by means of a USB 
protocol. Moreover, the software communicates with the smart 
card through the Power Tracer. In particular, the PC provides 
the smart card reader with the plaintexts to be sent to the smart 
card in the APDU (Application Protocol Data Unit) format. 
Note that the APDU is a standard protocol, defined by ISO/IEC 
7816-4, allowing the communication between a smart card reader 
and a smart card. In the communication between smart card and 
smart card reader, the Inspector tool on the PC appeared as the 
user interface of the card reader allowing to prepare the 
commands that will be physically sent by the reader to the smart 
card. 

The smart card encrypts the message by using the AES-128 
algorithm and returns the encrypted message to the PC by means 
of the smart card reader. The power tracer is also used to send a 
trigger signal to the oscilloscope by means of serial I/O line to 
synchronize the acquisition on the encryption. The oscilloscope 
acquires the power traces from the output signal of the power 
tracer, i.e., power consumption with an excellent signal-to-noise 
ratio. The sample data are sent to the PC by means of a USB 
interface. Before the oscilloscope acquires the power 

consumption, a BNC coaxial low pass filter (Mini Circuits BLP-
50+, DC to 48 MHz, 50 Ω) cuts the signal frequencies over 48 
MHz as they represent no significant information. 

3. RESULTS 

In this section, the results achieved by the adoption of the 
metrology in the security of embedded devices are reported. The 
discussion is conducted by analyzing the contributions in 
optimization of power analysis attack and of vulnerability 
assessment. The overall aim is to give some indications about the 
current state of metrology role for cybersecurity of embedded 
devices. 

3.1. Optimization of power analysis attack 

The success rate of the power attacks is significantly affected 
by the signal-to-noise ratio (SNR) of the power traces [19]. 
Techniques for noise reduction are particularly important when 
measuring power consumption because power analysis attacks 
are very sensitive to the magnitude of these signals to recover the 
value of the secret key. Therefore, it is important to eliminate 
noise effectively and improve the SNR of power traces to extract 
the secret key with minor effort. Indeed, a good level of signal to 
noise ratio involves in reducing the number of power traces 
needed to correctly reveal the secret key, and, consequently, in 
decreasing the time to perform a successful attack. 

In [32], a filtering operation was employed in order to enhance 
the test attack effectiveness. The filter adopted is a low pass 
digital filter, which makes each sample a weighted average of the 
previous and the current sample. The improvement of the signal 
to noise ratio is also obtained by the decimation operation 
applied after an operation of oversampling. In fact, the 
decimation contributes to improving the signal to noise ratio by 
reducing the noise floor. An assessment is conducted to establish 
the best configuration for the filter weight. The experiment 
proved that the number of disclosed bytes by keeping the 
number of power tracks fixed increases according to the filter 
weight. Indeed, with 50000 power traces, a filter weight equal to 
400 allows to discover the 16 bytes key while a weight of 300 
returns only 15 bytes. Therefore, a filter weight equal to 400 was 
considered as the best configuration. The effectiveness of the 
enhanced scatter attack was proved experimentally in the best 
configuration by reducing the sample size of power traces. The 
Figure 4, shows the results. The number of bytes disclosed 
correctly are reported as a function of the number of power 
traces, where the filter weight is fixed to 400. The plot highlights 
that, with a filter weight of 400, a number of 30 000 power traces 
is sufficient to find the encryption key exactly. Contrarily, in 
absence of filtering operation, a successful attack needs 50 000 

  

Figure 2. Instruments and devices for the scatter attack implementation. 

  

Figure 3. Block diagram of the measurement setup for power traces 
acquisition. 



 

ACTA IMEKO | www.imeko.org June 2023 | Volume 12 | Number 2 | 4 

power traces. Definitely, the use of a filter allows to discover the 
entire key unlike the lack of pre-processing with the same 
number of traces. Moreover, the filter is able to reduce the 
number of traces needed for a successful attack. Decreasing the 
number of power traces also reduces the time needed to find the 
secret key. 

3.2. Vulnerability assessment enhancement 

The Vulnerability Assessment allows us to evaluate the 
robustness and security of cryptographic devices with respect to 
“side-channel attacks”. These consist in assessing the effort 
made to penetrate the device, quantified in terms of 
computational resources and time necessary for a potential 
attacker. A good as the robustness of a cryptographic device is 
important to guarantee, with greater reliability, the confidentiality 
and integrity of the data. A correct and reliable vulnerability 
assessment depends on a correct choice of the factors involved 
in the attack phases, such as sampling frequency, pre-processing 
techniques and number of traces acquired. Indeed, when the 
parameters are not optimal, an attack could require more effort 
to reveal the secret key, such as a higher number of traces to 
acquire and a longer time to reveal the secret key. This 
occurrence can distort the outcome of the vulnerability analysis. 

In recent years, metrology has been contributing to the world 
of cybersecurity in order to improve the characterization of 
devices in terms of security. In [26], the experimental design 
method was investigated to evaluate the factors affecting the 
attack system and to identify the values that maximize the 
number of bytes correctly identified with a minimum number of 
experimental tests. The attack system analysed in [26], consists 
of (i) the measurement devices used to acquire the power traces, 
(ii) the pre-processing techniques adopted to improve the power 
traces, and (iii) the statistical analysis of the scatter attack to 
discover the secret key of the AES-128 implemented in a smart 
card. The pre-processing techniques employed are a fast 
bidirectional filter to enhance the signal-to-noise ratio of the 
power traces and the resampling operation to reduce their 
dimensionality. The factors chosen for the analysis are the filter 
weight of the fast bidirectional filter, the resampling rate, and the 
number of power traces. For each parameter, 3 values are 
investigated. Therefore, a L9 orthogonal array is chosen for the 
experimental planning. Indeed, this design allows us to model a 
problem of 3 parameters and 3 values. 

The experimental design method implemented for the attack 
system under analysis allows to identify the parameters that 
mostly influence the attack and the values that increase the 
number of correctly discovered bytes. The results of the 
statistical significance analysis are shown in the Pareto chart of 
Figure 5. The histogram bars report the F-value for each attack 
parameter, while the line represents the related percentage 
contribution. The bars presented in descending order highlight 
the number of power traces as the most important parameter 
among those considered. The Figure 6 exhibits the parameter 
value effects obtained by and the estimated error (for a 
confidence level of 99.97 %). In particular, each point is 
computed as the mean of the objective function values obtained 
for a fixed value of the factor analyzed. This plot allows to 
establish the best configuration for the attacking parameters able 
to maximize the disclosed key bytes. The best configuration for 
the case under analysis is 500 for the filter weight, 500 kSa/s for 
the resampling frequency, and 400 for the number of power 
traces. 

3.3. Metric for robustness evaluation 

The security of cryptographic algorithms with respect to 
power analysis attacks is improved by software and hardware 
countermeasures. Power analysis attacks success in discovering 
the secret key because the power consumption of cryptographic 
devices depends on intermediate values of the executed 
cryptographic algorithms. Therefore, the goal of power 
countermeasures is to make the power consumption of 

  

Figure 4. Number of bytes disclosed by the scatter attack as a function of the 
number of power traces for a weight of the filter equal to 400 (dotted line: 
3rd-order polynomial interpolation). 

  

Figure 5. Pareto chart of the parameters: the histogram bars represent the F-
values (left axis) and the orange line the cumulative percentage contributions 
(right axis). 

 

Figure 6. Plot summarizing the number of disclosed bytes in each experiment 
obtained with a fixed number of power traces and weight of the filter. 
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cryptographic devices independent of the processed data. The 
countermeasures include hiding and masking techniques. The 
hiding countermeasures introduces variations of power 
consumption in the time domain or amplitude domain, while 
masking implements a data randomization by concealing each 
intermediate value. In [27], a method was proposed to assess the 
security performance among different power countermeasures 
designed to reinforce a software implementation of AES-128. 
Moreover, the method provides a metric to express the 
effectiveness of a countermeasure in straightening the IoT 
transducer security. 

The method consists of conducting a power analysis attack at 
varying the security measures and in computing, for each 
combination of attack and countermeasure, the number of traces 
needed to discover the secret key. This parameter is typically used 
for assessing the countermeasure effectiveness. The more the 
countermeasure is effective, the more the number of traces 
increases. The calculation of the minimum number of power 
traces needed to succeed in the attack for each countermeasure 
is obtained as the mean of the minimum number of power traces 
obtained on N repetitions of the attack on different batches of 
power traces. A successive-approximation method in a range 
with extremes determined in a preliminary experimental 
campaign was adopted for the first repetition of the attack. The 
successive N − 1 repetitions implement a grid search method 
with a variable step initialized to the minimum number of power 
traces found in the first repetition. The step is an increment of a 
certain number of power traces until the secret key is not fully 
recovered, and a decrement of an order of magnitude lower until 
the minimum number of power traces for a particular repetition 
is identified. The method employs the minimum numbers of 
power traces needed to discover the secret key obtained by each 
combination of attack and countermeasure to compute the 
strength factors (SFs). This parameter quantifies the level of 
protection for each countermeasure, and it is calculated as 

𝑆𝐹𝐶∗ =
∑ min𝐴,𝐶∗

𝑁𝐴
𝑖=1

∑ min𝐴,1
𝑁𝐴
𝑖=1

 , (1) 

where 𝑁𝐴 is the number of implemented power attacks, 𝑚𝑖𝑛𝐴,𝐶∗ 

is the minimum number of power traces for a fixed 

countermeasure 𝐶∗ at varying of the power attack, and 𝑚𝑖𝑛𝐴,1 is 

the minimum number of power traces for no-countermeasure at 
varying of the power attack. 

The proposed method for the robustness evaluation of 
countermeasures was applied to a case study consisting of a 
software implementation of the AES-128 reinforced by 
countermeasures. The countermeasures under analysis are (i) 
random delay insertion, (ii) random SBox, and (iii) Boolean 
masking. Moreover, the configuration with no countermeasures 
was evaluated. The result of the analysis is reported in Table 1. 
Random delay strengthens the AES of a 1.3 factor with respect 
to no countermeasure condition; the strengthening factor for 
random SBox is 208, while more than 318 for masking. In case 
of masking, the non-availability of a minimum number of power 

traces does not allow to determine a strength factor value but 
only a low limit. The comparison of strength factors highlights 
masking as the most effective over other power countermeasures 
as it increases the number of power traces needed to succeed in 
the attack to a greater extent than the other countermeasure. 

4. CONCLUSIONS 

In this work, the role of metrology to improve the 
characterization and security testing of embedded devices was 
discussed. This was done by recalling previous works focusing 
on vulnerability testing and robustness evaluation. Such results 
were recalled, integrated, and discussed. In detail, a method based 
on the design of experiments was presented to enhance the 
vulnerability assessment. Meanwhile, a metric was introduced to 
express the effectiveness of a countermeasure in straightening 
the IoT transducer security. Overall, the discussion suggests that 
metrology plays an important role in cyber-security, especially in 
a contest where IoT transducers are spread more and more, and 
their physical accessibility demands rigorous security testing. 
Future works will continue these investigations by extending the 
metrological approach to machine learning-based attacks. 
Indeed, these have great potential in security breaches, and they 
thus deserve further investigation. 
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