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1. INTRODUCTION 

Going through the historical evolution of living, it emerges 
that the house, considered as a "safe place", has had to adapt to 
multiple cultural, economic-political, climatic changes, but also 
to the needs of individuals and family groups [1]. The changes 
do not only concern the construction process and the 
technologies used for the realization of spaces, which certainly, 
nowadays, are closer to very high-performance standards and 
able to lower environmental impact as much as possible. The 
determining factor for the development of the concept of living 

has always been the relationship between home and family 
structure [2]. The different patterns and family statuses 
introduced by modernity necessarily exceed the functionalist 
vision of the home as a pure "machine for living" [3], i.e. the 
"house" with minimum standards that guarantee a good quality 
of life for the occupants. In this scenario, it is important to 
intersect the digital and real world, so that digital is at the service 
of the user, in order to improve living comfort and well-being, 
understood as better living conditions [4]. The emergency to 
which we are called to respond today as a scientific community, 
professionals and technicians in the construction sector and 
beyond, is the fragility to which the vast majority of the Italian 

ABSTRACT 
The change of living concept from "traditional" to "smart” concerns how we live and relate in spaces that today, more than ever, are 
"sensitive" (i.e. spaces where digital technologies occupy a prominent place in the monitoring and control of buildings, with the aim of 
achieving high levels of quality of life). We are therefore witnessing the creation of new declinations of living and, in this context, the 
internet of things (IoT) represents the starting point for the creation of connected products that "share" the information they detect 
with other objects or people on the network. In this scenario, the authors propose an original approach to measurements for the 
assessment of comfort in living environments. The work consists in the design and implementation of a measurement station, which 
acquires and analyses data collected by the network of distributed sensors and activates forced ventilation if the level of comfort is 
below the desired threshold. In such situations where measurement data are compared with a threshold value, it is necessary to consider 
how measurement uncertainty affects the decision taken; in this particular context, since the activation of actuators involves energy 
consumption, the decision on the effective threshold crossing should be well thought. For this reason, the aim of this work is to propose 
a smart monitoring system that through the setup and calibration of two decision-making algorithms, can decide if the measured value 
is below or over the threshold set with a known probability. In this way, the end user can chose an appropriate strategy, calibrated on 
the specific living environment, which allows to maximize either environmental comfort or energy saving, depending on the specific 
needs.  
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building heritage is subjected. In fact, in the Italian territory, over 
time, the buildings have shown an insufficient degree of 
resilience from both a seismic and energetic point of view. In 
Italy, over 22% of buildings are in a mediocre or very bad state 
of conservation and the construction sector is the most energy-
intensive in terms of consumption, maintainability and 
habitability of built environments [5]. We define “fragile” a 
building that does not fit into an environmental context and 
compromises the life of its occupants because it is not very 
resistant or not very liveable, a space without the minimum 
services of smart living [6].  

Smart living is a concept that in the last years is becoming 
even more important in the entire construction sector, covering 
the different phases: from design to the construction process, 
from monitoring and maintenance to management by end users. 
This concept is based on the idea that the use of technology 
allows to create environments that are able to substantially 
improve and simplify the quality of life of the occupants [7]. The 
current technical-scientific debate is focused on what tools, 
currently in use, can be considered reliable and capable of 
responding to important needs, such as: the use of renewable 
sources and strategies to contain energy consumption, the 
protection of human lives and last but not least the levels of 
indoor comfort. 

Living, in this perspective is becoming "intelligent and 
sustainable", with continuous interrelation between human 
action and technology through increasingly digitized services 
aimed to considerably increase the levels of quality of life of the 
occupants. A statistic reported by Cisco [8] about the use of the 
IoT (Internet of Things) points out that in 2010 there were over 
12.5 billion connected devices, with an increase of more than 
400% in 2020 (about 50 billion). There are several experiments 
and applications currently underway in the construction sector 
[9], [10], including "dynamic facades with high-performance 
envelope for the energy efficiency of the building", "the 
optimization of IAQ (Indoor Air Quality) levels in buildings 
through intelligent ventilation systems", "systems for monitoring 
building safety and risk mitigation", etc. 

Technology, connected to open source-hardware and sensing 
systems allows the detection of any changes in conditions and 
status [11]. This leads to meet the occupant comfort, energy 
consumption and cost efficiency needs. An important aspect 
concerns indoor air quality. According to the World Health 
Organization (WHO) the sick building syndrome (SBS) affects 
people who are subject to prolonged exposure to chemical, 
biological and / or physical agents in buildings with a low level 
of indoor air quality, generally due to poor ventilation. In fact, 
from literature, we know that IAQ levels are generally 2 to 5 
times worse than outdoor [12], [13]. This means that the 
occupants of closed spaces that do not enjoy good natural 
ventilation (and/or mechanical), have an increased risk of 
developing psychophysical malaise that often over time, leads to 
devastating effects on the human body such as the onset of 
diseases related to the respiratory tract, the central nervous 
system and even cancer [14]. Since in recent years the lifestyle has 
changed considerably and people spend indoor much more time 
than before (about 90%), several research activities in the ICT 
(Information and Communication Technologies) sector, aim at 
investigating how multi-sensor IoT platforms can optimize IAQ 
levels in buildings [15], [16]. If we also consider the recent 
changes in people's lifestyle, who have increased the time spent 
at home, it is clear the importance of investing in IoT platforms, 

which allow to dialogue with the home and to adapt the 
environment to the user needs [17]. 

Among the different aspects of living, the present work aims 
to provide technological tools for efficient and effective 
monitoring of the living environment, in particular through the 
development of an automatic measurement and control station 
aimed at optimizing IEQ (Indoor Environmental Quality) levels. 
The proposed station is able to guarantee safety and living 
comfort through the continuous monitoring of IAQ levels, 
temperature and relative humidity and, controlling actuators, is 
capable to restore the baseline conditions. The implemented 
system considers the uncertainty associated to the measurement 
process in order to make appropriate decisions about the actual 
exceeding of the thresholds set. 

2.  METHODS AND APPLICATIONS  

In this paragraph, we will describe the acquisition and 
processing system that using a sensors network is able to detect 
the quantities of interest to monitor the environmental quality, 
in particular the IAQ and the parameters related to thermal 
comfort, such as temperature and humidity. To make the system 
more usable, the monitoring station makes data easily accessible 
through the network. 

With regard to the IAQ, the monitoring focuses on the 
assessment of the level of pollutants and the consequent 
management of the forced ventilation system. To maximize the 
flexibility, the system implements two different control 
strategies: one optimizes safety and activates the ventilation 
system more often, the other aims at obtaining maximum energy 
efficiency and, therefore, activates ventilation only in relevant 
cases. The system considers also the quality of the outdoor air, 
using a network of sensors placed outside the monitored 
environment, because in some cases it may be lower than the 
internal one. The comfort matching criteria described above are 
applied also to the monitoring of thermal quantities to decide 
whether it is the case to activate the ventilation system.  

2.1. Monitored parameters 

The level of indoor air quality refers to the concentration of 
pollutants, which can come both from sources inside the 
building, and outside, especially in urban contexts [18]. However, 
apart from temporary and exceptional situations, it is always 
possible to consider the air quality outside the building as a 
baseline, since the presence of polluting sources inside can only 
worsen the standard situation. In this context, it is of great 
importance to have real-time monitoring of these pollutants to 
guarantee timely air changes if air quality levels are no longer 
satisfactory. 

The parameters for the evaluation of IAQ levels were selected 
from the state-of-the-art [19]-[26] and, in particular, the study 
was focused on three commonly studied air pollutants: carbon 
dioxide (CO2), and particulate matter PM2.5 and PM10, as 
shown in Table 1. 

If the concentration of these pollutants exceeds the safety 
limits imposed by the Community standards, this would entail 
both immediate and long-term risks to the health of exposed 
people and, this is even more relevant the higher is their 
concentration. Focusing on the pollutants examined, CO2 can be 
considered as an indicator of the effectiveness of ventilation and 
excessive population density [27] and, in indoor environments 
with limited ventilation, should never exceed the limit of 
1000 ppm [28] to guarantee adequate safety. The concentration 
of PM2.5 and PM10 particulate matter in the air has also been 
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directly associated with respiratory tract diseases [29], [30]. 
Therefore, it is necessary, in closed spaces, to monitor these 
quantities in order to plan appropriate intervention strategies that 
aim to restore the most optimal air quality. It is possible, in fact, 
if their concentration exceeds the safety limits imposed by 
current regulations, or rather, limits that are more conservative 
and include a safety margin, even for long-term exposures, to 
intervene by activating a ventilation system to guarantee an 
adequate air change. 

Both for the healthiness of the rooms and to optimize living 
comfort, it is also necessary to monitor quantities such as 
temperature and, above all, humidity. The presence of excessive 
humidity leads to the proliferation of mites and moulds, and the 
latter can be an important factor in the onset of rheumatic 
diseases and also increases the thermal perception of both heat 
and cold. On the other hand, excessive dryness of the air can 
cause breathing difficulties and increase the transmissibility of 
certain diseases [31]. Several studies have shown that a relative 
humidity between 40 % and 60% is optimal to maximize comfort 
[32], [33]. For what concerns the temperature, if it is too high it 
impacts both on the symptoms of SBS and on the productivity 
of the occupants. The ideal temperature should be between 21 
and 25 °C [34].  

To set the thresholds levels of pollutants present in the 
monitored environment, among the technical regulations, we 
considered the thresholds established by the World Health 
Organization (WHO). For what concerns thermal comfort, we 
have referred to the ISO 7730 standard [35], which also refers to 
the ISO 17772-1: 2017 standard [36], as shown in Table 2. To 
control the level of IAQ the proposed system regulates forced 
ventilation, reducing so the concentrations of pollutants and 
regulating temperature and humidity. 

2.2. Monitoring and control system  

The monitoring and control system, schematized in Figure 1, 
consists of a central unit that acquires information from the 
network of distributed wireless sensors (both indoor and 

outdoor) and if it is necessary, activates the ventilation system, in 
order to maintain a defined level of comfort in the living 
environment. 

The sensor network consists of sensors placed both inside 
and outside the building, so to monitor indoor and outdoor 
environmental conditions. The parameters monitored indoor are 
CO2, PM2.5, PM10, temperature and humidity, while outdoor 
only PM, temperature and humidity.  

The activation of the ventilation system, instead, is 
implemented through the control of a relay to bring power to the 
internal conditioning system. The technical characteristics of the 
sensors used are shown in Table 3. 

The central control unit is implemented with a National 
Instruments Single-Board RIO, with its expansion board. Its 
function is to take measurement data from the different sensors 
in real time and to control the actuators of the ventilation system, 
through the opening of a relay, implementing the algorithm 
described in the flowchart of Figure 2. Using a graphical 
interface, users can view all measurement data and, according to 
personal needs, they can make changes to the configuration 
parameters of the smart management system. The system also 
allows to choose between two different operating strategies that 
aim respectively at maximizing safety related to the healthiness 
of the environments or at maximizing energy saving. Based on 
the selection, the system defines the thresholds and decision 
criteria. 

2.3. Data analysis and decision-making 

For each pollutant, we calculate a quality index, which 
depends on the concentration of the single parameter measured 
and the reference level taken from the legislation [37] 

Table 1. IAQ Standards. 

Standard CO2 PM10 PM2.5 

BES x   

BREEAM    

DGMB    

EN 16798 x x x 

HQE  x x 

KLIMA x   

LEED x x x 

NABERS x  x 

OsmoZ x x x 

WELL x  x 

Table 2. Pollutants Reference Level. 

Parameter Threshold value 

CO2 1000 ppm 

PM10 50 μg/m3 

PM2.5 10 μg/m3 

Temperature 
24.5 – 28 °C in summer 
20 – 24 °C in winter 

Humidity 
40 – 60 % in summer 

30 – 60 % in winter 

Parameter Threshold value 

 

Figure 1. Control System. 

Table 3. Sensors specifications. 

Sensor Range Accuracy 

Temperature in °C -60 - +75 ± 0.5 

Relative humidity in % 5 - 95 ± 7 

CO2 in ppm 0 - 10000 ± 40 

PM2.5 in µg/m3 0 - 1000 ± 10 

PM10 in µg/m3 0 - 1000 ± 25 
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𝐼X = 100 % − 𝛼 log
𝐶X

𝐶X|0

 , (1) 

where 𝐶X is the measured quantity of the single pollutant X, 𝐶X|0 

is the concentration of the same pollutant under ideal conditions 

and 𝛼 is a constant that considers the toxic levels of the pollutant 

defined by the standard. The value of  is therefore imposed by 

placing 𝐼X = 0, when 𝐶X = 𝐶Xmax, where 𝐶Xmax is the maximum 
concentration of the pollutant taken as a threshold. 

The overall IAQ level is equal to the minimum of the indices 
calculated for the single monitored parameters. 

𝐼IAQ = min(𝐼CO2
,  𝐼PM10,  𝐼PM2.5) , (2) 

where 𝐼CO2
,  𝐼PM10 and 𝐼PM2.5 are the quality indexes of CO2, 

PM10 and PM2.5. 
This method lets to have a global and rapid information on 

the level of air quality in indoor environments and can be easily 
implemented without great computational efforts. The algorithm 
compares the estimated level of IAQ with the threshold taken as 
a reference and, if it does not meet the user needs, it activates the 
ventilation actuators. In the same way the system monitors the 
temperature and relative humidity in the environment and 
compares their measured values with the reference thresholds in 
order to maintain the desired quality standards. 

As said in section 2.2, configuring the system, it is possible to 
choose between two different strategies, i.e. maximization of 
safety or energy saving and to set, consequently, the reference 
thresholds. In the second case, in fact, we consider as thresholds 
the levels indicated by the regulations, while in the first case we 
set thresholds that are more conservative, considering also the 
number of occupants. In particular, the new thresholds are: 

𝑇𝑟𝑒𝑠ℎ𝑜𝑙𝑑  =
𝑁𝐿

𝐾
 , (3) 

where 𝑁𝐿 is the level imposed by normative and 𝐾 depends on 
the number of occupants in relation to the size of the 
environment. 

In situations like this, where there is a need to make decisions 
about exceeding a certain threshold, the algorithm has to analyse 
experimental data, considering not only the measured value, but 
also the uncertainty associated with the measurement process 

[38]-[41]. In this case we face to a particular class of problems 
that pertains to the field of decision-making. As known, in fact, 
the result of a measurement does not provide a single value, but 
an interval, centred in the measured value, inside which it is 
possible to find the value of the measurand with a given level of 
confidence. This means that, when the result of the measurement 
falls in a certain band around the threshold level identified: 

𝑚 = 𝑣 ± 𝜀 , (4) 

where 𝑚 is the measured value, 𝑣 is the value of the measurand 

and 𝜀 is the value of the extended uncertainty relating to the 
measurement, we cannot be certain about the result of the 
comparison with the reference threshold and therefore 
probabilistic assessments must be made to associate a known 
level of risk with the decision that will be taken. 

Taking from datasheet the type B uncertainty associated to 
each sensor and, considering a measurement error with a 
Gaussian distribution, the probability that the measured value 

falls within a band of ± 3  around the measurand, where  is 
the standard deviation, is 99.7 %. Clearly, taking into account the 
extended uncertainty, the wider the region of ambiguity, the 
more times the decision-making algorithm will intervene, as can 
be easily understood from Figure 3. 

In the implementation of the decision-making algorithm, it is 
possible to consider a smaller band of uncertainty, cutting the 
tails of the Gaussian curve, but this means choosing a smaller 
coverage factor and therefore decreasing the correctness of the 
decision taken. 

For what concerns the decision-making algorithms, among 
the various proposed in the literature, we decided to implement 
the Utility Cost test and the Fixed Risk [42], [43]. To address the 
decision problem by considering the impact of measurement 
uncertainty, the Utility Cost Test considers the potential 
consequences of the different possible decisions. The algorithm 
evaluates four possible situations and their associated costs, i.e. 
positive, false positive, false negative, negative. By suitably 
weighing these costs, the algorithm makes a decision on whether 
the threshold is actually exceeded; evaluating which of the two 
possibilities has the lower cost. The Fixed Risk algorithm, on the 
other hand, works by initially setting the maximum level of risk 
acceptable for a wrong decision. This means that the threshold 
is dynamically set, so that the decision made by the algorithm is 
right or wrong with a known probability  

Once an LTH threshold has been set, comparing the 
measurement result with it, if the measured value falls within the 
ambiguity band, there is a risk, highlighted in Figure 4 (blue area), 
of considering the measured value below the threshold when it 
is above. Since the probability density function associated with 

 

Figure 2. Flow Chart of the algorithm. 

 

Figure 3. Decision Making Region 
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the measurement is known, it is possible to set the maximum risk 
that is considered acceptable (MRA) in making the decision. 

Through a change of variable, the threshold is repositioned in 
order to match the following equation: 

𝑀𝑅𝐴 = ∫ 𝑓𝑢(𝑥−𝑚) d𝑥
+∞

𝐿𝑡ℎ

 , (5) 

where 𝑓𝑢(𝑥−𝑚) is the probability density function centred in 𝑚.  

Knowing the measurement uncertainty of the sensor, if the 
process is characterized by a normal distribution, it is possible to 
set the parameters of the algorithm. The algorithm will then be 
able to make a decision on exceeding the threshold within the 
ambiguity zone and give an answer to the Decision-Making 
problem, together with a quantification of the risk associated 
with the decision taken. The implementation of a decision-
making criterion is essential for those systems, such as the one 
described in this work, in which the incorrect evaluation of the 
operating conditions, i.e. considering the parameters within the 
safety zone when they are not, can affect people health and 
comfort.  

The proposed system implements both decision-making 
algorithms, whose parameters are calibrated for the two different 
strategies, i.e. maximization of environmental quality and 
maximization of energy savings. 

3. EVALUATION OF DECISION-MAKING ALGORITHMS 
PERFORMANCES  

In this paragraph, we talk about the evaluation of the 
performances of the decision-making algorithms described 
above. With the simulations performed, we wanted to evaluate 
how they respond to the two different management strategies:  

- Highest air quality and healthiness  
- Maximum energy savings  
Once the operational strategy in the management system has 

been selected, the system calculates the cost functions for the 
application of the Utility Cost Test and sets the maximum 
percentage of risk allowed considering the reference threshold 
exceeded in the Fixed Risk. The two algorithms thus calibrated 
will make appropriate decisions in considering the results of 
measurements that fall within the ambiguity range, above or 
below the threshold set, based on the overall strategy chosen. To 
verify the correct functioning of the algorithms, we used 
simulated datasets, considering a generic sensor with its 
associated uncertainty and a fixed threshold level. Evaluating a 
region of ± 3 σ around the threshold level, the intervention of 
the algorithms was tested with different coverage factors and the 
number of interventions that considered the threshold exceeded 
was compared with the number of activations that would have 

occurred without the implementation of the decision-making 
algorithms.  

The results obtained are summarized in Table 4 and Table 5. 
As we can see in the results reported, considering either a linear 
or a sinusoidal trend of the measurand, without decision-making 
algorithms, 50% of the comparisons result above the threshold. 
This because we perform a direct comparison between the 
measured value and the threshold, without considering the 
impact of measurement uncertainty. This means that in operative 
conditions, where the measured value is given by eq. 4, the result 
of the comparison can be alternately positive or negative with a 
probability that is the more similar, the more the measurand is 
near to the threshold. Using decision-making algorithms it is 
possible to adopt a more or less conservative approach to 
measurement uncertainty. If the strategy chosen aims at 
maximizing air quality and minimizing health risk, there is a 
greater number of activations, therefore a better ventilation of 
the rooms, compared to what would have happened with a direct 
comparison with the threshold. In the specific case examined, we 
can observe an increase in the number of activations of 15% and 
10% with Utility Cost Test, respectively for linear and sinusoidal 
trend of the dataset, and 32% and 29.5% with Fixed Risk. With 
a coverage factor k = 1, using the Fixed-Risk algorithm, we 
observe 10% less activations than with the same algorithm and a 
greater coverage factor, this because in this case the decision-
making band is narrower and therefore the algorithm intervenes 
fewer times. In the other case, which instead aims at maximizing 
energy savings by minimizing the number of activations of the 
ventilation system, we observe a strong reduction in 
interventions. In fact, using Utility Cost Test Algorithm, we have 
16.5% and 10.5% less activations than in operation without 
decision-making algorithms, respectively for linear and 
sinusoidal trend of the dataset, and 22% and 20% less, using 
Fixed Risk. This is just a general case implemented to test the 
impact of the decision-making approach, since, in real 
applications, implementing a correct risk assessment during the 
system design phase, it is possible to re-calibrate the response of 
the algorithms to match the specific environments needs. 

4. CONCLUSIONS 

Technologies applied to living environments are significant to 
ensure their smart evolution. The Italian scenario still lacks of 
applications for the redevelopment of buildings (especially those 
for public use) aimed at improving the quality of life, through 
targeted actions, which let to contain energy consumption using 
IoT or smart systems. Designing and building according to these 
paradigms means that we seriously need to face with the 
requirements for balance between resources and environmental 
impact. The building is an artefact that changes and adapts itself 
according to user needs. The current challenge consists in 
considering the building through a multidisciplinary approach 
that manages the technological and digital system in order to 
obtain high performance responses in terms of both process 
control, product maintainability and liveability.  

In this work, the authors proposed an automatic 
measurement system to be integrated into the context of smart 
homes, with the aim of improving aspects related to the safety 
and quality of living environments.  

By monitoring air quality, ambient temperature, relative 
humidity and, consequently, managing the ventilation system, it 
is possible to optimize the level of IEQ in the observed 
environment. In these contexts where measured data are 

 

Figure 4. Risk Level. 
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compared with a reference threshold, it is important to consider 
how measurement uncertainty affects the decision on threshold 
crossing. 

This is much more relevant in applications like the one 
described in this paper where a wrong decision implies a waste 
of energy. In fact, if the value of the measurand is near to the 
reference level, the contribution of measurement uncertainty can 
be determinant to assess if the measured value is above or below 

the threshold. For this reason, the measurement and control 
station proposed acquires and analyses the measurement data 
collected by the network of distributed sensors and, with the 
support of decision-making algorithms to verify the actual 
exceeding of the thresholds, activates the actuators of the system 
to optimize the IEQ levels. In this system, the decision-making 
approach covers a role of primary importance, since it let to be 
more or less conservative on measurement uncertainty, 
inherently to the choice on the activation of the ventilation 
system.  

In fact, the proposed algorithm works on two levels: one 
related to the safety of indoor environments, and the other linked 
to the optimization of comfort. The first level is met within the 
safety thresholds imposed by the current regulations, for each 
monitored parameter. Environmental comfort, on the other 
hand, is guaranteed through careful monitoring of IEQ levels 
and the operation of actuators that allow to restore the desired 
quality levels, if the index falls below the desired comfort 
threshold. The system allows, through an interactive user 
interface, to record the user's preferences about the strategy to 
be adopted. In this way the algorithm will be able to dynamically 
move the thresholds adapting to the needs of the single 
households. 

To verify the functioning of the comparison algorithm, two 
predefined datasets were used. The decision-making algorithms 
were calibrated on two different strategies: one aimed at 
maximizing the quality of the environments and the other aimed 
at maximizing energy savings. From the tests performed it was 
possible to observe an increase in activations of the actuators 
between 10 and 15% using the Utility Cost Test algorithm and 
between 29 and 32% using the Fixed Risk algorithm, with respect 
to direct comparison with the threshold, if the chosen strategy is 
to maximize quality. In the other case, however, we observed a 
reduction in the number of activations between 10.5 and 16.5% 
with the Utility Cost Test algorithm and between 20 and 22% 
with Fixed Risk compared to the reference case. The results 
obtained with these two strategies served to verify the 
functioning of the decision-making algorithm. In practice, the 
system, installed in a specific living environment, can be re-
calibrated to make smart decisions, which best fit the user needs.  

Future developments will concern the integration of other 
aspects related to smart buildings design, such as the evaluation 
of the energy balance in a context in which electricity is produced 
on site from renewable sources. In this sense, it is possible to 
increase the efficiency and safety of living spaces through the 
measurement of energy flows and a consequent adaptation of the 
algorithms that should consider this aspect. 
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Maximizing 
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N. Above Threshold with Direct Comparison 40 40 
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