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1. INTRODUCTION 

Digital transformation includes the integration of digital 
technologies, such as software, communication and algorithms 
into products, processes, and services. A disruptive consequence 
is that these technologies are being used to generate completely 
new products, processes, and services. 

The future digital world differs from today’s situation 
substantially: digital exchange of data and information is 
becoming the standard; information is provided via cloud 
services in a machine-actionable way; digital infrastructures 
utilize information from calibration, self-diagnosis and other 
metadata communicated by individual measuring instruments; 
processes and services in the quality infrastructure are based on 
distributed databases and application programming interfaces 
(APIs). 

One outcome of the transition to the digital world is that 
distributed measuring instruments and sensor networks are 
becoming more important than individual measuring 
instruments. Applications such as the Industrial Internet of 
Things (IIoT) and automated driving will belong to the first 

examples where the role of metrology is challenged. These 
challenges include methods for metrological traceable co-
calibration and the metrological assessment of whole sensor 
networks in a systemic approach. For instance, the assessment of 
an autonomous vehicle measuring system requires a holistic 
perspective on the whole system instead of only the individual 
measuring elements. 

Moreover, in the digital world, algorithms and software 
become as important as the actual measurements, and they will 
thus influence metrological traceability chains for measurands 
increasingly. In the digital age, artificial intelligence, sensor fusion 
and virtual measuring instruments will replace many of today’s 
tools and principles. Their use will require a fundamental re-
evaluation of the established methodologies for uncertainty 
evaluation and the assessment of algorithms. In the example of 
the autonomous vehicle, the assessment of the measuring system 
must take the algorithms into account, which analyse the data to 
take decisions.  

Quality of measurement data, trustworthiness of 
measurement results and reliability of measuring instruments are 
as important in the digital world as before. Hence, metrology 
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plays an important role also in the quality infrastructure in the 
digital age [1]. 

So far, metrology focuses on single measuring instruments 
and sensors. However, in a rapidly increasing number of 
applications networks of sensors are used to address 
measurement needs. Examples can be found in predictive 
maintenance of production machines in industry, urban air 
quality monitoring, and multi-modal human health assessment 
using wearables [2].  

An important aspect that distinguishes sensor network 
applications from single sensor measurements is that rather than 
the individual sensors, the combined information from all 
sensors is the main object of interest. For instance, the 
combination of microphone data and vibration measurement in 
predictive maintenance provides more insights into the actual 
status of the monitored machine than the individual 
measurements alone [3]. A consequence of the focus on 
combined sensor data rather than individual sensors is that the 
definition of the quantity of interest, the measurand, is not 
straightforward. Moreover, the assessment of quality and 
reliability of the system is more complex and challenging than 
the individual sensors alone, e.g., in terms of calibration result. 
Such an assessment also has to take into account potential sensor 
failure or networking issues. This also includes consideration of 
energy consumption, localization of sensors in the network and 
network communication synchronization [4] 

Let us consider again the above example of predictive 
maintenance. The combination of different sensor data is carried 
out in a data-driven approach, i.e., using machine learning 
methods. The target is a classification of the remaining lifetime 
of the machine being monitored. Thus, the purpose of the 
measuring sensor network and data analysis is clear, but the 
outcome – expected remaining lifetime – is not a physics-based 
combination of the involved measured quantities. Since the 
combination of all sensor data is of interest instead of the 
individual sensor readings, an assessment of the measurement 
performance should consider the sensor network as a complex 
(often distributed) measuring instrument. The metrological 
treatment of such sensor networks thus requires a novel 
approach – called “systems metrology”. This approach includes 
the novel field of “sensor network metrology”, which itself 
contains aspects such as, in-situ calibration and co-calibration, 
uncertainty evaluation for dynamic measurements and 
dynamically structured systems, semantic representation of 
metrological information, uncertainty-aware machine learning 
and explainable artificial intelligence applied to sensor networks. 
Most of these topics are still in a stage of early research and 
prototypical solutions. 

This contribution introduces sensor network metrology 
aspects which were addressed in recent research projects. We 
outline the fundamental sensor network metrology aspects and 
discuss their combination into a coherent and consistent 
approach for a metrological treatment of sensor networks. 
Section 2 introduces general aspects of Internet of Things (IoT) 
type of sensor networks from the viewpoint of metrology. 
Section 3 addresses the digital representation of data and 
metrological information in sensor networks. Section 4 presents 
and discusses relevant uncertainty evaluation and propagation 
for processing of sensor network data. Section 5 discusses 
aspects related to the application of machine learning and 

 
1 https://www.ptb.de/empir2018/met4fof/home/ 
2 https://opcfoundation.org/  

artificial intelligence. Finally, Section 6 addresses the overall 
picture and gives an outlook to future developments. 

2. METROLOGY AND THE INTERNET OF THINGS 

In the concept of the Internet of Things (IoT), physical 
devices communicate with each other via web technologies, thus 
combining web technology with the physical world. With the rise 
of the IoT in Industry 4.0, Smart City, Smart Grids and more, 
the world of measurement is changing rapidly. As an example, 
the integration of measuring instruments in the IoT poses several 
specific requirements for the sensors itself, such as 
communicating via a digital interface, working reliably under a 
wide range of conditions, reporting on their health status upon 
request, and ideally, detecting and reporting adversarial 
conditions. These and other requirements have led to the 
development of so-called “smart sensors” [2]. These are 
measuring devices that contain some sort of pre-processing 
implementing the above features of the IoT. As the name “smart 
sensor” implies, the pre-processing is integrated together with 
the physical sensing element in one “package”. However, this 
kind of pre-processing poses new requirements for the 
calibration of the measuring device because the pre-processing 
has to be taken into account in the calibration. Furthermore, 
measuring instruments which only provide pre-processed data 
usually don’t fit well in today’s calibration procedures and 
guidelines, because these assume access to the raw measurement 
data. A concrete challenge addressed in the project EMPIR 
Met4FoF1 was the dynamic calibration of a digital-output sensor 
using an external time stamping, e.g., based on GPS and a 
custom-built microcontroller (µC) board [5]. The same approach 
was then used to demonstrate the extension of a digital sensor 
such that it communicates not only raw measurement values, but 
also provides information about the measurement units, 
uncertainty, and calibration in a machine-readable way [5]-[7]. In 
this way, the most basic requirement of a metrological treatment 
of a sensor network can be met: the provision of measurement 
uncertainty and other metrological information for the individual 
sensors. In the concept developed in the Met4FoF project this 
information is provided by the “smart” sensor itself. However, 
other information architectures are possible, too. For instance, in 
the BMBF FAMOUS project, a database approach combined 
with OPC-UA communication was considered instead. A similar 
approach is also considered in the project BMWK GEMIMEG-
II. More details are given in Sections 3 and 4. 

The concept of sensors providing self-information upon 
request in a standardized way is also a fundamental element of 
OPC-UA2 (industrial interoperability standard), which is used 
mostly in industrial applications, but is increasingly adopted in 
other areas, too. For the metrological information 
communicated via OPC-UA to be machine-readable, it is 
necessary that the definition of a standard digital representation 
of units of measurement as well as commonly accepted data 
models for measured values are available. To this end, the digital 
SI (D-SI) data model developed in EMPIR SmartCom proposes 
an approach that is compatible with current guidelines and 
standards in metrology and calibration [6]. Other potential 
approaches for the digital representation of units of 
measurement and quantity kinds are the “Unified Code of Units 
of Measure”3 (UCUM) or an ontology for units of measure 

3 https://ucum.org/  
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QUDT [8], [9] – each optimized for different data usage 
approaches. In principle, also combinations of these approaches 
are possible. 

The concept of the IoT relies on a versatile and flexible 
combination of measuring instruments, the automated 
acquisition and processing of the measured data and the 
application of intelligent algorithms to derive conclusions or 
decisions. One consequence of this is that data analysis is 
typically carried out using data-driven machine learning. In 
contrast to mathematical models that rely on a physical 
understanding of the measured process, machine learning can be 
applied directly based on the sensors’ output data. Thus, the need 
for calibration is not as obvious as for “traditional” 
measurements. However, calibrated measuring instruments in 
the IoT offer several benefits. For instance, calibrated sensors 
can serve as reference devices in the network to assess and 
improve data quality [10]; calibration of sensors enables the 
estimation of the measurand and thus, traceability [7], which 
itself is required to ensure the comparability of measurements 
between different sites and countries. Moreover, calibrated 
sensors improve the ability to explain the obtained output from 
the machine learning. That is, the calibration of a sensor enables 
direct interpretation based on the measurand whereas a non-
calibrated sensors provides data streams which are only loosely 
related to the physical measured quantity. Moreover, the 
manufacturer’s data sheet alone usually does not suffice as a 
source of information to assess the type B uncertainty 
components. Hence, calibration plays an important role in IoT 
and provides benefits on all data processing layers and a way to 
quantify the trust one can have in the measurement system (see 
Figure 1). 

3. DIGITAL REPRESENTATION OF DATA AND INFORMATION 
IN SENSOR NETWORKS 

In the digital world, measurement data must also be readable 
and understandable by machines. This implies that the 
information about the measuring instruments, the units of 
measurement and other accompanying metadata must be 
available in a format that can be used by software or an 
algorithm. For instance, the software may need to verify that the 
unit of measurements of a given data set is consistent with 
previous entries of a data base.  

The machine readability of data and measurement 
information is of particular importance in sensor network 

metrology. With hundreds of sensors measuring continuously, 
measurement data cannot be normalized and analysed manually, 
but requires a high level of automation. This, in turn, can only be 
achieved with machine-readable information. The machine 
readability begins with the description of the unit of 
measurement, for instance as shown in Figure 2. In the project 
EMPIR 17IND02 SmartCom, a data model and digital 
representation of units of measurement, called D-SI, have been 
proposed. On the CIPM level, the D-SI as well as UCUM and 
QUDT and other approaches to the digital representation of 
quantities and units of measurement are being discussed. 

Another important element is the information about the 
individual measuring instruments. For instance, a machine-
readable digital calibration certificate [11] could be provided by 
the sensor itself, e.g., using OPC-UA, or from another source, 
e.g., an internal quality management platform. If needed, this 
information could be further extended by other data which could 
affect the quality of measurement data [12]. 

Machine understandable representation of knowledge on 
information in sensor networks and its semantics can be 
modelled by means of (combinations of) ontologies. Several 
ontologies useful for sensor networks can be found within the 
semantic web community. These ontologies formalize the 
annotation of sensor data with spatial, temporal, and thematic 
metadata. Spatial metadata is particularly relevant for sensors 
distributed across a building or a country, or when mounted on 
a moving object like an automobile.  

In the project FAMOUS a method to merge different kinds 
of metadata and ontologies along with the sensor measurement 
data was proposed [13]. The main idea of [13] is to split the self-
description of a sensor into four aspects: (1) observation 
information, (2) general sensor description, (3) calibration 
information and (4) location information. Then, a sensor self-
description can be achieved by combining existing ontologies 
that appropriately represent these aspects. In this way, one can 
build upon existing work and established principles and software 
tools. In the GEMIMEG-II project this development was extend 
to the integration of semantically described quality of data 
aspects [12]. 

4. MEASUREMENT UNCERTAINTY IN SENSOR NETWORK 
DATA PROCESSING 

Measurement data in sensor networks is often heterogeneous, 
volatile, and time dependent. Moreover, sensor networks in IoT 
scenarios often contain low-cost measuring instruments based 
on MEMS sensor technology. Consequently, such sensor 
networks typically have a wide range of measurement data 
quality. Reliable data analysis for sensor networks thus requires 
taking data quality into account in a quantitative way.  

 
 

Figure 1 Calibration information in the different layers of the IoT architecture. 

 

Figure 2 Example for an algorithmic representation of units of measurement, 
which can be used by a software 
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An example of a fundamental property that can be considered 
as a quality metric is the measurement uncertainty. Other 
examples for parameters which may affect the quality of data in 
sensor networks are unstable network conditions, environmental 
interference, or malicious attacks. Moreover, in battery powered 
sensors, there is necessarily a trade-off between power-
consumption and performance. Another common issue is drift, 
where sensor readings slowly deviate from the true value due to 
the degradation of the electronics [14]. One outcome from the 
GEMIMEG-II project is a framework for quality of data in 
sensor networks, expressed in terms of an ontology [12]. This 
can be expressed, for instance in an ontology [12]. In a joint 
effort by the projects FAMOUS and EMPIR Met4FoF it was 
demonstrated how an ontology of a sensor network could be 
utilized for an automated analysis [7], [13]. Moreover, together 
with the project EMPIR SmartCom a sensor network data set 
was enriched with machine-readable metadata to demonstrate 
the metrological support of the FAIR principles [15]. 

Usually, the sensors used in IoT applications are measuring 
continuously irrespective of how the measured values are used. 
Thus, for a reliable quantification of data quality it must be 
ensured that the sensor behaviour is well known for a wide range 
of measurement situations. This includes situations where the 
measurand, i.e., the sensor input signal, changes rapidly over 
time. Thus, sensor properties such as effective bandwidth, 
internal analogue-to-digital conversion, time stamping reliability, 
resonance behaviour need to be considered. 

Data analysis in the IoT typically relies on and greatly benefits 
from modern machine learning methods, because of the 
complexity of the sensor network and the amount of data 
acquired. Uncertainty evaluation for machine learning is an 
important topic and considered in several research activities. 
However, this is only possible if the uncertainty associated with 
the machine learning input values is available. Hence, uncertainty 
for data pre-processing must be addressed as the initial step for 
an uncertainty-aware machine learning for IoT.  

Measurements in the IoT are usually time dependent, and 
often even dynamic. Examples are air quality monitoring, traffic 
surveillance, production control or mobile health measurements. 
Thus, signal processing methods are regularly applied for data 
pre-processing in IoT scenarios. For instance, the discrete 
Fourier transform is often applied to extract magnitude and 
phase values from a measurement of vibration, which are then 
used in a subsequent machine learning method as features. Other 
examples for pre-processing are synchronising the time axis of 
sensors; interpolation of sensor data to account for missing 
values or non-equidistant sampling; low-pass filtering to reduce 
noise or other unwanted high-frequency components in the 
measured data. Another reason for the application of data pre-
processing is the reduction of data dimensionality. This may be 
necessary simply due to storage or data transfer bandwidth 
limitations [3]. In the project EMPIR Met4FoF, the previously 
developed Python library PyDynamic [16] was extended to 
include the data pre-processing steps typically required in IoT. 
For each method, PyDynamic provides the propagation of 
uncertainties [16]. An important aspect in EMPIR Met4FoF and 
in FAMOUS was also the implementation of the methods in 
such a way that they can be applied online, i.e., during the 
measurement. For instance, the Discrete Wavelet Transform for 
uncertain input data was implemented using digital filters [17].  

Another important aspect is the way of how the uncertainty 
propagation software is provided such that it is compatible with 
typical IoT architectures. In the project EMPIR Met4FoF, a so-

called agent-based framework (ABF) was used. In an ABF, data 
processing steps are encapsulated in software modules, called 
“agents”. These agents can run on different locations in the 
network, if necessary, and allow for a very flexible demand-
driven data analysis. For instance, one agent may acquire the data 
from a sensor, hands it over to an interpolation agent, which then 
provides it to a Fourier transform agent. With each agent taking 
care of the proper uncertainty treatment, very flexible data 
analysis pipelines for sensor network metrology can be realised. 
Usually there is an existing data analysis framework in place, 
which needs to be extended to include measurement uncertainty 
treatment. As a result, a web-service approach was used in the 
project FAMOUS instead of an ABF. That is, an uncertainty 
module was created to enrich existing sensor data streams with 
statements about the associated measurement uncertainty. 

5. FLOW OF METROLOGICAL DATA AND METADATA IN 
SENSOR NETWORKS 

To summarise the different elements described in the 
previous sections, let us consider the flow of metrological data 
and metadata in sensor networks, see Figure 3.  

For the individual sensors we assume the availability of 
information about their metrological properties. At least this 
information should be available in terms of a manufacturer’s data 
sheet from which information about measurement capabilities, 
units of measurement and tolerances can be extracted manually. 
Ideally, the information is provided in digital, machine-readable 
way. For instance, the sensor may communicate metadata using 
an IoT standard, such as OPC-UA, RAMI 4.0 or provide a DCC. 
This metadata could contain fundamental information about the 
sensor: serial number, units of measurement, measurement 
uncertainty, calibration information. For an automated handling 
of this information, the metadata itself has to be machine 
actionable. That is, units of measurement have to be given using 
a suitable data model (e.g., D-SI, UCUM, QUDT). A 
representation of this information in accordance with the FAIR 
principles would furthermore require the use of some kind of 
persistent identifiers (PID) to ensure machine-interpretable 
interoperability with other data models. 

The metadata at the sensor level could also contain 
information on the quality of sensing. That is, the sensor could 
be self-aware or be complemented with other sensor data. For 
instance, a radar sensor in an autonomous vehicle may be 
complemented with a rain and fog detector to enrich the radar 
sensor data with metadata about the weather conditions. Other 
potentially useful metadata could be whether the sensor is battery 
powered, general energy restrictions or measurement strategies 
(e.g., raw data or averaged data). Depending on the sensor 
network use case, this information can be crucial for the 
metrological assessment of the measuring system’s quality and 
reliability.  

The sensor metadata has to be made available throughout the 
data lifecycle in the sensor network to enable its use in the data 
processing and decision making. The first steps, data curation 
and data aggregation in the processing of sensor data are often 
already the place where the sensor metadata is lost. However, 
information about the propagation of quality of sensing (e.g., 
measurement uncertainty) must be carried out to ensure proper 
assessment of the overall sensor network quality. The individual 
sensor quality is not sufficient for this assessment. The data 
lifecycle metadata can be enriched in the data processing by 
information about the applied algorithms, their 
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parameters/settings and other information related to the 
reliability of the processing result. Moreover, the quality of 
sensing has to be translated and propagated into a quality of data 
following the data processing steps. With this in place, a proper, 
reliable, and data-driven decision making is possible that is not 
only based on the raw sensor data but takes all relevant metadata 
and information into account. Moreover, it enables a traceability 
from the quality of the decision making to the quality of sensing 
as well as traceability of sensor network results to the SI units of 
measurement. 

6. CONCLUSIONS 

Sensor network metrology combines several aspects from 
metrology, signal processing, semantics, IoT and web 
technologies. The treatment and metrological assessment of 
sensor networks, thus, needs to take these fields into account. 
Although sensor networks can be found in many applications, a 
rigorous sensor network metrology has not been established yet. 
Existing guidelines in metrology are typically focused on 
individual measuring instruments and quantities. The same holds 
true, by the way, for the organisation of metrology institutes and 
calibration laboratories. First metrology research efforts 
developed some basic elements required in sensor network 
metrology: dynamic calibration of digital sensors, cost-efficient 
calibration of MEMS sensors, digital representation of 
metrological metadata, evaluation and propagation of 
uncertainties, semantic modelling of sensor network 
information. Future research needs to further develop these 
individual aspects and extend their integration into a consistent 
framework and toolset. Moreover, a systems metrology approach 
needs to be developed to assess sensor networks in a systemic 
way. 
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