
ACTA IMEKO
ISSN: 2221-870X
September 2022, Volume 11, Number 3, 1 - 10

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 1

Path planning for data collection robot in sensing field with
obstacles

Sára Olasz-Szabó1, István Harmati1

1 Dept. of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungaryl

Section: RESEARCH PAPER

Keywords: Path planning, mobile robots, obstacle avoidance

Citation: Sára Olasz-Szabó, István Harmati, Path planning for data collection robot in sensing field with obstacles, Acta IMEKO, vol. 11, no. 3, article 5,
September 2022, identifier: IMEKO-ACTA-11 (2022)-03-05

Section Editor: Zafar Taqvi, USA

Received February 26, 2022; In final form July 21, 2022; Published September 2022

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding author: Sára Olasz-Szabó, e-mail: olasz-szabo.sara@edu.bme.hu

1. INTRODUCTION

Nowadays there is a more and more common need for
continuous data collection on a specified area. The simplest way
for such data collection is using wireless sensor networks
(WSN) [1], [2]. In most applications, a WSN consists of two
parts: one data collection unit (also known as a sink or base
station) and a large number of tiny sensor nodes. Typically,
both sensor nodes and sink remain static after deployment.
Sensor nodes, which are equipped with various sensor units, are
capable of sensing the physical world and providing data to the
sink through single-hop or multi-hope routing [3]. Sensors are
usually powered by batteries, which cannot be replaced in some
applications, e.g., battlefield surveillance.[4]. Since the data loss
rate is increasing with the distance and each data transmission
rate is associated with an energy consumption rate, which is
modelled as a non-decreasing staircase function of the distance
[5], the remote data sending is uses a lot of energy and this
deteriorates network lifetime. For these reasons, the data
transmission is executed by data collection robots [6], [7]. There
are many applications of this technology in literature from
recent years. For example, in [8] it is reviewed a range of
techniques related to mobile robots in WSNs. In paper [9],
considered deploying a flying robotic network to monitor

mobile targets in an area of interest for a specific time period
with using WSNs. In the work [10] investigated using a mobile
sink, which is attached to a bus, to collect data in WSNs with
nonuniform node distribution. However, the robots have
limited velocity and this way the data delay is significantly
increasing. Since transmitting over a short distance is more
reliable than long distance, using robots improves the data
collection rate. In addition, in terms of security, sending mobile
sinks to collect data is more secure than transmitting via
multihop communication [11]. This may be important in some
military applications, as well.

In paper [12] the authors raise and solve a problem of viable
path planning for data collection unicycle robots in a sensing
field with obstacles. The robots must visit all sensing nodes and
then return to the base station and upload the collected data.
Path planning for the robots is a crucial problem since the
constructed paths directly relate to the performance such as the
delivery delay and energy consumption of the system. In a
sensing field there are obstacles as well and the robots must not
collide with them.

The data collection is carried out by unicycle Dubins-car
[13], which can only move with constants velocity and bounded
angular velocity, so it can move only on straight lines and turn
with bounded turning radius.

ABSTRACT
Using mobile robots to collect data from wireless sensor network can reduce energy dissipation and this way improves network
lifetime. Our problem is to plan paths for unicycle robots to visit a set of sensor nodes and download data on a sensing field with
obstacles while minimizing the path length and the collecting time. Reconstructing the path of an intruder in a guarded area is also a
possible application of this technology. During path planning we greatly emphasize the handling of obstacles. If the area contains
many or large obstacles, the robots may spend long time for avoid them so this is a critical point of finding the minimal path. This
paper proposes a new approach for handling obstacles during path planning. A new algorithm is developed to plan the visiting
sequence of nodes taking into consideration the obstacles as well.

mailto:olasz-szabo.sara@edu.bme.hu

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 2

For successful path planning it is necessary to determine the
criteria of an adequate path. In paper [12] the authors define a
viable path which is smooth, collision-free with sensor
nodes/base station and obstacles, closed, and provides enough
contact time with all the sensor nodes. Because of the kinematic
properties of the robots the path must be smooth. Safety
boundary is determined around obstacles and nodes for the
sake of collision-free path. All nodes are bounded with a
visiting circle with the minimum turning radius of the unicycle
robot. The minimum turning radius depends on the speed of
the robot and its maximum angular velocity. Moreover, all
obstacle’s convex hull are bounded with a safety margin, since
in case of the shortest path the robot should move on the
boundary of the convex hull. The path must be closed because
of the periodical data collection. The robot downloads data
only when it moves around the visiting circle, so it makes round
trips around the node as long as it collects all the data from the
sensor node. During path planning it is assumed that the
location of all nodes and obstacles as well as the shapes of the
obstacles are known. Between two objects - nodes and
obstacles - there are always defined four tangents but any
tangents that intersect other obstacle are removed. So when the
robot arrives to a node on a tangent it starts downloading data
and during it makes round trips as long as it collects all the data
from the node and then it leaves the node on a tangent. So a
path consists of an adequate configuration of tangents and arcs
around objects at the safety distance.

The paper organized as follows. In Section 2 we summarize
the basic method [12] and then Section 3 describes the
proposed concepts for the path planning and also presents our
new algorithms. In Section 4 we demonstrate simulation results.

2. SUMMARY OF THE SHORTEST VIABLE PATH PLANNING
ALGORITHM

In paper [12] the Shortest Viable Path Planning (SVPP)
algorithm was defined. The main steps of SVPP are outlined as

Algorithm 1. This algorithm first computes a 𝛴 permutation of
nodes without obstacles by solving an Asymmetric Travelling
Salesman Problem. For this they construct a directed graph,
where the vertices are the nodes and the length of the edges are
calculated as follows. The length of the edge between two
vertices takes into account two aspects: the length of the valid
path between their visiting circles and the length of the adjusted

arc on the latter vertex. Thus, the length of the edge from 𝑠1 to

𝑠2 equals to the summation of the average length of tangents

and the length of the adjusted arc on the visiting circle of 𝑠2. In

contrast, the length of the edge from 𝑠2 to 𝑠1 equals to the
summation of the average length of tangents and the length of

the adjusted arc on the visiting circle of 𝑠1. With such directed
graph, they use an ATSP solver [14] to calculate the

permutation 𝛴 . At this point there can be tangents that

intersect obstacles in 𝐺(𝑉, 𝐸) Tangent Graph [15]. 𝑉 denotes

the tangent points and 𝐸 denotes the tangents.

The second and third step of this algorithm adds the
blocking obstacles to the permutation and constructs a

Simplified Tangent Graph. Having 𝛴, 𝐺(𝑉, 𝐸) can be simplified
by keeping only the tangent edges that connect succeeding

visiting circles in 𝛴 and the corresponding arc edges. When any
obstacle blocks the route between any pair of visiting circles,
the tangents passing the obstacle’s safety boundaries are also

included in the 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph and the

algorithm inserts the obstacle to the 𝛴′ permutation between
the two nodes. One obstacle can block more than one pair of

nodes. In this case the algorithm inserts the obstacle to the 𝛴′
permutation into more than one place. The algorithm

constructs a 𝐺′(𝑉′, 𝐸′) by keeping the edges and vertices related
to the permutation of nodes and obstacles while deleting

others. Obviously, 𝛴 ⊆ 𝛴′. The new graph is called the

Simplified Tangent Graph 𝐺′(𝑉′, 𝐸′), where 𝑉′ ⊆ 𝑉 and

𝐸′ ⊆ 𝐸.

The next step is converting 𝐺′(𝑉′, 𝐸′) to a tree-like graph 𝑇.
This gives additional information about the succeeding usable
tangents and arcs. From every object there are four tangents
departing to the next object, the starting tangent points of these
are the departure configurations, and there are four tangents
arriving from the previous object, the tangent points of these
are the arrival configurations. This means that every object can
be transformed to 8 vertices in a tree-like graph. The path

length between two objects in 𝛴′ permutation always consist of
two components. The first component is the arc around the
first object from the arrival to the departure tangent point,
including the additional full circles if these are necessary to
download the data. The second component is the length of
tangent between the two tangent points.

For the calculation of distance between the 𝑖th and 𝑖 + 1th

(𝑖, ∈ [2, 𝑛′ − 1], where 𝑛’ denote the number of objects in the
permutation) objects, we need information about the tangent

and tangent point between the 𝑖 − 1th and 𝑖th objects. One
should know which tangent point will be used by the tangent

on the visiting circle of the 𝑖th object in order to calculate the
arc length on the visiting circle. Figure 1 illustrates this

Algorithm 1: Shortest Viable Path Planning (SVPP)

1. Compute 𝛴 by solving ATSP instance based on 𝐺(𝑉, 𝐸)

2. Compute 𝛴′ by adding those obstacles to 𝛴 that safety
boundaries block tangents between nodes.

3. Simplify 𝐺(𝑉, 𝐸) to 𝐺′(𝑉′, 𝐸′) by keeping the edges and the

vertices related to 𝛴′ and deleting others.

4. Convert 𝐺′(𝑉′, 𝐸′) to tree-like graph 𝑇.

5. Given an initial configuration, search the shortest path 𝑃

in 𝑇.

Figure 1. The distance between two objects in permutation consist of two
part: arc and tangent length.

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 3

problem. The path between two objects is represented by two
segments in the directed tree graph. These two parts are the arc
and tangent. So in the tree-like graph the vertices are the
tangent points and the edges are the arcs and the tangents. The
direction of edges points to the next part of the path. During
the representation of the edges one must pay attention to the
heading constraints. The heading constraint refers to that the
robot's heading at the beginning of an edge should be equal to
that at the ending of the last edge.

The base station is the starting node, so the first element of
the tree-like graph is one of the points of the base station
visiting circle's. Because of closed path, the final element of the
tree-like graph should be also one of the points of the base
station visiting circle. Since the authors use Dubins-car, they
construct the tree-like graph both for positive and negative,
clockwise and anti-clockwise initial direction as well. It can be
seen that from each arrival configuration of an element there
are two options to reach the arrival configurations of the next
element because of the heading constraint. From a given
starting point the total number of paths starting and ending at

this point is 2𝑛′−1 taking into consideration that the starting
and ending direction should be the same because of the
continuous data collection.

In paper [12], a dynamic programming based method is used
to solve the shortest path search in the tree-like graph.

3. NEW CONCEPTS OF SOLUTION

In this paper new concepts of SVPP algorithm are
developed. The new algorithm based on these modifications is
called Generalized-SVPP algorithm. In the following these
modifications and new algorithms will be described in detail.

3.1. Constructing Tangents Graph

In paper [12] the tangents that intersect visiting circles are
not included in the Tangent Graph (Assumption 1, see below).
However, the robot can move collision-free on a tangent that
does not intersect the circle with centre of node and radius

𝑑𝑠𝑎𝑓𝑒 . Therefore in the proposed new algorithm tangents that

do not intersect the circle with 𝑑𝑠𝑎𝑓𝑒 radius around a node are

available as well (Assumption 2). This way the planned path
may be shorter in certain cases.

Assumption 1: The tangents that intersect visiting circles are
not included in the Tangent Graph.

Assumption 2: The tangents that intersect visiting circles,
but do not intersect circles with centre of a node and radius

𝑑𝑠𝑎𝑓𝑒 , are included in the Tangent Graph.

3.2. Permutation of Nodes

At this point the obstacles are not taken into account when
creating the permutation of nodes. Tangents that are
intersecting obstacles are allowed in this step. A graph is
constructed where the vertices are the nodes and the length of
the edges is the average length of tangents between the two
nodes. After this there is a searching for the shortest closed
cycle with all of the nodes, namely the shortest Hamilton cycle
in this graph. This problem is the Travelling Salesman Problem

and by solving it the 𝛴 permutation of nodes is determined.
As it was presented in Section 2, in paper [12] the authors

take into account the path length necessary to download the
data and solve this problem with ATSP. The exact path length
around a visiting circle cannot be determined since the actual

tangents are not known at this point. This is the reason why the
average length of the tangents is used.

3.3. New Concept of Handling Obstacles, Construction of
Simplified Tangent Graph

In Algorithm 1 (SVPP) there are two types of problem of
handling obstacles. First these problems are described and then
the solutions for them are presented. These problems are
illustrated in Figure 2.

1. For example, in Figure 2 between Node-1 and Node-2
there is only one available tangent. When Obstacle-1 is in
the permutation, the available tangent between the nodes is
not feasible in the shortest path planning. But when
Obstacle-1 is not in the permutation, there may be no
solution at all depending on the initial configurations due
to heading constraints.

2. There can be more obstacles between two nodes so that
these obstacles block different tangents. For instance, in
Figure 2 between Node-3 and Node-4 Obstacle-2 and
Obstacle-3 are blocking different tangents.

Tangent Directions: The tangent direction is called
positive-negative (pn) if the robot can make round trip around
the first node positive - clockwise - direction and around the
succeeding second node in negative direction. The positive-
positive (pp), negative-positive (np) and negative-negative (nn)
directions can be defined similarly as well.

In this paper a new algorithm is proposed instead of the
second and third step of Algorithm 1. Algorithm 1 creates one
permutation of nodes and obstacles (Assumption 3). The basic
idea of the new algorithm is to calculate more than one
permutation (Assumption 4) and then using these to construct

the 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph and then the 𝑇 tree-
like graph in order to get better solution.

Assumption 3: One permutation of nodes and obstacles is
created. The original SVPP (Algorithm 1) uses this Assumption.

Assumption 4: More than one permutation of nodes and
obstacles are created. The new Algorithm 2 created by applying
this Assumption.

Instead of the second and third step of Algorithm 1 the
following Algorithm 2 is used.

At first stage four copies of 𝛴 permutation of nodes are
created, then for every two nodes the blocking obstacles of all

Figure 2. An example of blocked tangents are illustrated with dashed line.

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 4

the four tangents are determined. When one of the tangents
intersects an obstacle, the obstacle is inserted to the proper
position in the feasible permutation determined by the tangent
direction. Note that when more than one obstacle is
intersected, they are inserted to the feasible permutation
according to their distance from the previous node. Then the
duplicate solutions are eliminated, and after this the previous
algorithm is repeated as long as there are no new intersected

obstacles. While repeating this algorithm, in the first step the 𝛴′
permutations of nodes and blocking obstacles is used instead of

the 𝛴 permutation.
In first case both of the direct tangents and the edges

passing the obstacle safety boundaries are also inserted into the
Simplified Tangent Graph. In case one tangent blocked by
more than one obstacles, all tangents and tangent points
between the two nodes, between any obstacle and the two
nodes, and between any two obstacles are inserted into the
Simplified Tangent Graph if these tangents are not blocked.
The Simplified Tangent Graph contains all of the tangents and
tangent points from any permutations. Besides, it also contains
all of the arcs between the tangent points.

3.4. Constructing the Tree-like Graph

The Dubins-car moves on tangents or arcs. In case of
obstacles it moves on arcs between the arrival and the departure
configurations and around the visiting circle while it downloads
all the data from the sensor node. Because of heading
constraint the tangent direction determines the direction around
the next object. And the direction around the object determines
the available departure tangents. There are two tangents

available for a given direction for any two objects. In case of
one permutation there are two departure configurations for
every object, but if there is more than one permutation the
count of departure configurations depend on the permutations
and the Simplified Tangent Graph. In paper [12] there is only
one permutation, so there are some cases when it causes
problems as it was shown it the previous section. The new
Algorithm 2 proposed in the present article may achieve shorter
path and give more general solution, but the tree-like graph
become more complex. The new algorithm can select the
shorter path from more available options. In this paper
Algorithm 3 and Algorithm 4 are recommended to construct
the tree-like graph for cases with one and more than one
permutation, respectively.

We demonstrate the transformation from Simplified
Tangent Graph into tree-like graph with help of example field
in Figure 3. For constructing the tree-like graph, in the first step
two starting and two ending vertices are created for both the
positive and negative initial direction. It is illustrated in Figure 4
a) picture.

Algorithm 2: Add Obstacles to Permutations

1. Create four copies of 𝛴 permutation
2. For every two nodes determine the blocking obstacles of all

the four tangents and insert these obstacles to the proper
positions in the feasible permutations according to their
distance from the previous node.

3. Eliminate the duplicate permutations.
4. Jump to 1. and repeat the algorithm while there are

intersecting obstacles. In this case instead of 𝛴 we use

𝛴′permutations.

Algorithm 3: Constructing the 𝑇 in case of one 𝛴′ permutation Algorithm 2--Add Obstacles to Permutations

1. For both negative and positive direction add starting and

ending point as vertices to 𝑇.

2. According to 𝛴′add 4 arrival and 4 departure tangent points

for all objects to the 𝑇
3. Determine all arc length between all possible arrival and

departure configurations taking into consideration the
heading constraint and the possible different arc length
calculation methods of the nodes and obstacles. Add arc

lengths as the length of the edges to the 𝑇 between the
corresponding vertices.

4. Around the visiting circle of the base station determine arc
length between the starting point and the arrival and

departure configurations. Add this as edge length to 𝑇 to the
proper position.

5. According to 𝛴′ add all tangents between all consecutive

objects to the 𝑇 taking into consideration the heading
constraint.

5. Create four copies of 𝛴 permutation
6. For every two nodes determine the blocking obstacles of all

the four tangents and insert these obstacles to the proper
positions in the feasible permutations according to their
distance from the previous node.

7. Eliminate the duplicate permutations.
8. Jump to 1. and repeat the algorithm while there are

intersecting obstacles. In this case instead of 𝛴 we use

𝛴′permutations.

Algorithm 4: Constructing the 𝑇 in case of more than one 𝛴′
permutation

Algorithm 2--Add Obstacles to Permutations

1. Apply Algorithm 3 to the Σ permutation of nodes. Add

edges only that are the member of 𝐺′(𝑉′, 𝐸′).

2. Do for all 𝛴′permutations:

1.) If there are only one obstacle in the 𝑖th place between
two nodes: run step 2-4 of Algorithm 3 for the

𝜎𝑖−1, 𝜎𝑖 , 𝜎𝑖+1 object. Only if the edges are in the

𝐺′(𝑉′, 𝐸′).
2.) If there are more than one obstacles between two

nodes. Let denote the obstacles by 𝜕𝑂 = {𝜕𝑜1, … , 𝜕𝑜𝑗}:

do step 1.) for all 𝜕𝑜𝑖 ∈ 𝜕𝑂 obstacle in the given
permutation and for the nodes before and after the
obstacle. Run step 2-4 of Algorithm 3 for all pair of

obstacles 𝜕𝑜𝑖 ∈ 𝜕𝑂. Run it in that case also if these are
not subsequent elements in the permutation. Naturally
only in case when the vertices and edges are in

𝐺′(𝑉′, 𝐸′).

9. Create four copies of 𝛴 permutation
10. For every two nodes determine the blocking obstacles of all

the four tangents and insert these obstacles to the proper
positions in the feasible permutations according to their
distance from the previous node.

11. Eliminate the duplicate permutations.
12. Jump to 1. and repeat the algorithm while there are

intersecting obstacles. In this case instead of 𝛴 we use

𝛴′permutations.

Figure 3. An example field of tree-like graph construction with
 𝛴 = {𝑪𝟏, 𝑪𝟐, 𝑪𝟑, 𝑪𝟒} permutation of nodes

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 5

a) Add starting and ending points as vertices

b) Add tangent points of nodes as vertices

c) Add arc length around the nodes between the
arrival and departure configurations as edges

d) Add tangent length between the departure
and arrival configurations as edges

e) Add tangent points that tangents between the
obstacles and nodes in Simplified Tangents Graph
as vertices

f) Add arc length around the obstacles and the
connecting nodes as edges

g) Add tangents between the obstacles and
nodes as edges

Figure 4. An example of tree-like graph construction from Figure 3 using Algorithm 4. Obstacles are denoted by purple. The vertices of the same rectangle
denote the tangent points of the same object

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 6

After this the nodes are inserted into the graph, according to

permutation 𝛴. Using 𝐺′(𝑉′, 𝐸′) vertices are created from the
tangent points (Figure 4 b) picture). The next step is to
determine the edges between the vertices. The length of edges
between the starting point and the departure configurations of
the visiting circle of the base node is equal to the arc length
between the starting point and the departure configurations.

The next step is to determine the arc length between the
arrival and departure configurations around the node taking
into account the heading constraint. In next step edges are

added to 𝑇 between the ending vertices and the arrival
configurations of the base node's visiting circle (Figure 4 c)
picture). Finally, between the departure configuration and the
arrival configurations of the next node, the length of the edges
are the length of the tangents with the proper direction (Figure
4 c) picture). This step should be done for all nodes in the order

given by 𝛴 permutation.
Next step is to add obstacles to the tree-like graph according

to 𝛴′ permutation and 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph. In
case of Figure 3 Obstacle-1 blocks tangents between Node-2
and Node-3. First those departure tangent points are added as
vertices of the visiting circle of Node-2 which are also on a
tangent of Obstacle-1. In addition, the arrival configuration of
the obstacle coming from Node-2 and departure configurations
coming from the obstacle to the Node-3 are added as vertices
to the tree-like graph. Finally, the arrival configurations of the
Node-3 are added to tree-like graph (Figure 4 e) picture).
Adding edges is similar as it was previously (Figure 4 f)-g)
picture).

It might occur that there is more than one obstacle between
two nodes. In this case all existing tangent points and tangents
between the previous and next nodes to/from all obstacles are
added as vertices and edges to the tree-like graph. The tangents
and tangent points between all pair of obstacles in the proper
edge direction are added as vertices and edges.

In paper [12] the SVPP algorithm handles obstacles in the
same way as nodes when these are added to the tree-like graph.

The authors iterate step by step on permutation 𝛴′ by adding all
tangent points to the tree-like graph as vertices. Then they add
arcs and tangents to the tree-like graph as edges taking into
consideration the heading constraint. The tree-like graph
constructed from the Figure 3 sensing field can be seen on
Figure 5 using both Algorithm 3 and Algorithm 4. During the
construction of the tree-like graph according to Algorithm 4
first vertices were created from nodes denoted by black then
the edges were added between them. Then the tangent points
of obstacles were added as vertices denoted by purple and the
associated edges were also added. The different objects are
separated with rectangles in the figure. It can be seen that in
Figure 5 on the second picture there are direct tangents
between Node-2 and Node-3, namely edge between vertices
N2_pp and N2toN3_pp, but on the first picture of Figure 5
there are only paths using edges that passing Obstacle-1 (this is
because of Assumption 1 and Assumption 3).

Theorem Using our new Assumption 2 and Assumption 4
the planned path always better or equal to the path that using
the original Assumption 1 and Assumption 3.

Proof The Simplified Tangents Graph in case of
Assumption 2 or 4 always contains all edges and vertices from
Simplified Tangents Graph using Assumption 1 and 3.
Therefore the tree-like graph using Assumption 2 and 4 always
contains the tree-like graph using Assumption 1 and 3 as well.
So the tree-like graph using Assumption 2 and 4 contains all
paths that the tree-like graph using Assumption 1 and 3 and
possibly even more paths. Therefore, the shortest path in the
tree-like graph using Assumption 2 and 4 always shorter or
equal to the shortest path of the tree-like graph using
Assumption 1 and 3. □

Figure 5. An example of tree-like graph construction from Figure 3 using Algorithm 3 and Algorithm 4. Obstacles are denoted by purple.

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 7

3.5. Searching the Shortest Path in a Tree-like Graph

After the tree-like graph was created, it was searched for the
shortest path. There are many different way to find the shortest
path. Here in this paper the Dijkstra algorithm [16] were
applied. The searching for the shortest path was carried out in
both positive and negative initial direction and then the shorter
was selected.

3.6. Complexity of G-SVPP algorithm

To end this section, we analyse the time complexity of G-
SVPP algorithm both of Assumption 1 and 3 or Assumption 2
and 4 cases. First step is solving TSP with use of Miller-Tucker-

Zemlin formulation [17] with 𝒪(𝑛2 + 𝑛) computation effort.

In Step 2, we check 𝑛 pairs of visiting circles to see whether
they are blocked by any boundary of convex hull. In each

checking, check all the 𝑚 obstacles and then the time

complexity is 𝒪(𝑛𝑚). In Step 3, we do a constant number of

operations to each permutation each element in Σ′, then the

time complexity of the simplifying procedure is ∑ 𝒪(𝑛′𝑖)
𝑛

Σ′

𝑖=1
,

where 𝑛′𝑖 denote the length of the 𝑖th permutation of Σ′ for

each permutation and 𝑛Σ′ denote the number of permutations

of Σ′. Converting 𝐺′(𝑉′, 𝐸′) to 𝑇 costs 𝒪(1) in Step 4. The

shortest path searching of the 𝑇 is implemented Dijkstra
algorithm [16]. The computation effort of Dijkstra algorithm is

𝒪(|𝐸′| + |𝑉′|2) = 𝒪(|𝑉′|2) so that depend on the number of

vertices of 𝑇 tree like graph. In case Assumption 1 and 3 the 𝑇

tree like graph contains maximum 8𝑛′ + 4 vertices, since there

are four arrival and four departure configurations all objects,
and two starting and two ending vertices of the base station. In
case Assumption 2 and 4 the tree-like graph in worst case

contains ∑ 8𝑛′
𝑖

𝑛
Σ′

𝑖=1
+ 4 vertices. Therefore, the worst case

computation effort in case Assumption 2 and 4 is 𝑛Σ′
2 times

larger than the maximum computation error in case

Assumption 1 and 3. However, in most cases the Σ′
permutations differ from each other in only a few elements so
the computation error is more smaller than in the worst case.

4. SIMULATION RESULTS

In the present paper a 200 m × 200 m virtual field was
simulated with 40 nodes, of which one is the base station and
the other 39 are sensor nodes. The base node is Node-1. Each

sensor node stores 𝑔 = 0.5 MB data and to the base node

𝑔𝐵 = (𝑛 − 1) 0.5 MB = 19.5 MB collected data is uploaded
by the robot for further analysis. The data transmission rate at

the visiting circle is 𝑟 = 250 kB/s. In a sensing field there are

15 obstacles as well. The robot speed is 𝑣 = 4 m/s and the

maximal angular velocity is |𝑢𝑀| ≤ 1 rad/s, therefore the
minimal turning radius and also the visiting circle’s radius is

𝑅𝑚𝑖𝑛 = 𝑣 𝑢𝑀⁄ = 4 m the robot must move at least 𝑑𝑠𝑎𝑓𝑒 =

0.5 m distance from an object in order to avoid to collision.

The next step is to construct the 𝐺(𝑉, 𝐸) Tangent Graph,
for this the tangents and the tangent points between the objects
are determined and then the edges are deleted according to
Assumption 1 or Assumption 2. The difference between the
two assumptions can be seen in Figure 6. It can be seen in
Figure 6 that the proposed Assumption 2 produces more
tangents, since this allows tangents that intersect visiting circle

but not intersect circle with centre of node and radius 𝑑𝑠𝑎𝑓𝑒 .

Therefore, increases the number of possible paths so it is
feasible shorter path planning. But at the same time, it requires
more computations as well.

The next step is to determine the 𝛴 permutation of nodes

and then construct the 𝛴′permutation or permutations with
obstacles depending on Assumption 3 or Assumption 4. Using

𝛴′ the 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph is constructed. The

𝐺′(𝑉′, 𝐸′) using Assumption 3 and Assumption 4 can be seen
in Figure 7 and Figure 8. In Figure 7 the Tangents Graph

Figure 6. The difference between the 𝐺(𝑉, 𝐸) Tangent Graphs using
Assumption 1 and Assumption 2.

a)

b)

Figure 7. 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph using Assumption 1 and Assumption 3 .

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 8

constructed by Assumption 1 is simplified by applying
Assumption 3. Similarly, in Figure 8 it can be seen the

𝐺′(𝑉′, 𝐸′) applying Assumption 2 and Assumption 4. In Figure
8 it can be seen that using the Assumption 2 and Assumption 4
proposed in this article, the tangents that intersect visiting
circles are available and more permutations can be constructed

so there are more available tangents in a 𝐺′(𝑉′, 𝐸′) and
therefore in the tree-like graph as well. In this way, there are
more possible paths and therefore the algorithm may plan
shorter path. In this case the constructed tree-like graph is more
complex than in case of Assumption 3. When we use
Assumption 1 and Assumption 3 there can be at most 4 arrival
and 4 departure tangents for every object in the order of the
permutation. Usually there are four-four arrival and departure
tangents, but for example in Figure 7, between Obstacle-13 and
Obstacle-3 there are just 3 available tangents. In Figure 8 it can
be seen the case of Assumption 2 and Assumption 4. Since in
the second picture the fourth tangent intersects the safety circle
of Node-10 it is also not available in the Simplified Tangent
Graph. In Figure 8 there are direct tangents between Node-24
and Obstacle-3 and one of them intersects the visiting circle of

Node-26, but in Figure 7 the robot must visit Obstacle-13 first.
In Figure 8 there are three available tangents between the
visiting circles of Node-37 and Node-3, but in Figure 7
(Assumptions 1 and 3) the robot can only move on tangents
that passing Obstacle-6.

The next step is to construct the 𝑇 tree-like graphs for both
cases Assumption 1 and 3 or Assumption 2 and 4. Finally, in
the tree-like graph a search for the shortest path is carried out
both for positive and negative initial direction as well. In Figure
9 and Figure 10 it can be seen that the planned path using the
new Assumptions 2 and 4 proposed in the present article is
shorter than in the original case. In this example, the planned
path with positive and negative initial direction only differs in
the tangents that are belonging to the base station. Using
Assumptions 2 and 4 the planned path between the Node-24
and Obstacle-3 use tangent that intersect the visiting circle of
Node-26, therefore a shorter path can be achieved using the
new Assumptions of the present article. Applying Assumptions
1 and 3 between Node-3 and Node-37, the planned path uses
tangents that pass the Obstacle-6. On the contrary, if
Assumptions 2 and 4 are applied, the planned path uses direct

a)

b)

Figure 8. 𝐺′(𝑉′, 𝐸′) Simplified Tangent Graph using Assumption 2 and Assumption 4 .

Figure 9. The resulted shortest path with negative initial direction of the 𝑇 tree-like graph both for the cases using Assumption 1 and Assumption 3 or
Assumption 2 and Assumption 4. The length of the planned path are 2341.94𝑚 and 2290.85𝑚, respectively.

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 9

tangents between the two nodes and this way the determined
arc length is shorter.

Each sensor node data downloading requires

𝑙 = 𝑔
𝑣

𝑟
= 8 m arc length. The visiting circles circumference

equal to 𝐾 = 25.12 m. Therefore the robot must take at least
approximately one third of the visiting circle's circumference to
have enough time for data transmission. It can be seen that the
algorithm preferably chooses tangents between Node-31,
Node-32 and Node-33 in such a way that the robot is not
required to make extra round trips around these nodes.

As a test, the path planning was run for ten different virtual
sensing fields. The length of the planned paths can be seen on
Table 1. The solutions using Assumption 1 and 3 are compared
with the solutions using Assumption 2 and 4. As it was proven
in the Theorem, using the new assumptions proposed in the
present article the planned path always better or equal to the
path using the original assumptions presented in [6]. The

number of vertices on a 𝑇 tree-like graph also represented in
Table 1. The maximum difference between the number of

vertices of Assumption 2 and 4 or Assumption 1 or 3 is 54, in
test field 5. In this case the computation effort in case of

Assumptions 2 and 4 is increased by 27 % compared to
Assumptions 1 and 3. At the same time the planned path in

case of Assumptions 2 and 4 is 92 m shorter than Assumptions

1 and 3. That means, 𝑡 =
92 m

4 m/s
= 23 s time for each period,

therefore the robot can make 6 extra round trip for a day.

5. CONCLUSIONS

In the present paper a path planning algorithm was
developed for unicycle robots between sensor nodes. The task
is to collect all the data from the sensor nodes and then upload
it to the base node. To increase the effectiveness of data
collection, the length and the duration of the trip should be
minimized, while also maintaining a collision-free path around
the nodes and obstacles. New algorithms were developed for
handling the obstacles and new assumptions were applied to
reach a collision-free state. A new algorithm for tree-like graph
generation was also developed, where the search of the shortest
viable path will take place finally. The present paper finished
with the detailed presentation of simulation results. The
preparation of the field and the steps of path planning
algorithm were illustrated with figures. The present article also
compared the results of the new algorithm with the results of a
previous research. In conclusion, the new algorithm presented
in this article proved to achieve shorter paths then the earlier
algorithms.

Figure 10 The resulted shortest path with positive initial direction of the 𝑇 tree-like graph both for the cases using Assumption 1 and Assumption 3 or
Assumption 2 and Assumption 4. The length of the planned path are 2337.64𝑚 and 2286.55𝑚.

Table 1 The length of the planned path for different virtual sensing fields using both positive and negative starting directions. |𝑉′| denote the number of
vertices of the tree-like graph on which it depends the computation error.

Test
field

Assumption 1 and 3 Assumption 2 and 4

Positive Negative |𝑽′| Positive Negative |𝑽′|

1 2326.23m 2233.61m 372 2254.71m 2222.65m 386

2 2393.66m 2387.67m 418 2332.58m 2326.59m 462

3 2305.82m 2313.80m 404 2270.74m 2278.72m 444

4 2372.37m 2359.42m 436 2363.87m 2350.92m 466

5 2413.25m 2403.51m 412 2321.40m 2311.65m 466

6 2294.77m 2288.91m 402 2193.65m 2189.18m 452

7 2335.53m 2317.82m 396 2312.25m 2294.55m 426

8 2330.93m 2324.78m 378 2330.51m 2324.36m 386

9 2247.02m 2262.38m 372 2238.79m 2254.14m 386

10 2301.88m 2311.12m 360 2301.88m 2311.12m 368

ACTA IMEKO | www.imeko.org September 2022 | Volume 11 | Number 3 | 10

ACKNOWLEDGEMENT

The research reported in this paper and carried out at the
Budapest University of Technology and Economics was
supported by the “TKP2020, Institutional Excellence Program”
of the National Research Development and Innovation Office
in the field of Artificial Intelligence (BME IE-MI-SC
TKP2020). The research was supported by the EFOP-3.6.2-16-
2016- 00014 project - financed by the Ministry of Human
Capacities of Hungary.

The research reported in this paper is part of project no.
BME-NVA-02, implemented with the support provided by the
Ministry of Innovation and Technology of Hungary from the
National Research, Development and Innovation Fund,
financed under the TKP2021 funding scheme.

REFERENCES

[1] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson,
Wireless sensor networks for habitat monitoring, 1st ACM Int.
Workshop on Wireless Sensor Networks and Applications,
Atlanta, Georgia, USA, (2002), pp. 88-97.
DOI: 10.1145/570738.570751

[2] T. He, S. Krishnamurthy, J.A. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, B. Krogh, Energy-efficient
surveillance system using wireless sensor networks, 2nd Int.
Conference on Mobile Systems, Applications, and Services,
ACM, Boston, Massachusetts, USA, (2004), pp. 270-283.
DOI: 10.1145/990064.990096

[3] J. N. Al-Karaki, A. E. Kamal, Routing techniques in wireless
sensor networks: a survey, IEEE Wireless Communications, vol.
11, no. 6, 2004, pp. 6-28.
DOI: 10.1016/j.proeng.2012.06.320

[4] Y. Gu, F. Ren, Y. Ji, J. Li, The evolution of sink mobility
management in wireless sensor networks: a survey, IEEE
Commun. Surv. Tut. 18 (1) 2015, pp. 507–524.
DOI: 10.1109/COMST.2015.2388779

[5] X. Ren, W. Liang, W. Xu, Data collection maximization in
renewable sensor networks via time-slot scheduling, IEEE Trans.
Comput. 64 (7) 2015, pp. 1870–1883.
DOI: 10.1109/TC.2014.2349521

[6] I. Chatzigiannakis, A. Kinalis, S. Nikoletseas, Sink mobility
protocols for data collection in wireless sensor networks, 4th
ACM Int. Workshop on Mobility Management and Wireless
Access, ACM, Terromolinos, Spain, 2006, pp. 52-59.
DOI: 10.1145/1164783.1164793

[7] Y. Yun, Y. Xia, Maximizing the lifetime of wireless sensor
networks with mobile sink in delay-tolerant applications, IEEE
Trans. Mob. Comput., vol. 9, 2010, pp. 1308-1318.
DOI: 10.1109/TMC.2010.76

[8] Hailong Huang, Andrey V. Savkin, Ming Ding, Chao Huang,
Mobile robots in wireless sensor networks: A survey on tasks,
Computer Networks 148, 2019, pp. 1-19.
DOI: 10.1016/j.comnet.2018.10.018

[9] Huang, Hailong, Andrey V. Savkin, Reactive 3D deployment of a
flying robotic network for surveillance of mobile targets,
Computer Networks 161, 2019, pp.172-182.
DOI: 10.1016/j.comnet.2019.06.020

[10] H. Huang, A. V. Savkin, An energy efficient approach for data
collection in wireless sensor networks using public transportation
vehicles, AEU-International Journal of Electronics and
Communications 75, 2017, pp. 108-118.
DOI: 10.1016/j.aeue.2017.03.012

[11] Y. Gu, F. Ren, Y. Ji, J. Li, The evolution of sink mobility
management in wireless sensor networks: a survey, IEEE
Commun. Surv. Tut. Vol. 17, 2015, pp. 507-524.
DOI: 10.1109/COMST.2015.2388779

[12] Hailong Huang, Andrey V. Savkin, Viable path planning for data
collection robots in a sensing field with obstacles, Computer
Communications 111, 2017, pp. 84-96.
DOI: 10.1016/j.comcom.2017.07.010

[13] L. E. Dubins, On Curves of Minimal Length with a Constraint
on Average Curvature, and with Prescribed Initial and Terminal
Positions and Tangents, American Journal of Mathematics, vol.
79 No. 3,1957, pp. 497–516.
DOI: 10.2307/2372560

[14] A. M. Frieze, G. Galbiati, F. Maffioli, On the worst-case
performance of some algorithms for the asymmetric traveling
salesman problem, Networks, vol. 12 no. 1, 1982, pp. 23–39.
DOI: 10.1002/net.3230120103

[15] A. V. Savkin, M. Hoy, Reactive and the shortest path navigation
of a wheeled mobile robot in cluttered environments, Robotica.
vol. 31 issue 2,2013, pp. 323-330.
DOI: 10.1017/S0263574712000331

[16] E. W. Dijkstra, A Note on Two Problems in Connexion with
Graphs, Numerische Mathematik, vol. 1, number 1, 1959, pp.
269-271.
DOI: 10.1007/bf01386390

[17] C. E. Miller, A. W. Tucker, R. A. Zemlin, Integer Programming
Formulation of Traveling Salesman Problems. J. ACM 7, 4,
October 1960, pp. 326-329.
DOI: 10.1145/321043.321046

http://dx.doi.org/10.1145/570738.570751
https://doi.org/10.1145/990064.990096
https://doi.org/10.1016/j.proeng.2012.06.320
https://doi.org/10.1109/COMST.2015.2388779
https://doi.org/10.1109/TC.2014.2349521
http://dx.doi.org/10.1145/1164783.1164793
https://doi.org/10.1109/TMC.2010.76
https://doi.org/10.1016/j.comnet.2018.10.018
http://dx.doi.org/10.1016/j.comnet.2019.06.020
http://dx.doi.org/10.1016/j.aeue.2017.03.012
https://doi.org/10.1109/COMST.2015.2388779
http://dx.doi.org/10.1016/j.comcom.2017.07.010
https://doi.org/10.2307/2372560
https://doi.org/10.1002/net.3230120103
http://dx.doi.org/10.1017/S0263574712000331
https://doi.org/10.1007/bf01386390
https://doi.org/10.1145/321043.321046

