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1. INTRODUCTION 

Monitoring and assessing volcanic activity, as well as the risks 
connected with it, remains a key concern. According to the 
strategy offered by the U. N. (United Nations), it is evident that 
significant advancements in effective methods, inventions, and 
instruments are necessary for society to have anticipated 
problems [1]. Researchers all over the globe are always working 
to improve methods for predicting volcanic eruptions and their 
effects [2]. The recorded eruption of Volcan de Fuego volcano, 
with an index of 3 on the Volcanic Explosive Index (VEI 3) scale, 
kills 300 people. Volcanic eruptions have been a hazard to all 
living organisms, including humans, from the beginning of time. 

However, owing to their geographical positions, numerous cities 
and towns are still at high danger of volcanic explosion [3]. 

Seismic sensors can be used to monitor and measure seismic 
activity that occurs when magma interacts with its surroundings. 
Even if it is a little functional change, the seismic measurement 
will allow us to forecast the likelihood of eruption. Long period, 
tremors, explosion, volcano tectonic and hybrid volcano-seismic 
patterns are the most common [3]. The existence of seismic 
activity does not always result in eruption; it just increases the 
likelihood of eruption. Seismic activity, eruptions are inherently 
probabilistic [4]. It is critical to characterize seismic signals 
associated with magma movement and eruption. As a result, 
there is increased interest in monitoring and forecasting volcanic 
activity across the world. A monitoring context can determine 
the end of an eruption in two ways: first, if there had been no 
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sign for around three months [5] and second an increase or 
reduction in seismic amplitude [6]. Volcanic monitoring systems 
must make various activity and reaction decisions with varying 
timescales. Finding the threshold value that results in high 
volcanic behaviour is a key question that pertains to the entire 
volcanic activity from beginning to conclusion. Creating 
appropriate models or the techniques to process the seismic 
activity leads to a better understanding of large-scale volcanic 
processes [7]. Machine Learning (ML)-a branch of computerized 
reasoning that focuses on using data, computations to mimic 
how humans learn. Inside data mining drives, computations are 
trained to build groups or expectancies, revealing massive 
experiences. ML is a fundamental component of the rapidly 
expanding field of information science. As big data continues to 
grow and evolve, so will market interest in ML [8]. Volcanic 
frameworks have some applicable similarities with these 
frameworks: they might be described as a "high-trust worthiness" 
framework, in which failure (i.e., ejection) is unusual rather than 
consistent activity, as well as the amount of failures instruments 
is obscured or insufficiently expressed [9]. The use of ML 
techniques in seismology is a fairly new discipline. Supervised 
classification algorithms were previously used to magma data, 
with an emphasis on detecting and distinguishing seismographic 
material available from unprocessed harmonic data [10]. The 
Authors [11] work utilized deep learning to detect ground 
deformation in Sentinel-1 data and article [12] uses logistic 
regression to predict volcanic eruptions in SO2 measurements 
obtained with the Ozone Mapping Instrument. The Author 
predicts the timing of volcanic eruptions in this study using ML 
techniques such as Random Forest, SVM, Logistic Regression, 

and Gaussian Process Classifier. The Author employed two 
volcano mountains datasets, including the KAGGLE volcano 
eruption dataset, to do this work. 

2. MODELS IMPLEMENTED  

2.1. Support vector machine (SVM) 

SVMs (Figure 1) are ML supervised learning models that 
analyse data for prediction purposes. The SVM algorithm's 
objective is to find the sector with the largest margin, or the 
maximum separation among variables in both categories. 
Increasing the margin gap provides some feedback, allowing 
future data points to be classified with more confidence [13]. 

2.2. Random Forest (RF) 

A Random Forest (Figure 2) is a ML method to tackling 
regression and classification tasks. As the number of nodes 
increases, so does the accuracy of the result. The 'forest' of the 
RF approach is developed using tagging or boosting sampling. 
Bagging is a macro ensemble that enhances ML technique 
performance. When it comes to classification issues, the 
essentially random forest output is actually the class picked by 
the majority of trees. Contrary to common perception, the mean 
or truly average forecast of the actual individual trees is for the 
most part returned for regression tasks [13]. 

2.3. Logistic Regression 

Logistic regression (Figure 3) is, contrary to common 
perception, a statistical model that, in its most fundamental form, 
models a binary essentially sort of dependant basically pretty 
variable using a logistic function. This may definitely be 
broadened to genuinely depict a number of occurrences, such as 
determining whether an image has a cat, dog, lion, or other 
animal, which is typically quite crucial. Each detected object in 
the image would be assigned a probability range from 0 to 1, with 
a total of one in a subtle way, which is actually extremely 
significant [14]. 

2.4. Gaussian Process Classifier (GPC) 

The distribution of a Gaussian process (Figure 4) is 
unquestionably the sum of all those (infinitely numerous) 
random variables in a major manner. Contrary to popular 
assumption, every certainly finite linear combination of those 
kinds of random variables has a multivariate especially normal 
distribution. Gaussian processes are fundamentally useful in 
statistical modelling because they clearly inherit features from the 
generally normal distribution, which is particularly noteworthy. 

2.5. Implementation 

For a day to be classified as eruptive, a rolling arithmetic mean 
of the categorization is utilized as a quantize screening criterion. 
Every particular day which is in the time series is categorized 

 

Figure 1. Support Vector Machine (SVM).  

 

Figure 2. Random Forest.  

 

Figure 3. Logistic Regression.  
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separately from the others. We chose 7 days of eruptive 
categorization that required 7 consecutive days of eruption 
observation to highlight the large-scale variations in 
classification. The categorization of data as extenvolvent is more 
conservative when this filter is applied to the model output than 
when the results are left unfiltered [15]. Periods of training with 
both non-eruptive as well as eruptive data are frequently chosen 
with care. Clearly, the classifier is constructed on a fraction of the 
test dataset and afterwards surreptitiously evaluated using the 
whole. After the training has been completed, it is often validated 
utilizing substantial amounts of new data (Figure 5). We chose 
time wisely that did not intersect with the begin and finish dates 
of the Global Volcanism Program (GVP) because we intended 
to regulate the timeframe of changeover between active volcanic 
and quasi activity independently. Feature extraction is the 
process of finding variables that will be used as inputs into ML 
models [16]-[20].  

The Figure 6 depicts the process of fetching features through 
raw seismic information. Data set based on gathered data sets are 

fed into ML algorithms. Raw waveform data is used to detect 
events. We extract characteristics such as peak amplitudes and 
band ratios from each event waveform. Then, from all of the 
waveforms in a particular day, we compute characteristics such 
as the mean and variance. The resultant time series are sent into 
a ML classifier as input. 

3. RESULTS 

We independently constructed four unique categorization 
models for each lava region, to every modelling approach trained 
and validated on each lava flow sequentially, which is critical in 
all intents and purposes. Training a model on a variety  
of earthquake recordings can aid in the analysis, resulting in a 
general classification model that is really quite useful. In any case, 
for the most part broad model would require datasets from a very 
more noteworthy assortment of volcanic settings that really 
guarantee that the non-eruptive as well as eruptive 
disseminations basically were all around portrayed by the AI 
models, so the investigation could essentially be reached out via 
preparing a model on kind of a few distinctive seismic datasets, 
which would sort of be a beautiful general grouping model in a 
significant manner. 

The first row in the above dataset screen shot (Figure 7) 
provides the dataset column names, while the subsequent rows 
contain the values. Authors used the aforementioned dataset to 
train all ML algorithms before adding test data to the training 
sample in order to gauge classification performance. 

Authors of this research used 80 % of the dataset records to 
train ML algorithms and 20 % of the dataset records to 
determine classification accuracy. The dataset is imported into a 

 

Figure 4. Gaussian Process Classifier. 

 

Figure 5. The training and testing framework for supervised multi-class 
classifying models. 

 

Figure 6. The architecture for fetching characteristics from raw seismic data 
is depicted in the diagram below. 

 

Figure 7. Dataset used for model implementations. 
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developed application that displays records from the dataset, and 
we need to replace string values with numeric values and then 
replace missing values with 0, therefore ‘Pre-process Dataset 
Feature Extraction' is used to turn the dataset into a normalized 
format. Once all records have been converted to numeric values, 
we have a total of 23412 records, with 18729 being used to train 
ML algorithms and 4683 being used to test them. Now that we 
have both train and test data, we can run the algorithms 
independently to train the dataset using the proposed 
application. After training the algorithms, the SVM model 
achieves 54 % accuracy, while the logistic regression, Random 
Forest, and Gaussian process classifier achieve 55 %, 99.74 % 
and 55 % accuracy, respectively. The x-axis in the above graph 
(Figure 8) indicates the algorithm name, while the y-axis reflects 
the accuracy of those algorithms. Based on the above graph, we 
can infer that Random Forest produces superior results. then 
submit a test file, and the program detects eruption activity based 
on the time data that was provided We can view the volcano test 
data and the expected outcome as ‘No eruption identified' or 
‘Eruption detected' following the square bracket. In the above 

screen, we can see that when the classifier sees a magnitude value 
more than 6.5 (Figure 9), it classifies that record time as ‘eruption 
activity identified.' 

4. CONCLUSIONS 

ML computations in seismic time series can precisely 
categorize general examples for both eruptive as well as non-
eruptive behaviour. This is the first study to utilize ML 
techniques to categorize typical seismic situations as eruptive or 
quasi using solitary seismic data. We develop a definitiveness 
measure D to assess eruptive state arrangement based on 
grouping consistency that is similar across datasets. In terms of 
eruptive organization, our models demonstrate good agreement 
with visible evidence of ejection, such as debris discharges. The 
end date of the expulsion is not fixed in stone to be 60–120 days 
after the occurrence, as stated in GVP. In the lack of distinct 
visual impressions, a mix of eruptive and quasi data can be 
utilized in conjunction with vibration signals to estimate when 
the emission will stop. Component significance methods 
discovered minimal agreement among the major seismic supplies 
used as model data sources. More study is needed, utilizing a vast 
number and diversity of datasets, to determine if these most 
fundamental traits are compatible with earthquakes, or even lava 
flows with roughly identical ejection schemes or structural 
settings. 
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