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1. INTRODUCTION 

It is well known that long-term exposure to stress can lead to 
immunodepression and dysregulation of the immune response, 
thus significantly enhancing the risk of contracting a disease or 
altering its course. However, increased symptomatology is not 
only associated with severe stressors (infrequent major life 
events), but also with minor daily stressors (i.e. “micro-
stressors”) that are ignored or poorly managed [1]–[4]. Defining 
effective techniques to measure daily stressful episodes in 

ecological conditions has thus been identified as an important 
research objective. To address this challenge, several research 
groups have started investigating the use of wearable sensors 
solutions to infer stress from continuous biosignal 
measurements [5] (for a review, see [6]). Such systems integrate 
sensors together with on-body signal conditioning and pre-
elaboration, as well as the management of the energy 
consumption and wireless communication systems. Although 
preliminary testing of these systems has yielded encouraging 
results [7], a major limitation of current solutions is that they 
mostly rely on complex sensor architectures and use labelling 

ABSTRACT 
Developing automatic methods to measure psychological stress in everyday life has become an important research challenge. Here, we 
describe the design and implementation of a personalized mobile system for the detection of psychological stress episodes based on 
Heart-Rate Variability (HRV) indices. The system’s architecture consists of three main modules: a mobile acquisition module; an analysis-
decision module; and a visualization-reporting module. Once the stress level is calculated by the mobile system, the visualization-
reporting module of the mobile application displays the current stress level of the user. We carried out an experience-sampling study, 
involving 15 participants, monitored longitudinally, for a total of 561 ECG analyzed, to select the HRV features which best correlate with 
self-reported stress levels. Drawing on these results, a personalized classification system is able to automatically detect stress events 
from those HRV features, after a training phase in which the system learns from the subjective responses given by the user. Finally, the 
performance of the classification task was evaluated on the empirical dataset using the leave one out cross-validation process. 
Preliminary findings suggest that incorporating self-reported psychological data in the system’s knowledge base allows for a more 
accurate and personalized definition of the stress response measured by HRV indices. 



 

ACTA IMEKO | www.imeko.org December 2021 | Volume 10 | Number 4 | 240 

methods that are often based on evaluation of human coders [8]. 
Other authors have proposed the measurement of Hearth Rate 
Variability (HRV) [9]–[14] analysis as a potentially effective 
approach for monitoring stress in mobile settings [15]–[17]. 
Actually, HRV indices can be used to estimate activity of 
autonomous nervous system (ANS) in relation to affective and 
cognitive states, including mental stress [18]–[20]. However, real-
time recognition of stress from HRV measures requires 
appropriate strategies to i) detect HRV changes using minimally-
invasive ECG equipment; ii) relate these changes to mental stress 
levels; and iii) control the potential confounding effects of 
physical activity. In the following, we describe how we addressed 
these issues in designing and implementing a personalized mobile 
system for automatic recognition of psychological stress based 
on HRV indices. The original contribution of the proposed 
method is that, to our best knowledge, this is the first approach 
that integrates the detection of HRV features with the ground-
truth of subjective perception of stressful events. 

2. MEASURING PSYCHOLOGICAL STRESS IN NATURALISTIC 
ENVIRONMENTS  

According to Cohen et al. [21], stress is a biopsychosocial 
phenomenon in which “environmental demands tax or exceed 
the adaptive capacity of an organism, resulting in psychological 
and biological changes that may place a person at risk for disease” 
(p. 3). This conceptualization suggests that in measuring stress, it 
is not only necessary to consider environmental demands, but 
also appraisals of such demands, as well as physiological systems 
that come into play. Consistent with this definition, two main 
approaches have been introduced to assess psychological stress 
in naturalistic conditions: the first is based on self-reporting of 
participants’ subjective experiences and perception of stressful 
events; the second approach is based on sensing physiological 
signals associated with the stress response. In the next, we 
provide a description of these procedures, along with a 
discussion of their strengths and limitations. 

2.1 Subjective psychological measures 

The experience sampling method (ESM), also known as 
ecological momentary assessment (EMA), is a naturalistic 
observation technique that allows capturing participants’ 
thoughts, feelings, and behaviours at multiple times across a 
range of situations as they occur in the natural environment [22]. 
In a typical ESM study, participants are asked to fill out a form 
when prompted by an acoustic signal. Thanks to repeated 
sampling, a number of surveys are collected from each 
participant throughout the day, thus providing an ecologically-
valid and highly detailed description of subjective quality of 
experience. Ecological validity is a strong requirement in 
psychometrics since this is a measure of how a task or test is able 
to predict behaviours in a real-world setting. ESM has been 
applied to study a wide range of behaviours and experiences, 
including daily stress [23], [24]. However, this procedure has high 
costs and places a significant burden on the participant, thus 
limiting its practical applicability as a stress monitoring technique 
[10], [25].  

A less expensive and time-consuming approach for assessing 
experience and affect in everyday life is the day reconstruction 
method (DRM), developed by Kahneman and colleagues [26]. It 
involves the retrospective recall of the study period as a 
continuous sequence of episodes, which are rated on a series of 
affect scales. DRM reports have been validated against 

experience sampling data, showing that this technique allows 
identifying changes in affect over the course of the day with 
almost the same accuracy than ESM [26], [27]. However, since 
DRM respondents are asked to reconstruct the previous day by 
completing a structured self-administered questionnaire, this 
method is potentially susceptible to recall biases. Furthermore, it 
has been suggested that using retrospective measures as proxies 
for actual experience may result in weaker or inconsistent results 
particularly when tested in connection to biologic pathways [28]. 

2.2 Objective physiological measures 

An alternative strategy to assess stress in everyday situations 
is based on the analysis of physiological correlates of this 
experience. Psychological stressors are linked with the activation 
of two main neuro-physiological pathways, which are involved in 
the maintenance of homeostasis: the hypothalamic-pituitary-
adrenocortical (HPA) axis and the sympathetic-adrenal 
medullary system (SAM). As concerns the first system, one of the 
most investigated biomarker is salivary cortisol, which, together 
with catecholamines, is one of the end products of HPA 
activation [20], [23], [29], [30]. However, due to significant 
between- and within individual variation in diurnal secretion of 
cortisol, the measurement of the magnitude of cortisol response 
is not an easy procedure, which requires the application of 
advanced statistical approaches such as multilevel models [31], 
[32]. With respect to the SAM system, HRV, defined as the 
variation over time of the period between consecutive heartbeats, 
is increasingly regarded as a potentially convenient and non-
invasive marker of autonomic activation associated with 
psychological stressors [33]. The normal variability in heart rate 
(HR) is controlled by the balancing activation of the 
(acceleratory) sympathetic and of the (deceleratory) 
parasympathetic branches of the autonomic nervous system. 
However, under stressful events or contexts, there is a trend 
towards increased sympathetic control and reduced vagal tone, 
which is associated with decreased HRV [19]. On the other hand, 
higher HRV has been associated with the availability of context- 
and goal-based control of emotions [34]. Based on this 
preliminary evidence, several authors have been experimenting 
with wearable heart monitor for the identification of stress levels 
from HRV, in both healthy and clinical populations. For 
example, Kim and coll. [35]used HRV patterns to discriminate 
between subjects reporting high and low levels of stress during 
the day, with an overall accuracy of 66.1 %. In a similar study, 
Melillo et al. [16] compared within-subject variations of short-
term HRV measures using short term ECG recording in students 
undergoing university examination. By applying Linear 
Discriminant Analysis on nonlinear features of HRV for 
automatic stress detection, these authors were able to obtain a 
total classification accuracy of 90 %. Kimhy et al. [17] 
investigated the relationship between stress and cardiac 
autonomic regulation in a sample of psychotic patients, using 
experience sampling in combination with cardiac monitoring. 
They found that momentary increases of stress were significantly 
associated with increase in sympathovagal balance and 
parasympathetic withdrawal. In addition to studies which have 
examined the association between HRV and stress during waking 
hours, other recent research has proposed the use of HRV 
patterns during sleep as supplement to the analysis of subjective 
assessments and voice messages collected during workday [36], 
with encouraging, albeit preliminary, results. 
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2.3 Towards an integrated approach for personalized stress 
recognition in mobile settings  

As previously discussed, a fundamental issue in the 
measurement of stress in everyday life is that this response is 
idiosyncratic, because it depends on individual’s perception of 
challenges and the skills which he/she can use to face those 
challenges. As a consequence, any approach aiming at inferring 
stress levels from “honest” physiological signals should not 
overlook the role played by the subjective appraisal of the 
situation. Furthermore, since HRV values are characterized by 
high interindividual variability, it is important that the system is 
tailored to the individual characteristics [37], [38]. One possible 
approach to develop adaptative systems for stress recognition 
has been suggested by Morris and Guilak [37]. The strategy 
proposed by these authors involves identifying subject’s baseline 
and stress threshold in the lab by elicitation of sympathetic and 
parasympathetic responses, and then using this information to 
differentiate between stress and nonstress in daily life. A first 
attempt to implement this approach has been performed by 
Cinaz et al. [38]. These authors measured participants’ 
sympathetic and parasympathetic responses during three 
different levels of mental workload (low, medium, and high) in a 
controlled laboratory setting. Then, they investigated whether 
the data collected in this calibration session were appropriate to 
discriminate corresponding workload levels occurred during 
office work. To this end, individual HRV responses of each 
workload level were used to train the models and test the trained 
models on the data collected while the subjects performed 
normal office-work, using a mobile ECG logger. Afterward, a 
multiple regression analysis was applied to model the relationship 
between relevant HRV features and the subjective ratings of 
perceived workload: resulting predictions were correct for six out 
of the seven subjects. In the present work, we propose an 
experience-sampling approach for incorporating subjective 
knowledge in the classification of psychological stress from HRV 
indices (Table 1). The methodology consists of three main steps. 
In the first, experimental phase, we carried out an experience-
sampling study to select the HRV features which best correlate 
with self-reported stress levels (Section 3). Drawing on these 
results, a personalized classification system was developed which 
is able to automatically detect stress events from those HRV 
features, after a training phase in which the system learns from 
the subjective responses given by the user (Section 4). In the final 
step, the performance of the classification task was evaluated 
using the leave one out cross validation process (Section 5).  

3. METHOD 

The objectives of this experiment were two-fold: i) to select a 
subset of HRV features which best correlate with self-reported 
stress levels collected during everyday activities; ii) to select a 
subset of self-reported questions about perceived stress levels 
which can be used as ground truth to train the final system.  

3.1 Participants 

Participants were 15 healthy subjects (8 males and 7 females, 
mean age = 23.33 years, St. Dev.= 1.49), monitored 
longitudinally, for a total of 561 ECG analyzed, to select the 
HRV features which best correlate with self-reported stress 
levels. Participants were recruited through opportunistic 
sampling. Participants filled a questionnaire assessing factors 
that, in the opinion of the investigators, might interfere with the 
measures being assessed (i.e., caffeine consumption, smoking, 
alcohol consumption, exercise, hours of sleep, disease states, and 
medications). Written informed consent was obtained by all 
subjects matching inclusion criteria (age between 18 and 65 years, 
generally healthy, absence of major medical conditions, and 
completion of informed consent). 

3.2 Materials 

Data were collected through PsychLog [39], a mobile 
experience sampling platform designed for research in mental 
health, which allows simultaneous collection of psychological, 
physiological (ECG) and motion activity data. Psychological data 
are collected from surveys that can be simply customized by the 
experimenter. For the purpose of this study, we used the Italian 
adaptation of the ESM questionnaire applied by Jacobs et al. [40] 
for studying the immediate effects of stressors on mood. The 
survey includes open-ended and closed-ended questions 
investigating thoughts, current context (activity, persons present, 
and location), appraisals of the current situation, and mood. All 
self-assessments were rated on 7-point Likert scales. HR and 
activity data are acquired from a wireless electrocardiogram 
(Shimmer Research™) equipped with a three-axial 
accelerometer. The wearable sensor platform includes a board 
that allows the transduction, amplification and pre-processing of 
raw sensor signals, and a Bluetooth transmitter to wirelessly send 
the processed data. The unit is mounted on a soft-textile chest 
strap designed to seamlessly adapt to the user's body shape, 
bringing full freedom of movement. Sensed data are transmitted 
to the mobile phone Bluetooth receiver and gathered by the 
PsychLog computing module, which stores and process the 
signals for the extraction of relevant features. 

3.3 Design and procedure 

Participants received a short briefing about the objective of 
the experiment and filled the informed consent. Then, they were 
provided with the mobile phone with pre-installed PsychLog 
application, the wearable ECG and accelerometer sensor and a 
user manual including experimental instructions. The application 
was pre-programmed to collect data over 7 consecutive days, at 
random intervals during waking hours. At the end of the 
experiment, participants returned both the phone and the 
sensors to the laboratory staff. After, participants were debriefed, 
thanked for their participation, and dismissed (Figure 1). 

3.4 Data analysis 

Following the procedure suggested by Jacobs et al. [40], three 
different psychological stress measures were computed in order 
to identify the stressful qualities of daily life experiences. 

Table 1. Feature extraction from electrocardiogram (ECG). 

Measure Description 
RR mean Mean of all RR intervals 

AVNN Average of all NN intervals 

SDNN Standard deviation of all NN intervals 

rMSSD Square root of the mean of the squares of differences 
between adjacent NN intervals 

NN50 Differences between adjacent NN intervals that are greater 
than 50 ms 

TOTPWR Total spectral power of all NN intervals up to 0.04 Hz 

LF LF Total spectral power of all NN intervals between 0.04 Hz 
and 0.15 Hz 

HF HF Total spectral power of all NN intervals between 0.15 Hz 
and 0.4 Hz 

LFbyHF LF/HF Ratio of low to high frequency power 
(Sympathovagal balance) 
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Ongoing “Activity-Related Stress” (ARS) was defined as the 
mean score of the two items ‘‘I would rather be doing something 
else’’ and ‘‘this activity requires effort’’ (Cronbach’s alpha = 
0.72). To evaluate social stress, participants rated the social 
context on two 7-point Likert scales ‘‘I don’t like the present 
company’’ and ‘‘I would rather be alone’’; the “Social Stress 
Scale” (SS) resulted from the mean of these ratings (Cronbach’s 
alpha = 0.59). Finally, for “Event-Related Stress” (EVS), subjects 
reported the most important event that had happened since the 
previous beep, whether or not it was still ongoing. Subjects then 
rated this event on a 7-point bipolar scale (from 3 very unpleasant 
to 3 very pleasant, with 0 indicating a neutral event). All positive 
responses were recorded as 0, and the negative responses were 
recorded so that higher scores were associated with more 
unpleasant and potentially stressful events (0 neutral, 3 very 
unpleasant). In addition to those scales, an item (not included in 
the original survey by Jacobs et al. [40]) asked participants to rate 
the perceived level of stress on a 10-point Likert scale. This item 
was included as a global subjective measure of stress. Given the 
repeated sampling, Likert-type scales data were standardized 
(Mean = 0; St. Dev. = 1) on each participant’s weekly mean for 
every variable before performing the analyses. ESM data can be 
aggregated at the report level (the unit of analysis is the individual 
diary entry) or at the subject level (the unit of analysis is the 
participant). In the present study, most of the analyses were 
conducted using the subject-level aggregation, because this 
approach avoids problems related to unequal weights and 
produces more conservative significance tests [41]. 

3.5 Selection of psycho-physiological features 

To analyse HRV features, the QRS peaks and RR interval time 
series recorded and saved on the PsychLog application were 
exported and further processed with the software Matlab 
(version 7.10) in order to compute a set of HRV indexes. To this 
end, the ECG signal was first elaborated for artifact correction, 
and then a fast Fourier transform was used to compute the power 
spectrum in the LF (0.04–0.15 Hz) and HF (0.15–0.40 Hz) bands 
[42]–[45]. To estimate the effect of HRV indexes (independent 
variable) on stress level (dependent variable) we applied 
hierarchical linear analysis, an alternative to multiple regression 
which is more suitable for our nested data. Actually, hierarchical 
structure of data makes traditional forms of analysis unsuitable, 
since within-subject data are collected at many points in time 
during each day, across several days. Moreover, traditional 
repeated-measures designs require the same number of 
observations for each subject and no missing data. Finally, 
hierarchical linear analysis allows to take into account further 
dependencies existing in the data. 

4. RESULTS 

Given the repeated sampling, Likert-type scales data were 
standardized (mean = 0; SD = 1) on each participant’s weekly 
mean for every variable before performing the analyses. ESM 
data can be aggregated at the report level (the unit of analysis is 
the individual diary entry) or at the subject level (the unit of 
analysis is the participant). In the present study, most of the 
analyses were conducted using the subject-level aggregation, 
because this approach avoids problems related to unequal 
weights and produces more conservative significance tests [31]. 
The following table provides the correlations between stress 
measures described before. As can be seen from Table 1, all 
scales measuring stress (STRESS, ARS, SS, and ERS) are 
significantly correlated between them. Out of 561 “beeps”, 
participants filled 541 reports (96 %), of which 456 were included 
in the analysis (84 %). A total of 561 ECG sampling were 
recorded (100 %), and 374 were included in the analysis (69 %). 
The following Table 2 provides the correlations between stress 
measures described before. In fact, as can be seen from Table 2, 
all scales measuring stress (STRESS, ARS, SS, and ERS) are 
significantly correlated between them. The hierarchical linear 
analysis, both aggregation levels (report-level and subject-level) 
were considered in the model. Results indicated a statistical 
significant hierarchical regression model for RMSSD (Beta -
.5350813; St. Dev.: .2151596; p < .013), NN50 (Beta -1.152351; 
St. Dev.: .5322348; p < .030), LF / HF (Beta 1.176422; St. Dev.: 
.5386275; p < .029) (Table 3). The RMSSD method is preferred 
to NN50 because it has better statistical properties [42], [43]. 
Findings of this ESM experiment allowed to identify a subset of 
HRV features, which showed best correlations with self-reported 
psychological stress levels. In the next section, we describe how 
these psycho-physiological features were implemented in a 

 

Figure 1. Schematic representation of experimental design.  

Table 2. Correlations among psychological self-reported measures. 

  ZSTRESS ZARS ZSS ERS 

ZSTRESS r 1 ,312** ,215** ,213** 

Sig.   < .001 < .001 < .001 

N 540 534 528 456 

ZARS r ,312** 1 ,393** ,146** 

Sig.  < .001  < .001 .002 

N 534 535 529 457 

ZSS r ,215** ,393** 1 ,188** 

Sig.  < .001 < .001  < .001 

N 528 529 529 457 

** Correlation is significant at the 0.01 level (2-tailed). 

Table 3. Summary of hierarchical regression analysis for HRV variables 

predicting global perceived stress (Number of observations = 374). 

Global 
Perceived 
Stress 

B SE B Z p >|Z| 95 % CI 

HR 0.51 0.22 2.37 0.02 0.09 0.94 

RMSSD -0.53 0.21 -2.49 0.01 -0.96 -0.11 

NN50 -1.15 0.53 -2.17 0.03 -2.20 -0.11 

LF 0.62 .031 2.02 0.04 0.02 1.23 

LF/HF 1.18 0.54 2.18 0.03 0.12 2.23 
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personalized stress monitoring system, which was designed to 
learn from individual’s subjective assessments of stressful 
situations and use this knowledge to detect stress events. The 
personalized stress monitoring system includes three main 
components: a) a mobile acquisition/feedback module (for the 
collection of psycho-physiological and activity data); b) a remote 
analysis-decision module (for the analysis and classification of 
stress levels), c) a mobile visualization-reporting module (for the 
reporting of detected stress events). 

4.1 Mobile acquisition/feedback module 

The mobile acquisition/feedback component consists of two 
elements: a wireless electronic module coupled with a 
commercial chest band for collecting ECG and motion data; and 
a smartphone application for the collection of psychological data, 
the transmission of data to the analysis-decision module and the 
visualization of stress events detected by the system. 

4.1.1 ECG and motion activity data acquisition 

The electronic acquisition platform, produced by Shimmer 
Research™ allows the transduction, amplification and pre-
processing of raw ECG signals, and the transmission of 
elaborated data via Bluetooth to the smartphone. The unit is 
mounted on a soft textile chest strap (model miCoach™ by 
Adidas) designed to seamlessly adapt to the user’s body shape, 
bringing full freedom of movement. A smartphone application, 
running on Android operative system, was developed for 
preliminary elaboration of sensor data and remote data base (DB) 
archiving. The application processes the ECG and accelerometer 
signals for the extraction of three relevant parameters: HR, 
activity index and RR intervals for further HRV analysis provided 
by the analysis-decision module. The wearable electronic board 
collects raw sensor data with on-body signal conditioning. The 
ECG signal is sampled at 256 Hz and sent to the smartphone 
with the tri-axial acceleration data (aX, aY, aZ). The smartphone 
application pre-processes user’s physiological signal through a 
stepwise filtering stage aimed at removing typical ECG artifacts 
and interferences. In particular, baseline wander due to body 
movements and respiration artifacts is removed using a cubic 
spline 3rd order interpolation between the fiducial isoelectric 
points of the ECG [46]. The power line interference and 
muscular noise are removed using an infinite impulse response 
(IIR) notch filter at 50 Hz and an IIR low pass filter at 40 Hz. 
Then, the Pan-Tompkins method is applied [47] to detect the 
QRS complex and to extract HR and the time series sequence of 
non-uniform R–R intervals. Since variation of the ECG 
parameters is significantly affected by the activity performed by 
the user [48], [49], signal magnitude area [50] is also extracted 
from the three-axis accelerometer signals in order to measure 
motion activity levels. 

4.1.2 Psychological data acquisition 

The acquisition of psychological data is managed by an 
electronic survey, which is displayed at random times during the 
day on the application’s screen. The survey includes a subset of 
Likert-type items measured selected from the ESM by Jacobs et 
al. [41] described in section 4.1.2. Only the ESM items which 
highest correlation with HRV features were included in the final 
survey: this choice was made in order to reduce as much as 
possible the burden on the user during the training phase of the 
system. The final selected items were (listed in the same sequence 
of the final survey): 

1. What is your stress level? (min: 1; max: 10)  
2. This activity is a challenge (min: 1; max: 7) 

3. This is something I'm good at (min: 1; max: 7) 
4. I would rather be doing something else (min: 1; max: 7) 
5. It takes me effort (min: 1; max: 7) 
The average time for the completion of a full questionnaire is 

about 10-15 seconds. During a typical training week, 4-5 surveys 
per day are collected. 

4.2 Analysis-decision module (ADM) 

The ADM developed is composed of  two main modules: the 
feature extraction and the classification module. 

4.2.1 Data Exchange 

The wearable sensors monitor patients and transfer data to 
web-servers, using a smartphone to collect and pre-elaborate 
data. In addition, the application allows users to track their own 
stress levels through a graphical representation (see Section 5.3). 
The chest band and its electronic act as masters that initiate 
Bluetooth communication with the Android phone. The 
Bluetooth protocol has a range of approximately 20 m and 
provides secure data transmissions. The communication between 
the phone and central DB is through Wi-Fi or 3G networks. The 
DSS makes use of information transmitted by the smartphone 
and stored within the central DB. For each subject is created an 
user profile able to maintains all history data. In particular the 
remote DB storage physiological data (HR, RR intervals and 
activity index) and the corresponding stress value extracted with 
physiological surveys. Given the UserID, the TimeStamp, and the 
Session, the ADM retrieve from DB the physiological data 
together with the questionnaires filled by the user about the 
stress level perceived. From these data features are extracted and 
used to train the classification module (training phase). After 
training, the ADM acts as an expert system and provide to the 
corresponding user the StressLevel automatically extracted after 
training of the classification module (testing phase). 

The ADM acts asynchronously in respect to the sensor data 
collection process. At fixed time intervals, the new sensor data 
belonging to each subject are collected and a feature extraction 
process takes place in order to create a structured dataset. 
Classification module is trained and validated with most relevant 
features for automatic stress assessment.  

4.2.2 Feature extraction 

Once the data are sent to the remote server, concerning the 
RR intervals collected over time, the parts of the signals with 
artifacts are discarded and HRV features are extracted according 
to the traditional approach proposed by the International 
Guidelines of HRV [42], [43] to estimate cardiac vagal and 
sympathetic activities as markers of the autonomic interaction 
using a Data Exchange module (Figure 2). In time domain were 

 

Figure 2. Data Exchange module.  
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extracted statistical indices from RR time series such as mean 
(mRR), standard deviation (σRR), root mean square of successive 
differences of intervals (RMSSD), difference between the longest 
and shortest RR intervals, and the number of successive 
differences of intervals which differ by more than 50 ms 
(pNN50% expressed as a percentage of the total number of 
heartbeats analysed), while in frequency domain are extracted 
parameters for each frequency band, low frequency (LF: 0.03-
0.15 Hz) and high frequency (HF: 0.15-0.40 Hz), included 
absolute powers, peak frequencies (Max LF and Max HF) and 
the LF/HF power ratio that measure the global sympathetic-
parasympathetic equilibrium. In particular, above the threshold, 
the curve reveals sympathetic dominancy, below the threshold, 
the parasympathetic influence is dominant. 

These features are extracted using an estimation of the Power 
Spectral density (PSD) analysis according to the Burg spectral 
estimation [51], where the optimal order p was estimated 
according to the Akaike information criterion [52]. The power of 
each band is normalized in respect to the total power of the 
spectrum. Also a nonlinear parameter was extracted, i.e. the 
Poincaré Plot a useful tool to investigate and combine the 
differences of the cardiac rhythms during the performed tasks. It 
is a graphical representation created by plotting all RR(n) on the 
x-axis versus RR(n+1) on the y-axis. Then, the data are fitted 
using an ellipse projected according the line of identity and 
extracting the two standard deviations (SD) respectively [53] as 
shown in Figure 3. 

4.2.3 Classification module 

The classification module is based on machine learning (ML) 
models, such as artificial neural networks (ANN), based on 
inductive inference [54]. We decided to use ML model to cope 
with the non-linear and complex relations between the 
monitored parameters and the stress level prediction (Table 4). 
Artificial Neural Networks (ANNs) are particularly suited for 
solving such problems. They are biologically inspired 
computational models, which consist of a network composed of 
artificial neurons. For the implementation of ML for stress level 
detection a number of steps are needed:  

• Initialization of parameters of implemented ML model. 
• Training: the model is trained with the features extracted and 

selected to adapt itself to classify the given inputs. The loaded 

features, along with self-reported stress levels, generate the 

training set. The self-reported stress levels are collected 

during the training phase, in which the participant is 

prompted at random times during the day with a survey 

including five items (see Section 5.1.2) that allows the user to 

self-evaluate, on a Likert scale, perceived levels of stress, 
following a protocol described in Section 4.1.3. By matching 

this psychological “ground truth” with sensor data, synaptic 

weights of networks internal connections are modified in 

order to force the output to minimize the error with the 

presented example (in this case the stress level obtained from 

survey). In this step the architecture of the model and its 
hyper-parameters are optimized. The examples labelled with 

the stress-level are used to create a personalized stress 

prediction model. 

• Validation: the model adequately trained, is able to classify 

the given input in order to present a consequent output value: 

the value obtained, is the inferred stress level. It is validated 
in order to guarantee good predictive properties. 
During the analysis decision module fine-tuning design, we 

decided to develop a self-organizing maps (SOM) integrated with 
fuzzy rules. The SOM is a network structure which provides a 
topological mapping [55]-[57]. The main difference with the 
artificial neural network is that it is based on unsupervised 
learning. It is composed of two-dimensional layer in which all the 
inputs are connected to each node in the network (Figure 4). 

A topographic map is autonomously organized by a cyclic 
process of comparing input patterns to vectors at each node. The 
node vector to which inputs match is selectively optimized to 
present an average of the training data. Then all the training data 
are represented by the node vectors of the map.  Starting with a 
randomly organized set of nodes, and proceeding to the creation 
of a feature map representing the prototypes of the input 
patterns, the training procedure is as follows: 

1. Initialization of the weights wij(1 ≤ i ≥ nF, 1 ≤ j ≥ m) to 
small random values, where nF is the total number of 

selected features (input) and m is the total number of nodes 

in the map. Set the initial radius of the neighbourhood 

around node j as Nj(t). 

2. Present the inputs x1(t), x2(t) . . . . . xnF(t), where xi(t) is the 

ith input to node j at time t. 
3. Calculate the distance dj between the inputs and node j by 

the Euclidean distance to determine j* which minimizes dj: 

𝑑j = ||𝑊j(𝑡) − 𝑋(𝑡)||   (1) 

Table 4. Features extracted and analysed from the signal. 

No. 
Features 
Extracted 

Measure of Signal 

1 mRR Mean RR interval RR 

2 σRR Standard deviation RR interval RR 

3 RMSSD 
Root mean square of successive 
differences of intervals 

RR 

4 pNN50% 
Number of successive differences of 
intervals which differ by more than 50 ms 

RR 

5 LF 
Spectral estimation of low frequency 
power (0.03-0.15 Hz) 

RR 

6 Max LF Max value of low frequency value RR 

7 HF 
Spectral estimation of high frequency  
power ( HF: 0.15-0.40 Hz ) 

RR 

8 Min HF Max value of high frequency value RR 

9 LF/HF Spectral estimation of power ratio RR 

10 SD1, SD2 Standard deviations of Poincarè plot RR 

11 SMA Signal magnitude area Acc. X,Y,Z 

 

Figure 3. SD1 and SD2 of Poincarè plot observed for a portion of RR interval 
analysed.  
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Every node is examined to calculate which one's weights 
are most like the input vector. The winning node is 
commonly known as the Best Matching Unit (BMU). The 
radius of the neighborhood of the BMU is then calculated. 
This is a value that starts large, but diminishes each time-
step. Any nodes found within this radius are deemed to be 
inside the BMU's neighborhood. 

4. Update the weights wij of the winning neuron j* and of its 

neighborhood neurons Nj*(t) at the time t, for the input 

vector X, are modified according to the following equation 
(2) to make them more like the input vector:  

𝑤ij(𝑡) =  𝑤ij(𝑡 − 1) + 𝛼(𝑡)[𝑋(𝑡) − 𝑤ij(𝑡 − 1)] , (2) 

where α(t) is the learning rate. Both α(t) and Nj*(t) are 
controlled so as to decrease in t. 

If the process reaches the maximum number of iterations, 
stop; otherwise, go to (2). At the end of the training process, for 
each input variable xi we generated the fuzzy membership 
function using triangular functions with the centre in the 
corresponding weight wij of the map and the corresponding 
variance vij, where i is the ith input and j represents the jth node 
of the map. The centers of the triangular membership functions 
in the ith input are (wi1 wi2 ..... wim). The corresponding regions 
were set to [wi1-2vi1, wi1+2vi1], [wi2-2vi2, wi2+2vi2],…, [wim-2vim, 
wim+2vim], where m is the last node of the map. 

We developed membership functions and fuzzy rules for each 
HRV parameter, including heart rate and motion activity.In order 
to reduce the number of  fuzzy rules and to improve the system 
reliability, narrowly separated regions were combined to become 
a single region. Let the positions of  the four corners of  region j 
be llj, lhj, rhj and rlj (for a triangular membership function, lhj = 
rhj). Two neighboring regions j-1 and j were merged if  they 
satisfied the following equation (3): 

𝑙ℎj + 𝑟ℎj

2
−

𝑙ℎj−1 + 𝑟ℎj−1

2
≤ 𝑡ℎ𝑟 , (3) 

where thr is pre-specified threshold (set to 0.1 in our 

experiments). This process continued until all regions were well 

separated in terms of  the threshold. Accordingly, some fuzzy 

regions had trapezoidal shapes instead of  triangular ones as is 

shown in Figure 5. 

After that, we generated fuzzy rules as a set of  associations 
of  the form “if  antecedent conditions hold, then consequent 
conditions hold”. Each feature was normalized to the range of  
[0.0,1.0] and each region of  fuzzy membership function was 
labeled as R1, R2,…RN. An input was assigned to the label of  a 
region where the maximum membership value was obtained. In 

particular we adopted the method proposed by Wang et al. [56] 
where each training sample produced a fuzzy rule. An example 
of  rule generated is: IF feature1 is R1 AND  feature2 is RN  
AND  feature3 is R2  AND  feature4 is R3 AND  feature5 is R6, 
AND  feature6 is R8 …. AND feature M is R3THEN it is 
Medium Stress level. 

Finally, the number of  all the fuzzy rules was the same order 
of  the training samples. The problem was that a large number of  
training patterns may lead to repeated or conflicting rules. To 
deal with this problem, we recorded the number of  rules 
repeated during the learning process. Those rules supported by 
a large number of  examples were saved. A centroid 
defuzzification formula was used to determine the output for 
each input pattern:  

𝑍 =
∑ 𝐷p

i  𝑂ik
i=1

∑ 𝐷p
ik

i=1

 , (4) 

where Z is the output, k is the number of  rules, Oi is the class 

generated by rule i and Di
p measures how the input vector fit the 

ith rule. Di
p is given by the product of  degrees of  the pattern in 

the regions which the ith rule occupies. The output is within [0,5] 

for numeral recognition of  stress level (0=unknown, 1=low 

stress, 2=mild stress, 3=elevated stress, 4=high stress, 5=severe 

stress). The output Z was adapted taking the nearest smaller 

integer value. Fuzzy rules do not necessarily occupy all fuzzy 

regions in input space. There could be some regions where no 

related rule exists. This is the case when the denominator in 

equation (4) is zero. We label the corresponding input stress level 

as unknown. After training the model was designed to be able to 

discriminate until 6 different classes during test phase with the 

trained fuzzy classifier. 

For each user, the DSS is trained on the basis of  the 
evaluation of  the stress level supplied by the surveys, being such 
data collected by the mobile application and transmitted to the 
database. As the DSS training is completed, the DSS acts as an 
expert system, supplying the stress level information for each 
patient as new sensor data becomes available within the database 
(Figure 6).  

 

 

Figure 4. Generation of the fuzzy membership function for the ith input. The 
number of triangular functions is the equal to the SOM nodes.  

 

Figure 5. Trapezoidal function obtained for neighboring regions.  
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4.3 Mobile visualization module 

After data collection, the mobile application can poll the stress 
level report from the remote database provided by the analysis-
decision module (see section 5.2) at definite time intervals, or at 
user’s request. The StressTracker visualization component of the 
mobile application provide the user with a graphic visualization 
of measured stress events. This information is visualized by the 
StressTracker (Figure 7, right) which shows the number of 
detected stressful events over the course of last day, week, or 
month respectively.  

5. CROSS VALIDATION 

In order to check the stress detection capability of the 
personalized model, the performance of the classification task 
was evaluated using the leave one out cross validation process 
(LOOCV), where each fold consists of one session of data 
acquisition left-out. This method is an iterative process in which 
one session is recruited into the dataset each time for validation. 
The SOM classifier combined with fuzzy rules was trained using 
the remaining data and validated on the single, left-out validation 
point. This ensures that the validation is unbiased, because the 
classifier does not see the validation input sample during its 
training. One by one, each available session for each subject was 
recruited for validation. The performances of the system were 
assessed by using the confusion matrix, in which the generic 
element i,j indicates how many times (in mean percentage ± SD) 

a pattern belonging to the class i was classified as belonging to 
the class j. 

5.1 Cross validation results 

The system is able to recognize the presence of stress in the 
selected population. In particular, the results obtained with three 
subjects are reported in Table 5. The mean ± SD percentages of 
the confusion matrices obtained with the first subject are 
reported in Table 5A. The model correctly identifies the presence 
of stress with percentage of correct classifications of 89.0 % and 
the absence of stress with percentage of correct classifications of 
86.6 %. The mean ± SD percentages of the confusion matrices 
obtained with the second subject are reported in the Table 5B. 
The model correctly identifies the presence of stress with 
percentage of correct classifications of 66.6 % and the absence 
of stress with percentage of correct classifications of 70.0 %. 

The mean ± SD percentages of the confusion matrices 
obtained with the third subject are reported in Table 5C. The 
model correctly identifies the presence of stress with percentage 
of correct classifications of 95.7 % and the absence of stress with 
percentage of correct classifications of 73.0 %. These results 
demonstrate the high discriminatory power of the system. 

6. CONCLUSION 

We described the design, key functional features and 
preliminary validation of a personalized system for monitoring 
stress in naturalistic environments. The original contribution of 
this work concerns the development of a new methodology, 
which allows to use subjective evaluation of potentially stressful 
situations in the calibration and training of the classification 
system. In particular, incorporating self-reported psychological 
data in the system knowledge base allows for a more 
comprehensive and personalized definition of the stress 
response as measured by HRV indices. An objective of future 
research is to validate the accuracy of the personalized stress 
detection model against other physiological markers, i.e. salivary 
cortisol collected during daily life activities.  
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Figure 6. Architecture of the automatic Stress classification module.  

Table 5. Confusion Matrixes. 

A. The confusion matrix obtained with the first subject: 

 Stress No stress 

Stress 89 ± 6.2 11 ± 2.1 

No stress 13.3 ± 3.6 86.6 ± 5 

B. The confusion matrix obtained with the second subject: 

 Stress No stress 

Stress 66.6 ± 11 33.3 ± 6.7 

No stress 30 ± 3.1 70 ± 5.9 

C. The confusion matrix obtained with the third subject: 

 Stress No stress 

Stress 95 ± 3.3 5 ± 4.6 

No stress 26 ± 3.1 73 ± 8.2 

 

Figure 7. On the left side is reported the current stress level of the user, while 
on the right side are reported the stressful events detected over the last 
week.  
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