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1. INTRODUCTION 

Human-building interaction is an essential subject studied in 
the last decades, aimed at ensuring the occupants’ wellbeing and 
the correlated influence on buildings’ energy consumption. An 
important aspect of the built environment is indoor thermal 
comfort and its impact on occupants. From the 1970s, different 
thermal comfort models have been introduced. Firstly, the two-
node model [1] was presented by J. B. Pierce, which represents 
the human body into two-layer: skin and core. Each layer is a 
heat transfer node with thermal physiological parameters 
controlled by energy and mass conservation low. Then, Fanger 
[2] proposed the Predicted Mean Vote (PMV) model to predict 

the thermal comfort of a large sample of individuals. In the last 
3 decades, the adaptive model was widely used [3]. It is based on 
findings from the simultaneous collection of data on the thermal 
environment and thermal response of subjects, to determine the 
indoor thermal states, and the influencing parameters, that satisfy 
occupants’ sensations. The resulting adaptive models provide 
experimental relationships between the thermal comfort 
temperature and the outdoor air temperature. However, neither 
of those models encompass the personal physiological and 
psychophysics influence on the individual thermal perception. 
The concept of the personal comfort model has been introduced 
as a novel approach to predict individual-specific thermal 
comfort based on the measurements of environmental 
quantities, occupants’ behaviour, and physiological responses. 

ABSTRACT 
Multidomain comfort theories have been demonstrated to interpret human thermal comfort in buildings by employing human-centered 
physiological measurements coupled with environmental sensing techniques. Thermal comfort has been correlated with brain activity 
through electroencephalographic (EEG) measurements. However, the application of low-cost wearable EEG sensors for measuring 
thermal comfort has not been thoroughly investigated. Wearable EEG devices provide several advantages in terms of reduced 
intrusiveness and application in real-life contexts. However, they are prone to measurement uncertainties. This study presents results 
from the application of an EEG wearable device to investigate changes in the EEG frequency domain at different indoor temperatures. 
Twenty-three participants were enrolled, and the EEG signals were recorded at three ambient temperatures: cold (16 °C), neutral (24 °C), 
and warm (31 °C). Then, the analysis of brain Power Spectral Densities (PSDs) was performed, to investigate features correlated with 
thermal sensations. Statistically significant differences of several EEG features, measured on both frontal and temporal electrodes, were 
found between the three thermal conditions. Results bring to the conclusion that wearable sensors could be used for EEG acquisition 
applied to thermal comfort measurement, but only after a dedicated signal processing to remove the uncertainty due to artifacts. 
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The usage of different physiological signals has been discussed 
in the literature, in the field of thermal comfort measurements. 
Four of them have been identified as highly correlated with the 
perceived thermal comfort: electroencephalogram (EEG), 
electrocardiogram (ECG), skin temperature (ST), and galvanic 
skin response (GSR), being a part of different processes involved 
in the thermoregulatory system activities [4]. Several studies 
evaluated the thermal status of individuals acquiring different 
physiological signals simultaneously, but analysed them 
separately [5]. Only a few of those provide a regression equation 
that relates physiological parameters to each other [6].  

In addition, wearable sensors, for measuring real-time 
physiological signals, have been assessed as a promising 
technology in the field of personal thermal comfort estimation 
[7]. Among physiological signals, measurable via wearable 
devices, the EEG has instigated interest, in the field of thermal 
comfort, for the possibility to monitor the human physiological 
responses changes in real-time [8]. 

Generally, the brain’s electrical activity changes in response to 
the process of perception and cognition of environmental 
stimuli. EEG represents the measure of voltage fluctuation 
resulting from ionic current within the neurons of the brain [9]. 
Brainwaves are detected using sensors placed on the scalp 
according to the 10-20 system [10]. They are divided into 
bandwidths. Each of those corresponds to a particular state of 
mind. In general, delta (0.1 Hz – 4 Hz) is associated with deep 
sleep, theta waves (4 Hz – 7.5 Hz) are related to consciousness 
sleep towards drowsiness, alpha waves (7.5 Hz – 12 Hz) are the 
prominent rhythm in relaxing and passive attention activities, 
beta (12 Hz – 30 Hz) is associated with active thinking and 
gamma waves (30 Hz – 45 Hz) are prominent during high 
mental activities. 

Recent studies showed how EEG power spectral densities 
(PSDs) were influenced by changes in environmental 
temperature. Lv and colleagues [11] correlated the EEG 
frequency bands to the neutral and warm air temperatures. They 
showed higher delta-band activity in the warm condition. Yao 
and colleagues [10] measured EEG signals from 20 subjects 
exposed at low, neutral, and high temperatures, showing that the 
relative EEG power of the beta band was significantly higher in 
the cold and warm environment compared with the neutral 
condition. Lim et al. [12] found a connection between the EEG 
and thermal comfort, alpha/beta ratio (RAB) increased in a 
comfortable environment, the opposite trend was highlighted by 
the relative beta (RB). Other studies [12], [17] revealed how EEG 
frequencies change in conjunction with body temperature 
variations and how the ambient temperature influences EEG 
PSDs. Son et al. [13] investigated a correlation between 
psychological and physiological measures to evaluate thermal 
comfort. Their results showed an increase of theta band and a 
decrease of the beta band according to the thermal pleasure. Wu 
et al. [14] classified thermal comfort under different conditions, 
showing an increase of delta and a decrease of beta power in a 
warm environment. Zhu [15] examined changes in EEG 
responses during cognitive activity at different air temperatures. 
Findings indicated a high value of relative delta and a low value 
of relative theta, alpha, and beta at high temperatures. In the 
above-mentioned EEG studies, measurements were performed 
using a traditional cap or medical devices; these devices can 
provide good quality of data, but they require a long time of 
applications and often they are perceived as unpleasant by the 
users. Moreover, they are not applicable in a real-life context. 
Such issues could be solved by the advent of wearable sensors. 

They offer several advantages: they are low cost, simple to be 
used, their comfortable design allows to reduce the time of 
application and, more importantly, they considerably attenuate 
the obstructiveness of measurements, making the experimental 
time not unpleasant for the participants. However, they are 
strongly prone to collect environmental noise and artifacts due 
to subject movements (e.g., eyeblink, muscular artifacts), which 
means that acquired data need to be processed before they 
became reliable for thermal comfort measurement [21]. Several 
studies performed a metrological characterization of wearable 
devices for testing their accuracy. Arpaia et al. [8] proposed a 
human stress detection method based on EEG signal acquired 
by a highly wearable single channel instrument. The results of 
their study demonstrated that the four standard machine learning 
(ML) classifiers used, reached more than 90 % of accuracy in 
distinguishing stress conditions of participants. In another study, 
Arpaia and colleagues [16] present the calibration and the 
metrological characterization of a low-cost wearable device 
(Olimex EEG-SMT). Preliminary calibration results showed 
good linearity, however, a magnitude of error around 8 % with a 
dependence on frequency was detected. In general, studies 
revealed how the commercial low-cost wearable devices used in 
conjunction with ML classifiers in an experimental context, can 
reach an accuracy between 83.3 % and 99.1 % [17]. Thus, 
findings revealed that EEG wearable sensors can provide the 
required accuracy for the classification of human mental states. 

This paper presents the application of EEG wearable sensors 
for thermal comfort measurement. The experimental protocol, 
the signal processing procedure, and the statistical analysis are 
illustrated together with results from the measurement campaign 
performed in a controlled environment. Results demonstrate the 
feasibility of the proposed approach, that could be used to build 
personalized comfort models based on EEG measurement. 

2. MATERIALS AND METHODS 

2.1. EEG data collection and processing 

2.1.1 EEG measurement device 

In this study, the EEG signal acquisition was done using a 
commercial wearable device: the Interaxon MUSE headband 
[18]. The reference electrode FPz (CMS/DRL) is located on the 
forehead, the input electrodes are two front (left and right of the 
reference: AF7, AF8, silver made) and two posteriors, above each 
ear (TP9 and TP10, conductive silicone -rubber) (Figure 1). The 
device acquires signals at 256 Hz sampling frequency. 

Raw EEG data were collected using the MUSE application 
[19], paired with a smartphone through Bluetooth Low Energy 
(BLE). However, the reliability of MUSE can be questioned. The 
limited number of electrodes can preclude the multi-networks 

 

Figure 1. a) MUSE 2 headband sensors overview. b) Top-down view of the 
EEG electrode positions on the subject’s head.  
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evaluation from being focused on a specific area of the brain. 
The frontal electrodes are more prone to collect eye-blink and 
movement artifacts, and they can disrupt the measurements of 
actual brain waves [4]. Dry electrodes may also be more prone to 
result in discomfort over time and pose a higher risk of 
misplacement on the forehead, resulting in lower accuracy of the 
signal acquired. In addition, certain head shapes, head sizes, and 
hairstyles made data collection difficult, the poor contact with 
the head surface does not allow a proper data acquisition [20], 
[21]. Nevertheless, many studies demonstrated its ability to be 
applied in research experimental context. Krigolson et al. [18] 
demonstrated that MUSE can be used successfully for Event-
Related Potential (ERP) study applications. They tested the 
reliability of ERP data collected with MUSE using a resampling 
analysis, obtaining reliable ERP components with MUSE 
(especially the N200) with a minimal number of participants. 
Youssef et al. [22], in their study for lies detection using MUSE, 
showed great success in their experimental purpose. Ratti and 
colleagues [23] compared EEG medical devices with consumer 
MUSE portable devices. This study demonstrated that MUSE 
PSDs were similar to medical systems, but with higher variation 
(the power spectral ratio was between 0.975 and 1.025 for 
medical equipment, ratios between 1.125 and 1.225 for MUSE). 
This broadband increase in the power spectrum of MUSE data 
may reflect artifacts in data recorded by dry electrodes. However, 
MUSE is simple to set up, the applicability is quick (less than 10 
min) and simple, which is significantly convenient for the self-
help applications.  

2.1.2 EEG data processing 

EEG recording is prone to collect noise and physiological 
artifacts, such as eye blinking, movements, and non-physiological 
artifacts such as electrical interference. Therefore, it is very 
essential to apply processing and denoising to the recorded EEG 
data. Based on the literature background, a processing custom 
code was implemented to filter and isolate the signal of interest: 
notch filter was used for removing the power line noise 

(50/60 Hz), a high-pass filter at 0.1 Hz to remove DC offset and 
low-frequency skin potential artifacts, a low-pass filter at 45 Hz 
to remove high-frequency noise [24]. The independent 
component analysis (ICA), which decomposes the signal into 
maximally independent components and artifacts components, 
was applied. After a visual inspection, the eyeblink component 
was removed, and the data were reconstructed (Figure 2). 
Epochs of 2.000 ms with 1.000 ms overlap were extracted from 
artifacts-free continuous data. Then the power spectrum analysis 
(PSD) was computed using a pwelch function with Hamming 
256-samples window, with 50 % overlap. The output was 
normalized using the Z-score normalization method. 

2.1.3 EEG features extraction 

To establish the correlation between EEG frequency bands 
and the subjective thermal sensation, retrieved through a 
questionnaire, the features extraction was performed. The output 
of pre-processing step represents the five major brain waves in 
the different frequency ranges: delta, theta, alpha, beta, and 
gamma waves.  

Once the five brain waves were computed the main EEG 
features were calculated, based on their relevance in the context 
of the thermal comfort assessment using EEGs.  

2.2. Experimental campaign  

2.2.1 Participants 

Twenty-three healthy volunteers were enrolled for the 
experiment. They were informed about the experimental 
protocol and data management. Collected data were 
anonymized. Two experimental sessions were conducted during 
wintertime from January to February 2021, and summertime in 
July 2021. The selected group included 9 males and 14 females. 
All volunteers were local students at the ‘’University of Perugia’’, 
where the experiment took place. None of them had a 
pathological history. Personal information was collected with a 
survey filled by all subjects at the end of each test. Table 1 
summarizes the information about the participants involved in 

 

Figure 2. Normalized EEG data before eyeblink component removal; Corrected EEG data after eyeblink component removal and all the components estimated 
by ICA are reported. Component 3 was rejected.  
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the campaigns: range of ages, mean and standard deviation (std) 
of height and weight. The average clothing thermal insulation 
was 1.1 clo and 0.43, typical for wintertime and summertime 
respectively. The metabolic rate of participants was 1.1 met 
according to standard ISO 7730 [25]. The second part of the 
survey aims at collecting data about thermal perception. In 
particular, the sensation vote for each thermal condition is given 
through a 5-points scale going from -2 to 2, where 0 corresponds 
to neutrality. 

2.2.2 Experimental setup: the controlled test room 

The experiments were carried out in the NEXT.ROOM 
(4 × 4 × 2.7 m3), a novel test room built up at the Engineering 
campus of Perugia University (Italy) for human-comfort studies. 
The NEXT.ROOM ambient temperature was controlled 
through the installed Heating, Ventilation & Air Conditioning 
(HVAC) system based on a heat pump with an inverter and 
providing four levels of fan speed. The room has a window that 
was shaded during all the tests of the experimental campaign here 
described, while the internal level of illuminance was kept 
constant thanks to the installed artificial lighting system.  

The environmental parameters inside the NEXT.ROOM 
were continuously monitored employing a fixed microclimate 
station located in the centre of the room and the associated data 
logging system [26]. Table 2 provides information about the 
sensors installed in the test room, their accuracies, and the 
environmental boundaries monitored during cold (16 °C), 
neutral (24 °C), and warm (31 °C) tests accounting for both the 
winter and summertime series. 

2.2.3 Experimental setup: environmental condition 

During the experiments (both winter and summer seasons) 
the air velocity was always below 0.1 m/s, the relative humidity 
of air was not dependently controlled, while the air temperature 
was set at 16 °C (cold), 24 °C (neutral), and 31 °C (warm) 
according to the thermal sensation perceived by the participants 
collected with the survey (Table 3). 

A specific schedule for the experiment was adopted. The 
measurements were done from 10:00 a.m. to 1:00 p.m. and from 
3:00 p.m. to 6:30 p.m. Subjects were asked to sit down and keep 
relaxed; no activity was allowed. The experimental procedure was 
carried out sequentially for 2 days for each thermal condition, in 
both seasons. Each experiment lasted 20 min, 15 min for thermal 

adaptation (the previous study affirmed that people need 15 min 
to adapt to a new environment [27]), and 5 for recording data. 
(Figure 3). 

3. RESULTS 

The capability of discriminating the cold, warm and neutral 
sensations starting from the portable EEG measurements was 
evaluated in terms of statistical significance between brain waves 
features. 

EEG features were divided into three groups (cold, neutral, 
and warm) according to the thermal sensation scores expressed 

by the participants in the questionnaire. Mean (𝑓)̅ and standard 

uncertainty of the mean (𝑢𝑓) of each feature was then calculated 

according to [28].  
The normality of each group of features was evaluated with 

the Shapiro test [29]. Given that all groups presented a non-
gaussian distribution, the statistical significance was determined 
with the non-parametric Kruskal-Wallies test [30]. Table 4 
reports the features that turned out to provide a significant 
statistical difference (p-value < 0.05). The results showed how 
brain activities were altered by the thermal sensation perceived 
by occupants to the different environmental temperatures they 
were exposed to. In particular, the outcomes revealed that EEG 
features connected to high-frequency bands, such as beta and 
gamma for both frontal and temporal electrodes, tended to 
decrease with a warm sensation. Instead, features that express the 
mean power of low-frequency bands registered an opposite trend 
(Alpha-beta ratio AF8, Relative alpha TP9, Theta beta ratio 
AF8). 

The capability of a feature to discriminate between two 
different thermal conditions was further investigated with a post-
hoc analysis based on the Dwass-Steel-Critchlow-Fligner 
pairwise comparison test [31]. Results from the test are reported 
in Table 5. The pairwise comparison results demonstrated that 

Table 1. Details of the subjects participating in experiments. 

Information Details 

Total number of subjects 23 (9 males and 14 females) 

Age (min-max)  (27 - 32) years 

Height (mean ± std) (162 ± 12) cm 

Mean of Weight (mean ± std)  (50.7 ± 15.3) kg 

Table 2. Technical information of the sensors for environmental parameters 
monitoring 

Sensor Environmental parameter Accuracy 

Thermal-hygrometer 
Air temperature, °C 

Relative Humidity, % 
± 0.1 °C 
± 1.5 % 

Black globe radiant 
temperature sensor 

Mean radiant 
Temperature, °C 

± 0.15 °C 

Hotwire anemometer Air velocity, m/s ± 0.05 m/s 

CO2sensor CO2 concentration, ppm ± 50 ppm (+ 2 %) 

Luxmeter Illuminance, lx ± 5 % 

 

Figure 3. Measurements of EEG signals with Muse headband Interaxon in 
climate chamber. A facial mask was not used during the experiments.  

Table 3. Mean values and std of environmental parameters monitored in the 
climate chamber during the experimental sessions. 

Measured Parameters Cold Neutral Warm 

Air temperature, °C 16.7 ± 0.3 24.3 ± 0.5 31.4 ± 0.5 

Relative humidity, % 25.9 ± 0.5 20.1 ± 0.2 18.2 ± 0.4 

Air velocity, m/s 0.1 ± 0.02 0.07 ± 0.04 0.09 ± 0.03 

Mean radiant temperature, °C 16.4 ± 0.6 23.9 ± 0.5 30.2 ± 0.4 

CO2 concentration, ppm 487 ± 12 492 ± 4 502 ± 6 

Illuminance, lx 287 ± 22 290 ± 25 281 ± 23 
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all the features (except for Alpha-beta ratio TP9, Beta TP10, and 
Gamma TP9) were different between cold and warm thermal 
sensations. Beta AF8, Gamma AF8, and Relative beta AF8 also 
showed differences between neutral and warm conditions, as 
shown in Figure 4. None of the measured features showed 
differences between cold and neutral thermal sensations. 

In general, EEG measurements performed with the portable 
device showed a correlation with the thermal sensations in terms 
of increase or decrease of power of brain waves. The warm 

sensation could be correlated to an increase of alpha and theta 
waves, indicating that when subjects are exposed to a warm 
environment tend to be less concentrated and unable to keep 
focused. On the other hand, in cold conditions, there is an 
increase in the activity of beta and gamma waves, which are the 
main brain waves connected to high mental activity. At the same 
time, high levels of beta and gamma can be synonyms of high 
stress, indicating that the cold condition is perceived as more 
stressful than the warm one. Results obtained with the MUSE 
turned out to be aligned with the state of the art concerning 
thermal comfort measurements based on EEG data.  

4. CONCLUSIONS 

As it is already known the prominence of an EEG frequency 
band is correlated to a certain type of mental state. For example, 
the high power of gamma waves corresponds to high mental 
activity, vice versa dominant alpha corresponds to relaxed 
conditions. Some studies revealed that EEG theta waves 
increased while beta waves decreased with a comfortable thermal 
state, others showed that high values of theta band correspond 
to a high state of arousal level and vice versa. All studies have 
been performed with medical and non-portable devices, 
providing accurate EEG measurements, but with poor 
wearability and not applicable in real-life situations. For this 
reason, the proposed study aims at demonstrating whether a low-
cost portable EEG device (MUSE) could be used to perform 
thermal comfort measurements, providing better wearability but 
with lower measurement accuracy. The experiments were 
performed in a controlled environment, where EEG was 
measured on 23 subjects exposed to warm, neutral, and cold 
conditions. Considering the different thermal sensations 
perceived by subjects exposed to the same environmental 
condition, before performing the statistical analysis, the 
physiological features were divided and classified according to 
the thermal sensation questionnaire-based results into cold, 

Table 4. Mean feature (𝑓̅), standard uncertainty of the mean (u), H-statistic, and the significative p-value (p-value<0.05) for each of the statistically significant 
EEG features are reported. 

EEG features 
𝒇 ̅ ± 𝒖𝒇 

(Cold) 

𝒇 ̅ ± 𝒖𝒇 

(Neutral) 

𝒇 ̅ ± 𝒖𝒇 

(Warm) 
H-statistic p-value 

Alpa beta ratio TP10 1.2 ± 0.08 1.3 ± 0.07 1.3 ± 0.07 3.3 0.04 

Alpha beta product TP9 in dB 1.3 ± 0.12 1.5 ± 0.14 1.6 ± 0.10 8.1 0.02 

Alpha beta product AF8 in dB 0.1 ± 0.05 0.1 ± 0.03 0.1 ± 0.02 8.2 0.02 

Beta AF8 in dB 0.4 ± 0.10 0.3 ± 0.07 0.1 ± 0.06 13.9 0.001 

Beta TP9 in dB 0.5 ± 0.05 0.0 ± 0.09 0.4 ± 0.5 5.3 0.006 

Gamma AF7 in dB 0.1 ± 0.09 0.1 ± 0.05 -0.1 ± 0.09 6.7 0.03 

Gamma AF8 in dB 0.1 ± 0.1 0.0 ± 0.06 -0.1 ± 0.07 12.4 0.002 

Gamma TP10 in dB 0.2 ± 0.06 0.2 ± 0.02 0.1 ± 0.04 7.9 0.02 

Gamma TP9 in dB 0.2 ± 0.07 0.1 ± 0.05 0.1 ± 0.05 8.9 0.01 

Relative Alpha TP9 0.3 ± 0.17 0.3 ± 0.02 0.3 ± 0.07 10.3 0.006 

Relative Beta AF8 0.3 ± 0.06 0.3 ± 0.05 0.1 ± 0.07 16.9 < 0.001 

Relative Gamma TP10 0.1 ± 0.02 0.1 ± 0.01 0.1 ± 0.02 6.1 0.04 

Relative Gamma TP9 0.1 ± 0.03 0.0 ± 0.02 0.0 ± 0.03 4.8 0.09 

Relative Theta AF8 0.1 ± 0.06 0.1 ± 0.05 0.2 ± 0.07 9.2 0.01 

Temporal Asymmetry Alpha in 
dB 

0.1 ± 0.03 0.0 ± 0.02 0.0 ± 0.02 4.5 0.01 

Temporal Asymmetry Delta in 
dB 

0.1 ± 0.03 0.0 ± 0.03 0.0 ± 0.02 6.7 0.03 

Temporal Asymmetry Theta in 
dB 

0.1 ± 0.03 0.0 ± 0.4 0.0 ± 0.03 8.7 0.01 

Theta beta ratio AF8 -0.3 ± 0.71 0.1 ± 0.24 2.3 ± 2.31 7.2 0.02 

Table 5. Dwass-Steel-Critchlow-Fligner pairwise comparison between cold 
(c), neutral (n), and warm (w) thermal sensation results (* for p-value < 0.05). 

EEG features 
c-n 

(p-value) 
c-w 

(p-value) 
n-w 

(p-value) 

Alpa beta ratio TP10 0.3 0.1 0.7 

Alpha beta product TP9 in dB 0.2 0.01* 0.6 

Alpha beta product AF8 in dB 0.5 0.02* 0.1 

Beta AF8 in dB 0.5 0.001* 0.03* 

Beta TP9 in dB 0.1 0.02* 0.9 

Gamma AF7 in dB 0.2 0.04* 0.6 

Gamma AF8 in dB 0.5 0.003* 0.04* 

Gamma TP10 in dB 0.5 0.02* 0.3 

Gamma TP9 in dB 0.1 0.2 0.8 

Relative Alpha TP9 0.1 0.004* 0.5 

Relative Beta AF8 0.9 0.004* 0.001* 

Relative Gamma TP10 0.4 0.04* 0.6 

Relative Gamma TP9 0.2 0.02* 0.3 

Relative Theta AF8 0.6 0.2 0.007* 

Temporal Asymmetry Alpha in dB 0.5 0.02* 0.2 

Temporal Asymmetry Delta in dB 0.3 0.02* 0.6 

Temporal Asymmetry Theta in dB 0.6 0.01* 0.2 

Theta beta ratio AF8 0.2 0.03* 0.4 
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neutral, and warm groups. This approach allows investigating the 
thermal perception of occupants overcoming the limits due to 
the different nationalities and personal thermal history, focusing 
on just the perception felt by the subjects during experiments. 
Results showed that all the EEG features calculated presented a 
statistical difference between cold and warm sensations. Beta 
AF8, Gamma AF8 and, Relative beta AF8 showed significant 
differences also between neutral and warm sensations. In general, 
the results demonstrate that MUSE EEG wearable device could 
be used for thermal comfort measurements, discriminating cold 
and warm thermal sensation.  
Due to its comfortable design, the MUSE considerably reduces 
the measurement’s intrusiveness, reducing consequently the time 
of application and discomfort due to wearability. The presence 
of dry electrodes facilitates the recording procedure but, the 
absence of a conductivity gel increases the electrical impedance 
between the dry electrodes and the skin, making the devices more 
prone to register artifacts, such as muscular movements and 
eyeblink, with the risk of reducing the signal-to-noise ratio. 
Therefore, signal processing for data cleaning and artifacts 
removal, based on the approach proposed in this paper, is 
required. In addition, the usage of water solution, to improve the 
conductivity of MUSE electrodes during its application, could 
introduce a further source of uncertainty in the case of long-
lasting experiments. The water evaporation can lead to drifts of 
the measured voltage, resulting in a misleading features 
interpretation. For longer experiments, future investigations are 
required to estimate the measurement uncertainty in the case of 
the usage of portable EEG sensors for real-life applications.  

Nevertheless, for future developments, the idea to study the 
EEG signal in conjunction with other physiological signals, such 
as ECG, ST, and GSR has been considered. This approach could 
allow the generation of comprehensive knowledge about the 
physiological response of the mechanisms involved in the human 
thermoregulatory system. New experimental campaigns will be 
conducted, increasing the number of samples to give consistency 
to the statistical results. An investigation about how the gender 
and age of subjects can affect thermal perception will be 
considered, as an additional aspect of the study. The final scope 
is to identify the most relevant physiological features to be used 
as input for the creation of predictive models, based on ML 
techniques, capable of thermal comfort level classification. 
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