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1. INTRODUCTION 

Currently, the use of wireless communications is very 
common in a wide range of terrestrial devices. In the underwater 
world, wireless information transfer is of great interest to the 
military. It plays an important role in military raids carried out by 
a team of divers. For safety and to coordinate actions, a secure 
and reliable bidirectional communication system is useful. 
Nowadays, underwater wireless communications are 
implemented almost exclusively via acoustic waves due to their 
relatively low attenuation [1], [2]. 

Communication by measuring light waves (Visible Light 
Communication - VLC) is a technology that employments light 
spectra from 400 to 700 nm as data carriers. VLC techniques 
transmit data wirelessly by pulsing visible light. This new 
technology, called Li-Fi, can replace the Wi-Fi connection, based 
on radio frequency waves [3]-[6]. 

Beer’s law is usually utilized to correlate the absorption of 
diffuse light to the properties of the medium through which the 
light is traveling. From a mathematical point of view, we can 
write [7], [8]:  

𝑃(λ, 𝑟) = 𝑃0 ∙ e−𝐾d(λ)∙𝑟  , (1) 

where 𝑃0 is the initial transmitted power, 𝑃(𝜆, 𝑟) is the residual 

power after the light beam with wavelength 𝜆 has traveled the 

distance 𝑟 through the medium with Diffuse Attenuation 

Coefficient 𝐾d(𝜆). Figure 1 shows the attenuation coefficient of 
three typical ocean waters I, II and III and five coastal waters 1, 
3, 5, 7 and 9; the lower numbers correspond to clearer waters. 
The classification corresponding of Jerlov water types [9]-[11]. 

Light with longer wavelengths is absorbed more quickly than 
that with shorter wavelengths. Because of this, the higher energy 
light with short wavelengths, such as blue-green, is able to 
penetrate more deeply. In open ocean, below 100 m depth, only 
blue-green radiation is present [12]. However, the blue 
component of sunlight can also reach depths of up to 1000 m; 
although the quantity is so low that photosynthesis is not allowed 
[12]. Figure 1 shows that the minimal absorption is between 
460 nm and 580 nm; depending on the type of water. Therefore, 
VLC technology is extensively studied as an alternative solution 
for short range underwater communication links [13]-[28]. 

Really, underwater optical wireless communication (UOWC) 
is not a new idea. After the pioneering works of the 1980s [29]-
[31], in 2009, Doniec et al. [32] have developed a 5-meter 

ABSTRACT 
For military divers, having a robust, secure, and undetectable wireless communication system available is a fundamental element. 
Wireless intercoms using acoustic waves are currently used. These systems, even if reliable, have the defect of being easily identifiable 
and detectable. Visible light can pass through sea water. Therefore, light can be used to develop short-range wireless communication 
systems. To realize secure close-range underwater wireless communication, the Underwater Optical Wireless Communication (UOWC) 
can be a valid alternative to acoustic wireless communication. UOWC is not a new idea, but the problem of the presence of sunlight and 
the possibility of using near-ultraviolet radiation (near-UV) has not been adequately addressed in the literature yet. In military 
applications, the possibility of using invisible optical radiation can be of great interest. In this paper, a feasibility study is carried out to 
demonstrate that UOWC can be performed using near-ultraviolet radiation. The proposed system can be useful for wireless voice 
communications between military divers as well as amateur divers. 

mailto:fabio.leccese@uniroma3.it


 

ACTA IMEKO | www.imeko.org December 2021 | Volume 10 | Number 4 | 81 

underwater wireless optical communication link (called 
AquaOptical) with a 1 Mbps data rate. Later in 2015, Rust et al. 
[33] have implemented an UOWC system for use in remote 
controlled vehicles (ROVs) used for the inspection of nuclear 
power plants. In addition, some systems are currently 
commercially available [34]-[37]. Unfortunately, the performance 
of UOWC is currently limited to short range [38]. However, in 
some specific situations, short-range communication is more 
than enough. On the other hand, there are circumstances where 
short range communication is needed without the need for large 
bandwidth. A typical example is the communication between 
divers. 

For communication between divers, the most common form 
is through hand signals [39], and underwater writing slates [40], 
[41]. Figure 2 shows two example of standard diver hand signals 
and a dive slate. 

The dialect of the diver's hand signals includes only plain and 
precise gestures easily identifiable. This allows only simple 
communications and require extensive memorization. On the 

other hand, slates do not allow communication in real time; it 
takes time to write and to attract the attention of the underwater 
partners. 

Recently, full face diving masks with snorkels have been 
introduced that allow the diver to breathe and speak normally 
inside the mask [42], [43]. For this type of masks, reliable 
underwater intercoms have been developed to allow divers to 
talk each other underwater [44], [45]. A transducer is attached to 
the diver's face mask. This transducer converts the voice into an 
ultrasonic signal. Each diver of the team has an ultrasonic 
receiver, which accepts the signal and converts it back to a sound 
that the divers can hear, enabling communication. This type of 
communication system can be used by amateur or professional 
divers. Figure 3 shows two commercially available systems of 
underwater intercoms. 

During military raids with divers, it is very important that the 
various components of the command can communicate with 
each other. Unluckily, hand signs do not allow for complex 
information to be communicated, and the use of dive slate can 
be incompatible with the times. An audio communication is 
essential for complex communications needed in military actions. 

Another key problem in military communications is that they 
must be secure and undetectable. Unfortunately, the acoustic 
waves that travel in water are easily detectable. Therefore, their 
use is not convenient during critical military missions. In this 
scenario, UOWC is a good alternative to acoustic 
communication [46]. It has the advantage that it cannot be 
intercepted. This specific application does not require long range 
and high band communications. Therefore, the usable systems 
can be simple, small, lightweight and with low power. Figure 4 
shows a typical UOWC between divers. The information could 
be transmitted through a special torch and be captured by 
sensors positioned on the diving suit. 

Unfortunately, communications with visible light suffer from 
noise generated by solar background noise or artificial light 
sources. Special precautions must be taken to minimize this noise 
[47]. It would be convenient to implement UOWC systems that 
use optical radiation different from that normal present in water. 

 

Figure 1. Diffuse attenuation coefficient  𝐾𝑑(𝜆) for several oceanic and 
coastal water types according Jerlov classification. Curves obtained from the 
data present in [9]-[11].  

 

Figure 2. Examples of Standard Diver Hand Signals and of a Dive Slate.  

 

Figure 3. Examples of Standard Diver Hand Signals and of a Dive Slate.  

 

Figure 4. Optical communication between divers.  
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In addition, during communications between the military divers 
it would be useful to use light not visible from normal video 
surveillance systems. 

The main purpose of the paper is to verify the feasibility of a 
communication system that can be used by the military divers. 
The system must be simple, robust, consuming few energy and 
not affected by ambient light, and, above all, difficult to detect 
and/or intercept by video surveillance systems sensitive to visible 
radiation. To obtain these performances it is necessary to avoid 
the use of blue-green radiation, present in the solar radiation that 
penetrates into the water. In addition, visible radiation must be 
avoided, which is easily detectable at night by underwater video 
surveillance systems. 

In this paper, an underwater near-ultraviolet light 
communication is proposed. The proposed system uses as 
emitter (Tx) an UV LED with peak wavelength λ = 385 nm and 
half width Δλ = 15 nm. Instead, a photodiode, made with an 
LED like the one used as a transmitter, is used as a receiver (Rx). 
This system is intrinsically low sensitive to ambient light and 
produces an invisible communication channel. Since there are 
video surveillance systems that have good sensitivity in the blue-
green spectral band [48], the use of radiation in the near UV 
allows having a relatively good penetration of the radiation into 
the water and at the same time to be invisible to these video 
surveillance systems. 

The system works well in short range communications where 
large bandwidth is not required. For example, if we are only 
interested to speech transmission, a bandwidth of 32 kbps is 
generally acceptable. With this type of communication, it is 
possible to create simple, small, light, robust and energy efficient 
systems. 

2. UNDERWATER COMMUNICATIONS BY UV-A RADIATION 

A part of the solar radiation spectrum overlaps with the 
radiation commonly used for the Visible Light Communication 
(VLC) [49]. Therefore, it is very difficult to attenuate the effects 
of sunlight without loss of useful signal. In the presence of 
sunlight, the receivers see very high white noise and can often go 
into saturation. To try to solve the problems deriving from solar 
radiation (in general of the ambient lights present), it is possible 
to use near-ultraviolet radiation for the communication channel. 

Generally, solar intensity decreases with depth. By examining 
how light is absorbed in water (see Figure 1), we see that the best 
wavelengths to use in UOWC are 450 nm – 500 nm for clear 
waters and 570 nm – 600 nm for coastal waters. This same 
attenuation is also true for the solar spectrum [50]. In any case, 
at a depth of a few meters, the solar radiation in the near 
ultraviolet is practically absent. Furthermore, in relatively clear 
waters this radiation is relatively poorly attenuated especially in 
ocean waters but less in coastal waters (according to Figure 1). 
For these reasons, submarine communication systems, which use 
UV-A band communication channels, are extremely interesting. 

We must also observe two other important characteristics of 
optical communication that uses the near ultraviolet. This 
communication channel is difficult to detect and intercept, 
particularly attractive feature for military applications. 
Furthermore, the use of ultraviolet radiation allows wireless 
connections to be made without requiring perfect alignment 
between transmitter and receiver (NLOS UV scattering 
communication) [51], [52]. Very useful characteristic for wireless 
transmission between moving objects. 

3. LED USABLE AS LIGHT DETECTOR 

In addition to emitting light, LEDs can be employed also as 
light sensor/detector [53]-[60]. Figure 5 schematically, shows this 
application In addition, the LED can also be used as a 
temperature sensor [61]. 

To verify the possibility of underwater communication 
through UV radiation, we have chosen to use a reverse-polarized 
LED as a detector. The choice was made to have an inexpensive 
photodetector that is not very sensitive to the light radiations 
present in the environment; without the need for filters that cut 
visible radiation. LED can be also used as Avalanche 
PhotoDiode (APD) [62], [63]. 

Unlike normal photodiodes, LEDs can detect a narrow band 
of wavelengths, they are spectrally selective detectors. In 
contrast, normal photodiodes have a wide spectral response and 
require costly filters to detect a specific wavelength. Both LEDs 
and photodiodes have sensitivity stable over time. However, the 
filters have a limited life. 

In a p-n diode, inside the junction, there are free charges 
generated by thermal energy. When a p-n junction diode is 
reverse biased, these charges are accelerated. This movement of 
charges produces the reverse current of the diode. If the reverse 
polarization potential is increased, the free charges can acquire 
enough energy to ionize some atoms of the crystal lattice. This 
ionization produces additional free charges. Moreover, these 
additional charges are accelerated by the polarization potential. 
This creates an avalanche effect, producing a large reverse 
current (breakdown current). The polarization voltage at which 
this arises is called Zener potential [64]. 

If you want to use an LED as light detector, generally, the 
photocurrents generated are linear but very small. In UOWC 
applications, we have currents in the range of nano amps. 
Therefore, for their correct subsequent signal processing, it is 
necessary to transform the detect current into a suitable voltage. 
For this operation, transimpedance amplifiers are commonly 
used [65]. The amplitude of the signal received by the LED, and 
subsequently amplified by transimpedance amplifiers, depends 
on many external parameters. For this reason, the transmitted 
optical signal must be suitably digitized and modulated. Our 
system uses a modulation format based on pulse width 
modulation (PWM). 

4. UV LED-TO-LED COMMUNICATION SYSTEM 

In underwater optical wireless transmission, the signal 
reaching the receiver has low intensity. For this reason, extensive 
studies are underway to use very sensitive detectors such as 
Avalanche PhotoDiode (APD) or Single Photon Avalanche 
Diode [66]-[75]. With the use of very responsive photosensors, 
the problem of the presence of ambient light is very important 
[76]. 

With the use of a LED-to-LED transmission system that uses 
UV LEDs, it is possible to implement an underwater 

 

Figure 5. Basic LED used as light emitter and receiver.  
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communication system with invisible radiation that is not very 
sensitive to ambient light. 

LED-to-LED communication systems are characterized by 
low cost, low complexity and, above all, low energy 
consumption. On the other hand, they can be used only when 
the exchange of messages occurs at a small distance without the 
need for large bandwidth [76], [77]. 

As already mentioned, underwater, practically, ultraviolet 
radiation is absent. Therefore, using UV LED as light emitter and 
a UV LED, used as APD, as receiver allows to have a system that 
is not very sensitive to environment light; an LED can detect 
radiation with a wavelength slightly shorter than or equal to that 
emitted (Internal photoelectric effect) [56], [57], [78]. 

The same type of LED can be used as a receiver and as a 
transmitter. The use of the same type of LED is useful in half 
duplex communication systems; the same LED can be used as a 
transmitter or as a receiver. In this work, we have used a Bivar 
UV5TZ-385-30 LED as a transmitter and receiver [79]. This 

LED has viewing angle of 30° and an aperture area of 25⸱10-6 m2. 
Seawater light transmission model is shown in Figure 6. 

The optical power on the receiver can be written as [80]-[83]: 

𝑃Rx=𝑃Tx∙𝜂Tx∙𝜂𝑅𝑥∙exp [−
𝐾d(𝜆)∙𝑧

cos 𝜃
] ∙

𝐴Rx
∙ cos 𝜃

2π∙𝑧2(1 − cos 𝜃0)
 , (2) 

where 𝑃Tx is the transmitted power, 𝜂Tx and 𝜂Rx are the optical 

efficiencies of the 𝑇𝑥 and 𝑅𝑥 correspondingly, 𝐾d(𝜆) is the 

attenuation coefficient, 𝑧 is the perpendicular distance between 

the 𝑇𝑥 plane and the 𝑅𝑥 plane, 𝜃0 is the 𝑇𝑥 beam divergence 

angle, 𝜃 is the angle between the perpendicular to the 𝑅𝑥 plane 

and the 𝑇𝑥‐ 𝑅𝑥 trajectory, and 𝐴Rx
 is the receiver aperture area. 

In our system, they experimentally verified that the received 

signal is correctly reconstructed if the misalignment is 𝜃 < 20°. 
The transmitter LED was driven with 25 mA by means of a 

pulse generator. While the current generated by the LED used as 
a receiver, reverse biased with a voltage of 15 V, was read 
through a transimpedance amplifier. Two Ultralow Noise 
Precision High Speed Op Amps [84] were used to implement the 
transimpedance amplifier. The amplifier, as shown in Figure 7, is 
made in two states. This is to be able to obtain a passband greater 
than 100 kHz. 

The Rx and Tx LEDs, together with the relative control 
electronics, were inserted in a tank filled with real seawater (water 
taken from the Tyrrhenian coast - Anzio - Italy). The LEDs are 
placed at 50 cm and facing one towards the other.  

Figure 8 shows the experimental setup used for the tests. The 
experimental tests were carried out in the laboratory and 
outdoors in different configurations of ambient brightness. 
Figure 8(a) shows the system working in laboratory. Figure 8(b) 
shows the system working outdoors in full sun. All the tests 
carried out confirmed that the system is practically insensitive to 
ambient light (both artificial and natural).  

The experimental setup is realized to be able to obtain three 
different lengths of the optical channel. The different lengths of 
the optical path are obtained by means of mirrors, as shown in 
Figure 9. 

The Figure 10 show the signal used to drive the Tx LED (cyan 
trace) and the corresponding output signal (Vout) from the Rx 
circuit (yellow trace). 

The implemented system uses only one LED as a transmitter 
and another as a receiver. In our application, there are no 
restrictions on using a LED cluster to transmit information. As 
well as it can be useful to use LED array to receive the signal. By 
using many diodes as Tx, as well as Rx, systems with better 
performance can be obtained. We used the simplest possible 
configuration as the aim was to demonstrate the possibility of 

 

Figure 6. Seawater light transmission model.  

 

Figure 7. Rx and Tx LED driver circuit.  

 

Figure 8. Experimental setup used for the tests: (a) system working in 
laboratory; (b) system working outdoors.  
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implementing an underwater LED-to-LED transmission using 
near ultraviolet radiation. 

5. SYSTEM DESCRIPTION 

In any reliable communication system, data must be suitably 
modulated. Modulation consists in varying one or more 
properties of a relatively high frequency signal (carrier).  

We used PWM modulation to implement our system. 
Furthermore, considering that high sound quality is not required 
for audio communication between divers, this type of 
modulation is more than enough to test the feasibility of wireless 
audio communication via UV-A optical channel. Obviously, 
more performing, and more robust modulation systems with 
respect to noise can be used. 

The PWM consists of the information signal (in our case the 
audio signal) that causes the modification of the time duration of 
the pulse carrier. This pulse signal turns the transmitter LED on 
and off at the rate of the carrier’s frequency. In other word, with 
PWM technique we change the duty cycle of a square wave with 
constant frequency and amplitude; as shown in Figure 11. 

The average value of a PWM signal, period by period, can be 
expressed as: 

𝑉average = 
1

𝑇
(∫ 𝑉max ∙ 𝑑𝑡

𝐷∙𝑇

0

+ ∫ 𝑉min ∙ 𝑑𝑡

𝑇

𝐷∙𝑇

) . (3) 

If 𝑉min = 0, the Equation (3), can be simplified as: 

𝑉average =𝐷 ∙ 𝑉max . (4) 

Equation (4) indicates that if the amplitude of the carrier is 
constant (along a period), the average value of the PWM signal is 
directly proportional to the duty cycle. If the duty cycle is 
proportional to the information to be transmitted, it can be 
extracted through a simple averaging operation on the PWM 
signal. Average is easily obtainable through opportune low pass 
filtering. 

To verify the real possibility of realizing an audio 
communication, we have respectively coupled a modulator and a 
demodulator to the LED transmitter and to the LED receiver 
[85]-[87].  

The block diagram of our audio modulator and LED driver is 
shown in Figure 12. This LED driver has a restricted baud rate. 
The main reason is the limited switching speed of silicon devices. 
A maximum data rate of 100 kbps can be achieved with this 
driver. In any case, this speed of data transmission is more than 
enough to implement an excellent audio connection. The PWM 
is achieved by means of a timing circuits NE555 [88] and a 
comparator LT1011 [89]. Our circuit is powered with 6.5 V and 
produces a sawtooth waveform with frequency of approximately 
100 kHz and peak to peak voltage about 4.3 V. 

The sawtooth waveform is applied to the non-inverting input 
of the comparator. The audio signal works as the reference 
voltage and is applied to the inverting input. To realize a duty 
cycle of 50%, the audio signal is offset at the average voltage of 
the sawtooth waveform (1/3 of the power supply voltage). The 
comparator output is equal to the supply voltage when the 
sawtooth output is a higher voltage than the audio signal. 

 

Figure 9. Schematic of the water canal. The different optical path is obtained 
with the help of mirrors.  

 

Figure 10. The cyan line represents the signal used to drive the Tx LED. The 
yellow line represents the corresponding Rx output signal. (a) Distance 
between transmitter and receiver 0.5 m. (b) Distance between transmitter 
and receiver 1.5 m. (c) Distance between transmitter and receiver 2.5 m.  

 

Figure 11. PWM signal. Square wave with constant frequency and amplitude 
by variable duty cycle.  
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The LED driver is based on the integrated MIC3289 [90]. It 
is a PWM boost-switching regulator that is optimized for 
constant-current LED driver applications. Figure 16 shows the 
input and output signals in a Pulse Width Modulation process. 

To recover the transmitted audio, a receiver unit, mainly 
composed of photodetector and signal conditioning devices, is 
used. The photodiode receives the transmitted optical signal and 
converts the optical signals into the electrical signals. Then, the 
electrical signal is fed into the recovery circuits and PWM 
demodulator. Figure 14 shows the block diagram of the receiver 
unit. 

The transimpedance amplifier (shown in the Figure 7) is 
coupled with a low pass filter. This filter, with cut-off frequency 
about 1 MHz, uses to reduce the high frequency noise present at 
the transimpedance amplifier output. The output signal of filter 
has an amplitude that depends on many external parameters, as 
well as the distance and misalignment between transmitter and 
receiver. To obtain a correct reconstruction of the PWM signal, 
a comparator with variable threshold is used. By means of an 
integrator circuit, a voltage proportional to the average value of 
the amplitude of the received signal is obtained. This voltage is 
used as the threshold of the comparator. The integrator that was 
used provides an average signal at the output, which is about one 
third of the amplitude of the signal coming from the filter. In this 
way, the reconstruction of the PWM signal is obtained which is 
practically independent of the amplitude of the signal received by 
the LED used as photodiode. Finally, the reconstructed PWM 

signal (signal with constant amplitude and variable duty cycle) is 
demodulate by a low pass filter with a cutoff frequency of 8 kHz. 

Instead, Figure 15 shows the schematic drawing of the 
receiving unit. 

A low pass filter is sufficient to decode the audio information 
contained in the PWM signal. By choosing a low-pass filter with 
an appropriate cut-off frequency, it will be possible to remove 
the high-frequency component in the PWM signal while keeping 
only the low-frequency signal (the audio information). Our 
demodulator is a 4th order Butterworth low pass filter. It consists 
of two non-identical 2nd order low pass filter. The human ear 
can perceive sounds with frequencies between 20 Hz and 
20 kHz. In any case, the human voice produces sound that are 
confined to within 8 kHz. Therefore, for verbal communications, 
a low-pass filter with a cut-off frequency around 8 kHz is 
sufficient. 

The 4th order Butterworth filter we use has a cutoff frequency 
of approximately 7.8 kHz. Therefore, it is irrelevant for all the 
sound frequencies emitted by the human voice. On the other 
hand, at 100 kHz, the filter has an attenuation of 83 dB. This 

 

Figure 12. Audio modulator and LED driver.  

 

Figure 13. Input and output signals in a Pulse Width Modulation process.  

 

Figure 14. Input and output signals in a Pulse Width Modulation process.  

 

Figure 15. Schematic of the optical receiver circuit.  
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indicates that the high frequency carrier is highly suppressed. 
Figure 16 shows the frequency response of the filter used to 
retrieve the audio information from the PWM signal 

Preliminary tests were conducted to verify the real 
applicability of our system in underwater wireless voice 
transmission. 

First, a 4 kHz tone was used to check the entire modulation, 
optical transmission, optical detection, and demodulation 
system. In Figure 17(a) trace 1 (yellow) is the sinusoidal 4 kHz 
tone going into the transmitter. While trace 2 (blue) shows the 
PWM modulation used to drive the Tx LED current. In Figure 
17(b) trace 2 (blue) shows the reconstructed PWM signal in the 
receiving unit. Finally, trace (1) (yellow) of Figure 17(b) shows 
the reconstruction of the sinusoid at 4 kHz. 

The reconstruction of the sinusoid is more than acceptable, 
even if there is the presence of “noise”, related to the harmonics 
of the carrier signal. 

Subsequently, the system was tested by transmitting an audio 
speech signal. With 2.5 m between Tx and Rx the speech 
transmitted is perfectly understandable. Figure 18 shows the 
audio tracks, spectrograms, and frequency analysis of the 
transmitted audio signal and of the message reconstructed 
downstream of the receiver. 

6. CONCLUSIONS 

Underwater Optical Wireless Communication (UOWC) has 
recently emerged as a unique opportunity. Many studies are 
present in the literature, however underwater optical 
communication via near-ultraviolet (UV-A) radiation is not 
addressed. In this paper, we have shown that in short range when 
broadband communication is not needed, it is possible to 
implement a UOWC system that makes use of UV-a radiation. 
A UV underwater optical wireless audio transceiver was 
proposed for wireless communication in close range between 
divers. 

We have also verified that this system can be realized via an 
LED-LED connection. This makes the system simple, 
economical, light, compact and, above all, not energy-intensive. 

The study is mainly designed for military applications. In 
military applications, it is very important to have systems that 
cannot be intercepted and possibly not easily identifiable. In 
addition to have low energy consuming systems. For these 
reasons, we have developed a system that uses non-visible optical 

radiation and LED-to-LED transmission, which is energy 
efficient. 

However, considering the simplicity and cost-effectiveness of 
the developed system, it can easily be used for communications 
between amateur divers. 

In our study, we faced the problem of verifying the feasibility 
of transmitting a signal, with sufficient bandwidth to transmit an 
audio signal, at a distance of about 2.5/3 meters. Further studies 
and tests in the real marine environment are needed. 
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Figure 16. Our 4th order Butterworth Low pass filter frequency response.  
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