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1. INTRODUCTION 

Doppler flow phantoms are standard reference test devices 
usually employed in Quality Controls (QCs) for ultrasound (US) 
system performance evaluation [1]-[3]. They can simulate the 
main acoustic characteristics of biological tissues and reproduce 
repeatable flows whose regimes are similar to those in blood 
vessels [4]-[7]. To date, the lack of a generally accepted standard 
for B-mode and Doppler [8]-[12], has led to a limitation on US 
phantoms use. It should be noticed that, even though such 
devices are widespread on the market, they are still not included 
in a shared standard that focuses in detail on periodic and 
objective checks of their metrological and functional 
characteristics. This seems to be odd, since the existing 
commercial Doppler phantoms show several technical 
limitations [2], [3], [13], [14] affecting their reliability and 
traceability for Doppler QC testing. The main drawbacks of the 

most commonly used Doppler phantom model, which is the 
flow phantom, are the desiccation over time of the Tissue 
Mimicking Material (TMM), the tendency of Blood Mimicking 
Fluid (BMF) particles to form agglomerates and/or air bubbles, 
and the inconsistency of phantom acoustic and pump mechanical 
properties over time [3]. Despite the awareness of such 
limitations, objective protocols and criteria for the monitoring of 
the phantom defects degree are still lacking in literature. In 
particular, some studies focused their attention on two different 
kinds of Doppler phantom stability, i.e., TMM and BMF stability 
[15]-[18]. The former refers to any physical modification in the 
TMM, while the latter indicates the presence of any solid and/or 
gaseous element in the BMF. More in detail, TMM stability can 
be compromised because of (a) TMM fracture e.g., due to 
desiccation over time, (b) TMM erosion or BMF leakage e.g., due 
to BMF action through time on TMM in wall-less flow phantoms 
or tubing material rupture. On the other hand, BMF stability 
highly depends on (a) any presence of air bubbles, particles 
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agglomerates or TMM debris, and (b) unwanted variations of 
flow velocity regimes. Nevertheless, stability assessment is 
carried out through a visual qualitative evaluation [15], [16], or 
without a specific and rigorous protocol [17], [18]. In the existing 
literature, there are other studies investigating and detecting the 
failures that could possibly compromise the stability of devices 
used in both biomedical and mechanical fields. However, there 
are some issues that nowadays should be taken into account: in 
[19], for example, it has been pointed out that a specific standard 
for mechanical heart pumps testing procedures was still missing. 
Investigations into such issues were limited to the early 
evaluation of the failures using an analysis technique along with 
device testing before surgical implantation. On the other hand, 
in [20] centrifugal pump failures have been reviewed, highlighting 
the lack of an integrated system able to monitor all the major 
pump failures. 

In such a context, the present study focuses on the 
improvement and testing of a previously developed Short Time 
Fourier Transform-based image analysis method [21] for the 
automatic detection of the main Doppler flow instabilities that 
may arise. The proposed improved method is based on the 
application of Empirical Mode Decomposition (EMD) and 
Independent Component Analysis (ICA) techniques combined 
with the Short Time Fourier Transform (STFT), namely 
EMoDICA-STFT, to automatically evaluate the phantom 
failures through Pulsed Wave (PW) Doppler spectrograms. 

EMD is a single-channel technique [22], [23], firstly 
introduced in [24], to obtain the decomposition of a signal in 
time. It is widely used in combination with ICA for the effective 
processing of electrophysiological signals [25], [26]. An 
interesting feature of such a combination is the possibility of 
successfully extracting both oscillatory and spike-like sources 
[22]. 

STFT is a time-frequency spectral analysis technique, widely 
used in several scientific fields, such as structural mechanics, 
aeronautics, and biomedical engineering. It has been applied in 
structural health monitoring fields, to detect damages in existing 
structures [27], to classify and predict delamination in smart 
composite laminates [28], to reveal corrosion and fatigue cracks 
in aircraft structures [29], and to analyse physiological signal 
characteristics and determine relevant parameters [30]-[33]. 

The goal of the present work is the implementation and 
testing of the EMoDICA-STFT method: it processes PW 
Doppler spectrograms collected from two different Doppler 
flow phantoms through a single intermediate technology level 
US system equipped with three array probes (linear, convex, and 
phased array) at their central Doppler frequency. 

In Section 2, a brief overview of the techniques adopted in 
the proposed method is provided, and their combined 
application on three simulation cases is described. In Section 3, 
the experimental setup used in this study and the EMoDICA-
STFT method application to PW spectrograms is discussed. In 
Section 4 results are presented and discussed on the basis of 
infra- and inter-phantom differences in the detected failures. 
Finally, in the concluding section, the major achievements and 
future developments of the research hereby presented will be 
reported. 

2. EMODICA-STFT METHOD APPLICATION TO PHANTOM 
FAILURES DETECTION 

BMF instability sources can be identified as any presence of 
air bubbles, particle agglomerates or TMM debris, and unwanted 

variations of flow velocity regimes. Consequently, the present 
study focuses on their detection in PW spectrograms, with 
particular reference to the following phantom failures: 
1. low frequency oscillations caused by any pump or hydraulic 

dampener inability to deliver a constant flow velocity in 
correspondence of a continuous flow regime setting; 

2. high velocity pulses caused by any particle agglomerates or 
TMM debris in the phantom flow; 

3. flow velocity drifts due to the unwanted onset of the pump 
acceleration (e.g., deriving from a failure in the control 
system). 

2.1. EMD, ICA and STFT techniques 

Empirical Mode Decomposition [22], [24] is a signal-
processing tool that, through an iterative process, decomposes a 
signal x(t) into a finite set of Intrinsic Mode Functions (IMFs) 
and a residual RM(t), as follows: 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡)

𝑀

𝑖=1

+ 𝑅𝑀(𝑡), (1) 

where IMFi(t) is the i-th oscillatory mode. Each IMFs has the 
following properties [22]: (a) it contains one frequency only, 
which is referred to as the instantaneous frequency, (b) its 
frequency is different from all the ones of the other functions, 
(c) it has zero mean value, and (d) it is an oscillatory function. 
One of the main advantages of EMD, as compared to other 
decomposition techniques [22], is that it does not require any 
apriori knowledge of the signal to be decomposed. 

In turn, Independent Component Analysis is a blind source 
separation technique [34], applied to a set of recorded signals yi(t) 
whose aim is the extraction of unknown sources si(t), named 
Independent Components (ICs), under the assumption of 
statistical independency. In particular, yi(t) can be expressed as a 
linear combination of si(t), as follows: 

�⃗�(𝑡) = [𝐴] ∙ 𝑠(𝑡) , (2) 

where [A] is an unknown matrix, called mixing matrix. In the 
present study, a computationally improved ICA method was 
applied, namely FastICA [35], which was implemented in 
MATLAB environment as a software package [36]. 

Finally, Short Time Fourier Transform is a set of Fourier 
transforms performed on a signal, which is subdivided into 
overlapped or non-overlapped temporal segments, through a 
translating window (e.g., rectangular, Hanning) in time. The 
Fourier transform is applied under the hypothesis of pseudo-
stationarity of the temporal segments [37], which is achieved 
through the choice of a short translating window. The STFT 
expression for a generic discrete signal x(n), is the following: 

𝑆𝑇𝐹𝑇(𝑛, 𝜔) = ∑ 𝑥(𝑛 + ℎ)𝑤𝑁(ℎ)

+∞

ℎ=−∞

𝑒−𝑗𝜔ℎ , (3) 

where wN(n) is the translating window. The corresponding 
normalized, real-valued, non-negative spectrogram Sx(n,) can be 
computed through the following expression: 

𝑆𝑥(𝑛, 𝜔) =
2

𝑁
∙ 𝐶𝐹 ∙ |𝑆𝑇𝐹𝑇(𝑛, 𝜔)|2, (4) 

where N is the sample window length and CF is a correction 
factor varying according to the chosen window amplitude [21]. 
Therefore, (4) has the advantage of taking the applied window 
type into account. 
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2.2. EMoDICA-STFT simulated application 

This subsection describes the EMoDICA-STFT method 
proposed to assess the phantom failures, through the 
combination of the previously described techniques, as shown in 
the block diagram (Figure 1). The following steps were applied 
to a real flow maximum velocity signal vp(t) lasting  60 s, which 
was derived from PW spectrograms according to the procedure 
which will be described in Section 3.2. It was chosen among the 
available data because it is a representative case study: in fact, the 
signal shows both high-velocity pulses and low-frequency 
oscillations. A simulated velocity drift vdr(t) of 0.06 cm·s-2 was 
added to vp(t) as an increasing trend in time, obtaining a velocity 
signal vp,tot(t) (Figure 2), and then, the steps described in the 
following and represented in Figure 1, were applied. 

First step. The first step is the application of EMD to vp,tot(t): 
the IMFs and the residual R(t) are retrieved on the basis of (1). 

Second step. The second step is the application of FastICA 
to the IMFs in order to compute the ICs and the mixing matrix 
[A]. At this point, the mean frequency fmean of each independent 
component is obtained, and a frequency threshold thf = 0.5 Hz is 
selected to discriminate between high- and low-frequency 
content ICs. Therefore, two different groups of ICs are obtained, 
namely IClow and IChigh. The latter are multiplied for the mixing 
matrix [A] according to (2), to back-reconstruct the 
corresponding oscillatory modes IMFlow and IMFhigh. Finally, the 
modes of each group are summed together to reconstruct two 
signals vp,low(t) and vp,high(t) derived from the signal vp,tot(t), where the 

first one has frequency contents lower than thf (Figure 3 a), while 
the second one has frequency contents higher than thf (Figure 3 
b). 

Third step. The third step is the STFT application, according 
to (3) and (4), to vp,low(t) and vp,high(t), with the settings reported in 
Table 1. As already done in [21], the spectral window chosen is 
the Hanning window, whose expression is the following: 

𝑤𝑁(𝑛) =
1

2
(1 − cos

2 π 𝑛

𝑁
). (5) 

After the STFT application, two mesh plots are obtained. In 
this way, it is possible to carry out the failure detection by 
distinguishing the contributions of the low frequency oscillations 
and high velocity pulses in the spectrograms of vp,low(t) and vp,high(t), 
respectively. 

Low frequency oscillations are represented in the mesh plot 
of vp,low(t) normalized spectrogram as frequency pulses (Figure 4 
a, b). Therefore, the detection of an oscillation occurs when Sx 

 

Figure 1. Block diagram of the proposed EMoDICA-STFT method for flow phantom failures detection. 

 

Figure 2. Real flow maximum velocity signal with low frequency oscillations, 
high velocity pulses with a 0.06 cm·s-2 velocity drift.  

a)  

b)  

Figure 3. (a) Reconstructed signal vp,low(t) with low frequency contents 
superimposed to vp,tot(t) after the offset removal; (b) reconstructed signal 
vp,high(t) with high frequency contents superimposed to vp,tot(t) after the offset 
removal. 
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shows a pulse both limited in time (according to the oscillation 
period) and frequency ( 0 Hz), whose amplitude is higher than 
the threshold thLF, automatically determined as follows: 

𝑡ℎ𝐿𝐹 =
𝜎𝑣

2

∆𝑓
∙ 𝐺, (6) 

where v is the flow velocity standard deviation depending on the 

phantom model, f is the STFT frequency resolution, and G is a 
safety factor that in this study was chosen equal to 10. 

In turn, high velocity pulses are represented, as shown in the 
normalized spectrogram of vp,high(t), by a window covering almost 
all the frequency components in the mesh plot (Figure 4 c, d). 
Therefore, the detection of a pulse occurs when the average 
amplitude of the frequency components, between 5 and 30 Hz, 
related to a single temporal instant is higher than the threshold 
thHF. The latter can be automatically determined, by considering 
the sampling frequency fs of vp(t), as follows: 

𝑡ℎ𝐻𝐹 =
𝜎𝑣

2

∆𝑓
∙ 𝐺 ∙

𝐹𝑓𝑟

𝑓𝑠/2
, (7) 

where Ffr is a factor that considers the entity of the frequency 
range in which the failure occurs in the normalized spectrogram. 
In this case, where a frequency range between 5 and 30 Hz was 
considered, Ffr = 25 Hz. The choice to reduce the frequency 
range in which the detection is carried out was necessary to 
compensate for non-ideal pulses [21]. 

Fourth step. The fourth step of the EMoDICA-STFT 
method is the detection of the velocity drifts from the EMD 
residual R(t). After the application of the least squares method to 
R(t) (Figure 5), it is possible to evaluate any velocity drift through 
the computation of the angular coefficient m of the straight line 
that best approximates the residual trend. In particular, the 
detection of a velocity drift occurs when |m| is higher than the 
threshold thdr, that can be automatically determined as:  

𝑡ℎ𝑑𝑟 =
𝜎𝑣

𝑡𝑃𝑊

∙ 𝐺, (8) 

where tPW is the velocity signal duration, while the safety factor G 
for the velocity drift detection was chosen equal to 2. The 
advantage of (8) relies on its dependence on the phantom flow 

velocity standard deviation v so that the velocity drift perception 
is not affected by human eye subjectivity. The retrieved angular 
coefficient of R(t), shown in Figure 5, is lower than the simulated 
velocity drift added to vp(t). This is likely due to the combination 
of vdr(t) with the pre-existing trend of the real velocity signal 
under analysis. 

Table 1. STFT parameters setting. 

Parameter Symbol Value 

Sampling frequency (Hz) fs 100 

Spectral window Hanning 

Window length (samples) N 100 

Overlap (samples) Noverlap 60 

Zero-padding (samples) Nzero-pad 50 

Correction factor CF 2 

Temporal resolution (s)  t 0.4 

Frequency resolution (Hz) f  0.7 

a)  

b)  

c)  

d)  

Figure 4. Low frequency contents signal vp,low(t) represented through (a) a 
mesh plot with the detected frequency peaks (thLF = 60 cm2·s-2·Hz-1) and (b) 
its temporal evolution together with the signal vp,tot(t); High frequency 
contents signal vp,high(t) represented through (c) a mesh plot with the 
detected frequency windows (thHF = 30 cm2·s-2·Hz-1) and (d) its temporal 
evolution together with the signal vp,tot(t). 
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Finally, this simulation was repeated in two further cases to 
test the proposed method for different starting conditions: (a) 
vp(t) with an additional velocity drift of 0.03 cm·s-2 and (b) vp(t) 
with an additional velocity drift of 0.09 cm·s-2. The EMoDICA-
STFT method identified the same low frequency oscillations and 
high velocity pulses retrieved for the first simulation, while the 

obtained velocity drift angular coefficients were (164.1  0.4)·10-

4 cm·s-2 (R2 = 0.97) and (684.9  0.7)·10-4 cm·s-2 (R2 = 0.99) for 
case (a) and (b), respectively. 

3. MATERIALS AND EXPERIMENTAL DATA 

In the present study, the EMoDICA-STFT method for the 
phantom failures assessment, implemented in MATLAB, is 
proposed as an improvement of a procedure previously 
described in [21]. This is achieved through the experimental 
setup described in the following section. 

3.1. Experimental setup 

Data were collected by using two Doppler flow phantoms, 
whose main characteristics are reported in Table 2. The first 
phantom under test (PUT) is Gammex, Optimizer® 1425A, a 
self-contained device [38] able to provide constant or pulsatile 
flow in the 1.7-12.5 ml·s-1 range, through an electric flow 
controller. The second PUT is CIRS, model 069, an easy-to-

assemble simulator [39], able to provide an average flow velocity 
between 5 and 68 cm·s-1, through the action of a peristaltic 
pump, providing a pulsatile flow. The latter can be converted 
into a constant flow through the connection of a dampener. 

The acquisition started after 2 hours of phantom warm-up. In 
order to test their stability, five constant flow rate values (low Lf, 
low-medium LMf, medium Mf, medium-high MHf and high Hf) 
were set, as shown in Table 3. Doppler phantom characteristics 
are not consistent, therefore, flow values were differently set to 
guarantee the same mean velocity regimes (vGammex = vCIRS), as 
detailed in [21]. 

A single US system equipped with three US probes (linear, 
convex, and phased array) was used to acquire six PW 
spectrograms lasting  10 s for each flow regime. Data were 
collected with two different PW Doppler settings, namely set A 
and set B, reported in Table 4, in order to make a comparison of 
the stability performance between the two test objects under 
different setting conditions. The sample volume length was 
maintained fixed for both phantoms and settings, whereas the 
sample volume depth was changed according to the phantom 
model attenuation, and kept consistent for set A and set B. As 
regards the insonification angle, it was varied according both to 
the probe positioning on the scanning surface and to the 
different tube slopes of the two phantoms. 

 

Figure 5. Least squares method applied to the EMD residual in the case of a 
0.06 cm·s-2 velocity drift added to the real maximum velocity signal vp(t). 

Table 2. Main characteristics of the two Doppler flow phantoms [38], [39]. 

Parameter 
Gammex 

Optimazer® 1425A 
CIRS 

model 069 

Tissue mimicking 
material 

Water-based 
mimicking gel 

Zerdine tissue 
mimicking gel 

Attenuation 0.50 dBcm-1MHz-1 0.70 dBcm-1MHz-1 

TMM sound speed 1540  10 ms-1 1540  10 ms-1 

Tube inner diameter  5.0 mm 4.8 mm 

Flow velocity standard 
deviation (*) 

2 cms-1 3 cms-1 

Tube slope 40° 70° 

Dimensions 40.722.935.6 cm 2012.527.5 cm 

(*) The flow velocity standard deviations were estimated from the 
specifications reported in the phantoms datasheets. 

Table 3. Doppler phantoms flow rate and mean flow velocity settings. 

Flow 
phantom 

Flow regime 
Flow rate  

Q (mls-1) 

Mean flow velocity  

v (cms-1) 

Gammex 

Optimazer 
1425A 

Low - Lf 2.6 13.2 

Low-medium - LMf  3.7 18.8 

Medium - Mf 4.8 24.4 

Medium-high - MHf 5.9 30.0 

High - Hf 7.0 35.7 

CIRS 
model 069 

Low - Lf 2.4 13.3 

Low-medium - LMf 3.4 18.8 

Medium - Mf 4.4 24.3 

Medium-high - MHf 5.4 29.8 

High - Hf 6.4  35.4 

Table 4. PW Doppler main configuration settings. 

Parameter 
Set A Set B 

Gammex CIRS Gammex CIRS 

Doppler  
frequency (MHz) 

L = 5.21    C = 2.50    P = 2.50 

Wall filter Minimum Medium 

Spectrum  
resolution 

Minimum 
L = Medium 

C, P = Minimum 

Sample volume 
length (cm) 

3.0 

Sample volume 
depth (mm) 

48 40 48 40 

Insonification 
angle (°) 

52 
L, C = 70  

P = 55 
52 

L, C = 70  
P = 55 

PW spectrogram 
duration (s) 

 10 

PW spectrogram 
total duration (s) 

 60 

L = linear, C = phased, P = phased array probe. 
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3.2. EMoDICA-STFT on PW spectrograms 

Each PW spectrogram was processed for the detection of the 
maximum velocity waveform, as in [21]. Pixel coordinates pxmax 
associated to the maximum velocity values were detected 
through a gray level adaptive threshold thmax automatically 
determined as 10% of the maximum gray level value [40]. At this 
point, pxmax were associated to the corresponding flow velocity 
values vmax for each temporal instant, taking into consideration 
the maximum value displayed on the PW velocity scale. Then, 
the six vmax signals obtained for the same flow regime were 
juxtaposed. The EMoDICA-STFT application was implemented 
according to the block diagram in Figure 1 and with the STFT 
settings reported in Table 1. The thresholds applied for the 
detection of failures show different values between the Doppler 
phantoms under test because of the different flow velocity 
standard deviation (Table 2). According to (6)-(8), the computed 
threshold values were: thLF = 60 cm2·s-2·Hz-1, thHF = 30 cm2· 
s-2·Hz-1 and thdr = 7·10-2 cm·s-2, for Gammex 1425A and thLF = 
135 cm2·s-2·Hz-1, thHF = 67 cm2·s-2·Hz-1 and thdr = 10·10-2 cm· 
s-2, for CIRS model 069. It is worth noting that, due to the 
threshold dependency on flow standard deviation, the higher 
threshold values retrieved for CIRS phantom are a first indicator 
of its lower performance as compared to the Gammex phantom. 

 

4. RESULTS AND DISCUSSION 

The number of phantom failures detected for the two test 
objects according to the US probe, the flow regime (Lf, LMf, Mf, 
MHf and Hf) and the PW Doppler settings (set A and set B) is 
reported in Table 5 and Table 6. According to [41], the standard 
deviation values can be computed as the square root of the 
counted value. The EMoDICA-STFT method did not detect any 
velocity drift failure on the two phantoms, because the angular 
coefficients |m| of the straight lines, obtained by applying the 
least squares method to all the EMD residuals, were always lower 
than the determined thdr. 

As regards the Gammex 1425A phantom, it should be noted 
that, independently from the US probe considered, the number 
of low frequency oscillations is globally limited, except for the 
LMf flow regime, in set A and set B. As shown in Figure 6, a 
sinusoidal trend is clearly visible, therefore suggesting that the 
phantom electric flow controller seems no longer able to 
guarantee a constant flow regime of 3.7 ml·s-1. On the other 
hand, both convex and phased array probes show a higher 
number of high velocity pulses with respect to the linear array 
probe, suggesting a probe-dependent sensitivity to BMF particle 
agglomerates. Furthermore, independently from the probe, the 
low flow regime Lf shows the highest number of high velocity 
pulses. This may be due to the fact that the flow velocity is too 
low to dissolve the particle agglomerates. 

Table 5. Number of detected failures according to the US probe, the flow regime and PW Doppler settings for Gammex 1425A. 

US probe 
Flow 

regime 
PW Doppler 

setting 
Low frequency oscillation 

thLF = 60 cm2·s-2·Hz-1 
High velocity pulse 
thHF = 30 cm2·s-2·Hz-1 

Velocity drift 

thdr = 7·10-2 cm·s-2 
Angular coefficient 

m (cm·s-2) 
R2 

Linear 

Lf 
set A 6  2 7  3 − -0.9·10-2 0.99 

set B − 3  2 − -1.0·10-2 0.94 

LMf 
set A 49  7 − − -0.9·10-2 0.99 

set B 45  7 − − 2.1·10-4 0.99 

Mf 
set A − − − -3.7·10-3 0.99 

set B − − − -2.3·10-3 0.98 

MHf 
set A − − − 4.0·10-3 0.99 

set B − 8  3 − -3.8·10-3 0.89 

Hf 
set A − − − -0.9·10-2 0.98 

set B − 1  1 − 2.8·10-3 0.99 

Convex 

Lf 
set A 2  1 44  7 − 4.0·10-2 0.98 

set B − 14  4 − -4.3·10-4 0.98 

LMf 
set A 47  7 2  1 − -4.9·10-3 0.99 

set B 44  7 2  1 − -1.2·10-2 0.99 

Mf 
set A − 9  3 − -1.6·10-3 0.99 

set B − 1  1 − -2.4·10-3 0.99 

MHf 
set A − 6  2 − -3.3·10-3 0.94 

set B − 3  2 − -0.9·10-2 0.99 

Hf 
set A 2  1 2  1 − -0.6·10-2 0.98 

set B − 1  1 − 1.9·10-5 0.99 

Phased 

Lf 
set A − 25  5 − -0.8·10-3 0.99 

set B − 4  2 − 3.1·10-3 0.92 

LMf 
set A 44  7 − − -1.9·10-2 0.98 

set B 47  7 4  2 − 1.2·10-3 0.99 

Mf 
set A − 3  2 − -1.4·10-2 0.94 

set B − 8  3 − 1.5·10-3 0.96 

MHf 
set A − 9  3 − 1.0·10-3 0.96 

set B − 10  3 − 4.0·10-3 0.98 

Hf 
set A − 6  2 − -3.3·10-3 0.99 

set B − 5  2 − -3.3·10-3 0.99 
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As regards the CIRS model 069 simulator, no low-frequency 
oscillation was detected through the phased array probe. In both 
linear and convex array probes, a high number of oscillations was 
detected in correspondence of the medium-high flow regime 
MHf (Figure 7). This could be due to a dampener failure in 
correspondence of such flow regime. Similarly to Gammex 
1425A, a higher number of high velocity pulses was detected for 
both convex and phased array probes. 

By comparing the two Doppler phantoms outcomes 
retrieved, Gammex 1425A shows the lowest number of low-
frequency oscillations (by excluding the particular case of LMf 
regime), when compared to both linear and convex array probes 
of the CIRS model 069, while for the phased array one no 
oscillations were detected. Conversely, Gammex 1425A globally 
shows the highest number of high velocity pulses compared to 
the CIRS model 069 for both linear and convex array probes, 
while such issue seems to be reversed for phased array probe. 

Table 6. Number of detected failures according to the US probe, the flow regime and PW Doppler settings for CIRS model 069. 

US probe 
Flow 

regime 
PW Doppler 

setting 
Low frequency oscillation 
thLF = 135 cm2·s-2·Hz-1 

High velocity pulse 
thHF = 67 cm2·s-2·Hz-1 

Velocity drift 

thdr = 10·10-2 cm·s-2 
Angular coefficient 

m (cm·s-2) 
R2 

Linear 

Lf 
set A 4  2 − − 3.7·10-2 0.99 

set B 2  1 − − -0.8·10-2 0.99 

LMf 
set A − − − 3.6·10-3 0.95 

set B − − − -1.8·10-4 0.99 

Mf 
set A − − − -1.9·10-3 0.97 

set B − − − -1.0·10-3 0.99 

MHf 
set A 2  1 − − 0.8·10-2 0.94 

set B 11  3 1  1 − 2.0·10-3 0.99 

Hf 
set A − − − 3.8·10-4 0.99 

set B 2  1 − − 2.3·10-2 0.99 

Convex 

Lf 
set A − 5  3 − 2.2·10-2 0.99 

set B − 7  3 − -4.6·10-3 0.99 

LMf 
set A − 9  3 − -2.0·10-2 0.95 

set B − 6  3 − 1.0·10-2 0.93 

Mf 
set A 1  1 17  4 − 2.2·10-2 0.95 

set B − 11  3 − 4.3·10-3 0.96 

MHf 
set A − 1  1 − -1.9·10-2 0.99 

set B 18  4 2  1 − 1.9·10-2 0.99 

Hf 
set A 5  2 2  1 − -2.6·10-2 0.99 

set B 1  1 1  1 − 0.6·10-2 0.99 

Phased 

Lf 
set A − 8  3 − 1.1·10-2 0.98 

set B − 3  2 − -0.9·10-2 0.98 

LMf 
set A − 17  4 − 1.4·10-2 0.99 

set B − 11  3 − -0.9·10-2 0.99 

Mf 
set A − 14  4 − 3.6·10-3 0.99 

set B − 13  4 − -1.8·10-3 0.94 

MHf 
set A − 8  3 − 0.9·10-2 0.99 

set B − 12  3 − 0.5·10-3 0.97 

Hf 
set A − 10  3 − 0.5·10-2 0.99 

set B − 5  2 − 1.4·10-3 0.99 

 

Figure 6. Example of the sinusoidal trend in LMf regime for Gammex 1425A 
acquired with the linear array probe in set A. 

 

Figure 7. Example of the low frequency oscillations in MHf regime for CIRS 
model 069 acquired with the linear array probe in set B. 
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Since the same number of PUT failures can have a different 
relevance depending on the intended use of the ultrasound 
system to be checked through the PUT (e.g., in 
echocardiography, obstetrics and gynecology, pediatrics, etc.), 
the EMoDICA-STFT may be applied with different thresholds 
by means of ad hoc US systems and probe models over time. 
Therefore, the same PUT may be suitable for testing a restricted 
number of US scanners only. This could be an advantage for the 
technical assessment of the above medical devices, as well as for 
PUT maintenance. 

5. CONCLUSIONS 

Doppler phantoms are standard reference test devices that, 
nowadays, are not yet included in a shared standard focusing on 
the objective evaluation of their performances and failures. In 
particular, phantom stability assessment is currently carried out 
through visual and subjective evaluations, or without a rigorous 
protocol. Therefore, in the present study, a novel method, named 
EMoDICA-STFT, based on the combined application of EMD, 
ICA and STFT techniques, is proposed and tested to 
automatically determine, through the processing of PW Doppler 
spectrograms, the number of phantom failures. The main flow 
phantom failures were classified as low frequency oscillations, 
high velocity pulses and velocity drifts. Data were collected from 
two flow phantoms by a single diagnostic US system equipped 
with three probe models. Tests were carried out in two different 
US configuration settings and five flow regimes set on the test 
objects. After a series of simulations, adaptive thresholds for the 
detection of each failure were determined depending on the 
standard deviation of the PUT flow velocity. Consequently, 
EMoDICA-STFT method was applied to the maximum flow 
velocity signals extracted from the PW Doppler spectrograms 
through an automatic processing. Finally, the number of detected 
failures was found for both Doppler phantoms. On the basis of 
the promising outcomes, further studies should be carried out (a) 
on a higher number of Doppler phantoms, (b) on a larger 
number of US diagnostic systems and (c) including an in-depth 
investigation of the proposed method uncertainty. 
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