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1. INTRODUCTION 

The problem of perception of the environment is 
fundamental for safe robot navigation. Planetary rovers’ 
exploration has some peculiarities that we do not find in other 
autonomous robotics applications, (1) there is no GPS system 
that can help with the localization process, (2) terrain assessment 
deals with an unstructured environment that is characterised by 
sharp rocks (large or small), sand, and bedrocks, which are often 
confused with the noise of a stereo point cloud. A review of 
learning-based perception and navigation methods for rescue 
robotics, planetary exploration, and agricultural robotics can be 
found in [1]. It is not only safe navigation that benefits from the 
autonomous navigation capabilities of a rover, but also its 
scientific output, as an example, the distance travelled for each 

sol by the NASA MSL rover has increased from a few meters to 
100 m [2]. The NASA MER rover disposed of the GESTALT 
(Grid-based Estimation of Surface Traversability Applied to 
Local Terrain) system [3], which is one of the first autonomous 
terrain assessment systems for planetary rovers. This system was 
able to detect geometric hazards such as rock, ditches, and cliffs 
by processing the 3D point clouds generated by the rover stereo-
images; it looked mainly at geometric characteristics such as 
steps, slopes, and terrain roughness. An alternative method for 
estimating the traversability of a terrain is presented in [4], where 
the unevenness of the terrain is analysed by means of the power 
spectral density (PSD) of the surface profile as measured by a 
stereo camera. In [5] an evaluation system for the traversability 
of rough terrain for a rover based on aerial UAV survey is 
presented. 

ABSTRACT 
Obstacle mapping is a fundamental building block of the autonomous navigation pipeline of many robotic platforms such as planetary 
rovers. Nowadays, occupancy grid mapping is a widely used tool for obstacle perception. It foreseen the representation of the 
environment in evenly spaced cells, whose posterior probability of being occupied is updated based on range sensors measurement. In 
more classic approaches, the cells are updated to occupied at the point where the ray emitted by the range sensor encounters an 
obstacle, such as a wall. The main limitation of this kind of methods is that they are not able to identify planar obstacles, such as slippery, 
sandy, or rocky soils. In this work, we use the measurements of a stereo camera combined with a pixel labeling technique based on 
Convolution Neural Networks to identify the presence of rocky obstacles in planetary environment. Once identified, the obstacles are 
converted into a scan-like model. The estimation of the relative pose between successive frames is carried out using ORB-SLAM 
algorithm. The final step consists of updating the occupancy grid map using the Bayes’ update Rule. To evaluate the metrological 
performances of the proposed method images from the Martian analogous dataset, the ESA Katwijk Beach Planetary Rover Dataset have 
been used. The evaluation has been performed by comparing the generated occupancy map with a manually segmented ortomosaic 
map, obtained by drones’ survey of the area used as reference.  
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Looking at the context of indoor navigation, many methods 
involve the construction of occupancy grid maps that are 
updated via the Bayesian occupancy filter with the range 
measurements coming from LiDAR sensors. As an example, [6] 
presents a corridor detection method based on 2D lidar and 
occupancy filtering.  

Thanks to semantic segmentation, which is the process of 
dividing an image into digital objects, it is possible to add to the 
map information that otherwise cannot be deduced from the 
three-dimensional model alone, such as if the terrain is sandy or 
slippery. Compared to other methods, such as classification, 
semantic segmentation allows for pixel-by-pixel labelling of the 
image, see Figure 1. This enables a more detailed interpretation 
of the surrounding environment. 

Cadena et al. [7] says that Simultaneous Localization and 
Mapping is now entering its third stage, characterised by robust 
perception. This robustness requires the realization of robust 
performance, high-level understanding, resource awareness, and 
task-driven perception. Semantics is an important tool in the 
pursuit of improved robustness, intuitive visualization, and 
efficient human–robot-environment interaction. The term 
Semantic SLAM can be used to identify methods that comprise 
either semantic-based robustness/accuracy enhancements or 
semantic mapping. For details, see [8], which presents a detailed 
review of recent advances in semantic simultaneous localization 
and mapping, considering multiscaled map representation, object 
simultaneous localization and mapping system, and deep neural 
network-based SLAM.  

DeepLab networks make a significant contribution to 
semantic segmentation, see, e.g., [9], [10], which introduce the 
concept of “atrous convolution” in CNN models and exhibit 
excellent accuracy in semantic segmentation, see [8]. In the 
literature, it is possible to find many works on semantic mapping 
in the urban environment. As an example [11] generates a dense 
3D reconstruction with associated semantic labelling from stereo 
camera images, [12] and [13] propose a multimodal sensor-based 
semantic 3D mapping system using a 3D LiDAR combined with 
a camera. In the frame of maritime navigation, the authors of [14] 
present a Water Obstacle Detection network based on Image 
Segmentation (WODIS) for autonomous surface vehicles. Gan 
et al. [15] describe a method that provides a unified probabilistic 
model for both occupancy and semantic probabilities, producing 
a Bayesian continuous 3D semantic occupancy map from noisy 
point clouds. Wang et al. [16] describe a joint method of a priori 
convolutional neural networks at superpixel level and soft 
restricted context transfer. In [17], the authors describe a method 
to build a complete semantic map based on merging the 
segmentation results from street and satellite view images. In [18] 
satellite images are segmented using a SegNet network. Li et al. 
[19] present a fast 3D semantic mapping system based on 
monocular vision by fusion of localization, mapping, and scene 
parsing. The method is based on an improved version of 
DeepLab-v3+ [9], [10]. [20] presents an approach to generate an 
outdoor large-scale 3D dense semantic map based on binocular 
stereo vision and the SegNet deep learning architecture. Paz et 
al. [21] fuses image and pre-built point cloud map information to 
perform automatic and accurate labelling of static landmarks 
such as roads, sidewalks, crosswalks, and lanes. In this work, 
semantic segmentation is also performed on 2D images using the 
DeepLab-v3+ network [9], [10].  

However, these techniques have rarely been applied to the 
case of planetary exploration and environments with a low 
number of features. This paper proposes a terrain assessment 

method for Martian environment based on semantic mapping. 
The method takes as input a set of stereo-images which are pixel-
wise labelled with the state-of-the-art Convolutional Neural 
Network labeller DeepLabv3+ [9]. Thanks to the stereo 
reconstruction of the scene, it is possible to associate the labels 
to the 3D points; therefore, obstacles are represented through a 
scan-like model [22]. All scans are combined with each other in 
an occupancy grid considering the trajectory travelled by the 
rover. The trajectory was calculated using the ORB-SLAM 
algorithm [23].  

To evaluate the metrological performances of the proposed 
method, images from the public available ESA Katwijk Beach 
Planetary Rover Dataset [24] are used. The dataset was created 
for the validation of localization and navigation algorithms in 
Martian-like environment, and it provides trajectory and map 
ground truth. The method evaluation has been performed using 
a manually segmented ortomosaic map, taken by a drone, as 
reference, and the trajectory reconstruction performances have 
been evaluated by comparison with a differential GPS (DGPS). 

The major contributions of this work are:  

• the application of CNN to identify obstacles 
characteristic of the planetary environment; 

• the generation of laser-scan like point cloud 
representing the obstacle; 

• the application of Bayes filtering to obtain global 
obstacle maps; 

• comparison of the generated map with the ground 
truth for method validation. 

The paper is divided as follows: Section 2 describes the 
proposed terrain assessment method. In Section 3 the algorithm 
performance on a Martian analogous environment has been 
evaluated, and in Section 4 the concluding remarks are reported. 

2. METHOD 

The proposed method takes as input a rectified stereo image 

(𝐼𝑙 , 𝐼𝑟), which is used to (1) identify the obstacle with a CNN 
labeller (DeepLabv3+), (2) estimate the scene point cloud, and 
(3) estimate the rover trajectory. Afterward, the point cloud is 
fused with the labels to obtain a scan-like representation of the 
obstacles. The scans associated with the rover poses that 
compose the trajectory are merged into an occupancy grid map 
using Bayesian filtering. A diagram summarizing the various 
steps is shown in Figure 2. 

 
 

 

Figure 1. Compared to other methods, such as classification, semantic 
segmentation allows for a pixel-by-pixel labelling of the image. This enables 
the creation of more detailed maps. 
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2.1. Obstacle Identification 

The purpose of the obstacle identification step is labelling 

each pixel of the image (𝑢𝑙,𝑣𝑙) into obstacle or free area. Image 

labelling is performed using a Convolutional Neural Network 
(CNN) technique, as CNNs have demonstrated a significant 
improvement in semantic segmentation tasks. Moreover, 
compared to other methods, such as classification, semantic 
segmentation enables a more detailed interpretation of the 
surrounding environment. Among the state-of-the-art methods 
(FCN [25], SegNet [18] and U-net [26]), DeepLabv3+ [9] has 
been chosen because (1) it has been demonstrated to outperform 
similar methods in several applications, (2) it is a pre-trained 
network. The latter feature is necessary to reduce the training 
time. Network pretraining has been performed on ImageNet, 
which is a dataset containing more than one million images 
divided into 1000 classes. Pre-training allows training the deeper 
layer of the network with the most characteristic feature. Instead, 
the final part of the training phase is application dependent and 
is used to train the outer layer of the network. 

For the context of this application, three classes have been 
chosen: sand, rocks, and background. Fehler! Verweisquelle 

konnte nicht gefunden werden.2 shows the obstacle detection 
step applied to the images of the dataset used for testing. We 
have taken advantage of a pre-trained network to reduce the 
training images number. Data augmentation techniques have 
been applied to improve the training accuracy and robustness to 
image variation, in particular, cropping, mirroring, and resizing. 
The number of images used for training is 400: 50 original images 
and 350 obtained with data augmentation; more details are given 
in [27], [28], and [29]. 

Since it may happen that the boundaries of the identified 
classes may present imperfections or smudges, morphological 
operations have been applied to filter the identified regions. The 
morphological operations that have been applied are the 
following: binary erosion, binary dilation, and removal of a small 
region [30]. 

For collision avoidance purposes, the main interest is limited 
to the potential point of collision with the obstacle. For this 
reason, for each identified region, only the lower limit is 
considered, which is the one that corresponds to the intersection 
between the ray that starts from the camera centre and the 
obstacle. This contour, combined with the range measurements 
obtained with the method described in Section 2.2, allows us to 
have a scan-like representation of the obstacle (see Figure 3). 

2.2. Range Measurement  

First, images are stereo-rectified using camera intrinsic and 
extrinsic parameters. Then, the Semi-Global Block Matching 
algorithm [31] is used to compute the disparity map. Semi-Global 
Block Matching algorithm computes the scene disparity by 
comparing the sum of absolute differences (SAD) for each block 
of pixels in the image and forces a similar disparity on 
neighbouring blocks. By knowing the disparity map and the 
intrinsic parameters of the camera it is possible to estimate the 
depth of the scene and compute the related point cloud relative 

to the rover frame (𝑿𝑗 = [𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗]), where 𝑗 = 1, … , 𝑛 with 𝑛 

 

Figure 2. Scheme overview of the proposed terrain assessment algorithm. The algorithm takes as input a rectified stereo image, which is used to (1) identify 
the obstacle with a CNN labeller (DeepLabv3+), (2) estimate the scene point cloud, and (3) estimate the rover trajectory. Afterward, the point cloud is fused 
with the labels to obtain a scan-like representation of the obstacles. The scans associated with the rover poses that compose the trajectory are merged into 
an occupancy grid map using Bayesian filtering. 

 
Figure 3. The 3D obstacle map is broken down to a laser scan-like model. 
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total number of pixels with an associated disparity. The 3D 
points coordinates in the left camera frame are given by: 

𝑋𝑗 =
𝑢𝑙𝑍𝑗

𝑓

𝑌𝑗 =
𝑣𝑙𝑍𝑗

𝑓

𝑍𝑗 =
𝑏𝑓

𝑢𝑙 − 𝑢𝑟

 ,

 (1) 

where (𝑢𝑙,𝑣𝑙) and (𝑢𝑟,𝑣𝑟) are respectively the pixel coordinates 

in the left and right image, 𝑏 is the camera baseline and 𝑓 is the 

camera focal length. Each 3D point of the point cloud (𝑿𝑗) is 

associate with a pixel of the image (𝑢𝑙,𝑣𝑙). Only 3D points that 

correspond to the lower boundary of the obstacles are used to 
update the occupancy grid map; see Section 2.3. 

2.3. Relative Trajectory Reconstruction 

Sections 2.1 and 2.2 show how to determine the position of 
the obstacles with reference to the rover frame. However, to 
build a global map of obstacles and filter the measurements 
belonging to different rover poses, the position of the obstacles 

position 𝑿𝑖  needs to be defined with respect to an absolute 

reference system 𝑿𝑖
𝑊, the W world reference frame. In this work 

the frame W corresponds to the first stereo-image frame rotated 
by the pan and tilt angles of the PTU (Pan and Tilt Unit). 

To perform the trajectory reconstruction step, only stereo 
camera visual input has been used in combination with the state-
of-the-art visual SLAM algorithm, ORB-SLAM2 [23]. For the 
purposes of this work, the camera pose issued by the tracking 
step was used, this pose belongs to SE(3) (the Special Euclidean 
Group in three dimension). Assuming that the rovers are mainly 
moving in a planar environment, the SE(3) pose has been 

transformed into the corresponding SE(2) pose 𝑻𝑘
𝑊 =

[𝑹𝑘
𝑊|𝒕𝑘,𝑊], which for completeness is reported in the following 

relation: 

𝑻𝑘
𝑊 = [

cos(𝜓𝑘
𝑊) − sin(𝜓𝑘

𝑊) 𝑡𝑥(𝑘,𝑊)

sin(𝜓𝑘
𝑊) cos(𝜓𝑘

𝑊) 𝑡𝑦(𝑘,𝑊)

0 0 1

] , (2) 

where 𝜓𝑘,𝑊 is the absolute heading angle and 𝑡𝑥(𝑘,𝑊) 𝑡𝑦(𝑘,𝑘−1) is 

the rover absolute position.  
Finally, obstacle scan line points are transformed from the rover 
frame to the W frame using the following equation: 

𝑿𝑖
𝑊 = 𝑹𝑘

𝑊𝑿𝑖 + 𝒕𝑘,𝑊 . (3) 

2.4. Sensor Fusion 

The last step is the update of the occupational grid. The 
probability of each grid cell being occupied is updated following 
the standard Bayes update rule [29] [32] and using the obstacle 

scan 𝑿𝑖
𝑊. In the experimental part, a grid resolution of 0.2 × 0.2 

m has been considered. Assuming that the cells of the grid map 
are independent from each other, and given a series of rock 

observations 𝑧1:𝑗 , the probability belief of a single cell to be 

occupied by an obstacle or not 𝑝(𝑚𝑥,𝑦|𝑧1:𝑗), is reported in 

Equation (4). 

𝑝(𝑚𝑥,𝑦|𝑧1:𝑗) =
𝑝(𝑚𝑥,𝑦|𝑧𝑗)𝑝(𝑧𝑗)

𝑝(𝑚𝑥,𝑦)

𝑝(𝑚𝑥,𝑦|𝑧1:𝑗−1)

𝑝(𝑧𝑗|𝑧1:)
 , (4) 

where 𝑝(𝑚𝑥,𝑦|𝑧𝑗) is the inverse measurement model of the 

depth data retrieved from the stereo-camera, 𝑝(𝑚𝑥,𝑦|𝑧1:𝑗−1) is 

the depth measurements of the previous rover poses, and 

𝑝(𝑚𝑥,𝑦) is the prior map. To avoid difficult-to-calculate 

probabilities, we use the binary Bayes filter in log-odds form: 

𝑙𝑗 = 𝑙𝑗−1 + log
𝑝(𝑚𝑥,𝑦|𝑧𝑗)

1−𝑝(𝑚𝑥,𝑦|𝑧𝑗)
+

𝑝(𝑚𝑥,𝑦)

1−𝑝(𝑚𝑥,𝑦)
 , (5) 

where 𝑙𝑗 = log
𝑝(𝑚𝑥,𝑦|𝑧1:𝑗)

1−𝑝(𝑚𝑥,𝑦|𝑧1:𝑗)
. The log odd form of the inverse 

measurement model log
𝑝(𝑚𝑥,𝑦|𝑧𝑗)

1−𝑝(𝑚𝑥,𝑦|𝑧𝑗)
 an occupancy value 𝑙occ 

assigns to all cells within the 3D labelled points 𝑿𝑗 . In 

experiments, the occupied threshold is 𝑙occ = 0.65, the free 

threshold is 𝑙free = 0.2. The grid is initialized without prior 

knowledge of the map 𝑝(𝑚𝑥,𝑦) = 0.5. 

3. EXPERIMENTAL RESULTS 

The metrological performances of the proposed method have 
been evaluated using the ESA Katwijk Beach Planetary Rover 
Dataset [24], which provides images analogous to Mars. Of the 
overall dataset, the LocCam stereo images have been used for 
semantic maps generation, site ortomosaic combined with 
differential GPS has been used as ground truth. The 
characteristics of the sensors used in the experimental part are 
summarized in Table 1. The DGPS has been used to register the 
generated maps to the ortomosaic taken by the drone, which has 
been used as a map reference. The ground truth of the map has 
been obtained by manually labelling the ortomosaic drone, and 
the ground truth of the trajectory is given directly by the DGPS. 

Figure 4 shows the occupancy grid map generated with the 
proposed method, the occupancy grid is superimposed on the 
drone image used for performance evaluation. The metrics 
normally used to evaluate object detection algorithms were used: 
the accuracy, the Intersection over Union (IoU) and the F1 score:  

 

Figure 4. Occupancy grid map generated with the proposed method. Free 
cells are shown in green, obstacles-occupied cells in red, and yellow arrows 
show the trajectory of the rover. The occupancy grid is superimposed on the 
drone image used for performance evaluation. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 , 

(6) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 , (7) 

where TP represent the True Positives, TN the True Negatives, 
FP the False Positives, and FN the False Negatives. In the case 

of an ideal classifier 𝐹𝑃 = 𝐹𝑁 = 0, thus the accuracy metric 
would be equal to 1. IoU is the ratio of correctly classified cells 
over the sum of the total number of cells labelled and cells 
classified. Table 2 summarises the performances (Accuracy and 
IoU) of the proposed method.  

The left column of Figure 5 shows the images labelled with 
rock, sand and background classes, and the right column shows 

 

 

 
Figure 5. Left column: labelled images with rock, sand, and background classes. Right column: occupancy grid map and trajectory estimated with the proposed 
method. From top to bottom successive images of the sequence. 

Table 1. Sensors characteristics. 

Sensor Description Data Logged 

LocCam 
PointGery Bumblebee2 (BB2-08S2C-
38) 12 cm baseline stereo camera. 

1024 × 768 images 

RTK GPS 

Trimble BD 970 Receiver with Zephyr 
Model2 Antenna (rover) Trimble BX 982 
Receiver with Zephyr Geodetic Antenna 
(base station). 

Latitude, Longitude, and 
Altitude expressed on 

WGS84 ellipsoid 

Table 2. Global mapping performances in terms of accuracy and IoU metrics. 

Labeller Trajectory Accuracy IoU 

DeepLabv3+ ORB-SLAM2 0.987 0.282 
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the occupancy grid map and trajectory estimated with the 
proposed method. As it is possible to observe in the first row of 
Figure 5 the two rocky obstacles are a few meters away from the 
camera and not easily recognizable, however, they are correctly 
labelled by the DeepLabv3+ labeller. The effectiveness of the 
labeller can also be observed in the middle and bottom row of 
Figure 5, although the shadows of the rover are present in both 
rock and sand, it does not affect the performance of the label.  

4. CONCLUSIONS 

In this paper, a hazard mapping method for planetary rovers’ 
navigation is presented. The method is based on occupancy grid 
mapping. The posterior probability of the grid cells is updated 
using the inverse measurement model of a scan-like obstacle 
detector. Objects are identified as obstacles by means of the 
DeepLabv3+ deep neural network. The estimation of the relative 
pose between successive frames is carried out using the state-of-
the-art visual SLAM method, ORB-SLAM. The proposed 
method shows the ability to produce accurate occupancy grid 
maps with associated label up to a dozen meters from the camera 
and when the rover shadow is present in the image field of view. 
Finally, the method has been tested on a public available dataset 
of a Martian analogous environment. 
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